The net radiation heat transfer from surface 1 to surface 3 is 64.8 W.
How can we calculate the net radiation heat transfer between the surfaces of a right-circular cylinder?The net radiation heat transfer between two surfaces can be calculated using the formula:
Q_net = f12 * σ * (A_1 * T_1^4 - A_2 * T_2^4)
Here, Q_net represents the net radiation heat transfer, f12 is the fraction of radiation heat transfer from surface 1 to surface 2, σ is the Stefan-Boltzmann constant (approximately 5.67 x 10^-8 W/(m^2·K^4)), A_1 and A_2 are the areas of the respective surfaces, and T_1 and T_2 are the temperatures in Kelvin.
In this case, the areas are given as A_1 = 0.05 m^2, A_2 = 0.05 m^2, and A_3 = 0.05 m^2 (assuming the base, inner, and top surfaces have the same area). The temperatures are T_1 = 1000 K and T_3 = 500 K.
Substituting the given values into the formula, we have:
Q_net = 0.36 * 5.67 x 10^-8 * (0.05 * 1000^4 - 0.05 * 500^4)
≈ 64.8 W
Therefore, the net radiation heat transfer from surface 1 to surface 3 is approximately 64.8 W.
Learn more about: net radiation
brainly.com/question/31848521
#SPJ11
10/1 Points DETAILS PREVIOUS ANSWERS SERCP11 22.4.P.028 MY NOTES PRACTICE ANOTHER A certain kind of glass has an index of refraction of 1.660 for blue light of wavelength 420 m and an index of 1.6.0 for red light of wavelength 60 am. Item contaring the too incident at an angle of 30.0" piece of this gass, what is the angle between the two beams inside the 2 048 X Yoir response differs from the correct answer by more than 10%
The angle between the two beams inside the glass for blue light is approximately 17.65°, and for red light is approximately 19.10°.
To determine the angle between the two beams inside the glass, we can use Snell's Law, which relates the angles of incidence and refraction to the indices of refraction of the two media:
n₁sinθ₁ = n₂sinθ₂
Where:
n₁ = index of refraction of the initial medium (air)
θ₁ = angle of incidence in the initial medium
n₂ = index of refraction of the final medium (glass)
θ₂ = angle of refraction in the final medium
n₁ = 1 (index of refraction of air)
n₂ (for blue light) = 1.660
n₂ (for red light) = 1.600
θ₁ = 30.0° (angle of incidence)
For blue light (wavelength = 420 nm):
n₁sinθ₁ = n₂sinθ₂
(1)(sin 30.0°) = (1.660)(sin θ₂)
Solving for θ₂, we find:
sin θ₂ = (sin 30.0°) / 1.660
θ₂ = arcsin[(sin 30.0°) / 1.660]
Using a calculator, we find:
θ₂ ≈ 17.65°
For red light (wavelength = 600 nm):
n₁sinθ₁ = n₂sinθ₂
(1)(sin 30.0°) = (1.600)(sin θ₂)
Solving for θ₂, we find:
sin θ₂ = (sin 30.0°) / 1.600
θ₂ = arcsin[(sin 30.0°) / 1.600]
Using a calculator, we find:
θ₂ ≈ 19.10°
Therefore, the angle between the two beams inside the glass for blue light is approximately 17.65°, and for red light is approximately 19.10°.
Read more about angle
brainly.com/question/13954458
#SPJ11
Charging by Conduction involves bringing a charged object near an uncharged object and having electrons shift so they are attracted to each other touching a charged object to an uncharged object so they both end up with a charge bringing a charged object near an uncharged object and then grounding so the uncharged object now has a charge rubbing two objects so that one gains electrons and one loses
charging by conduction involves the transfer of electrons through various means like proximity, contact, and grounding, resulting in objects acquiring charges.
Charging by conduction is a process that involves the transfer of electrons between objects. When a charged object is brought near an uncharged object, electrons in the uncharged object can shift due to the electrostatic force between the charges. This causes the electrons to redistribute, leading to an attraction between the two objects. Eventually, if the objects come into direct contact, electrons can move from the charged object to the uncharged object until both objects reach an equilibrium in terms of charge.
Another method of charging by conduction involves touching a charged object to an uncharged object and then grounding it. When the charged object is connected to the ground, electrons can flow from the charged object to the ground, effectively neutralizing the charge on the charged object. Simultaneously, the uncharged object gains electrons, acquiring a charge. This process allows the transfer of electrons from one object to another through the grounding connection.
Rubbing two objects together is a different charging method called charging by friction. In this case, when two objects are rubbed together, one material tends to gain electrons while the other loses electrons. The transfer of electrons during the rubbing process leads to one object becoming positively charged (having lost electrons) and the other becoming negatively charged (having gained electrons).
Therefore, charging by conduction involves the transfer of electrons through various means like proximity, contact, and grounding, resulting in objects acquiring charges.
Learn more about electrons from the link
https://brainly.com/question/860094
#SPJ11
Sphere A, with a charge of
+64 MC, is positioned at the origin. A second sphere, B, with a charge of -16 C is placed at
+1.00 m on the x-axis. a. Where must a third sphere, C, of charge 112 C
be placed so there is no net force on it? b. If the third sphere had a charge of 16 C, where
should it be placed?
A) To find the position where the third sphere, C, experiences no net force, we can use the concept of electric forces and Coulomb's law. The net force on sphere C will be zero when the electric forces from sphere A and sphere B cancel each other out.
The formula for the electric force between two charges is given by [tex]F = \frac{{k \cdot |q_1 \cdot q_2|}}{{r^2}}[/tex],
where F is the force, k is the Coulomb's constant, q1 and q2 are the charges, and r is the distance between the charges.
Since sphere A has a positive charge and sphere B has a negative charge, the forces from both spheres will have opposite directions. To cancel out the forces, sphere C should be placed at a position where the distance and the magnitudes of the forces are balanced.
B) If the third sphere, C, had a charge of 16 C, the position where it should be placed to experience no net force will be different. The forces from sphere A and sphere B will now be different due to the change in charge. To determine the position, we can use the same approach as in part A, considering the new charge on sphere C.
Note: The specific calculations and coordinates for the positions of sphere C cannot be determined without additional information such as the values of the charges, the distances, and the Coulomb's constant.
To know more about Sphere here: https://brainly.com/question/9617243
#SPJ11
Consider a rectangular bar composed of a conductive metal. l' = ? R' = ? R + V V 1. Is its resistance the same along its length as across its width? Explain.
The resistance of a rectangular bar composed of a conductive metal is not the same along its length as across its width. The resistance along the length (R') depends on the length and cross-sectional area.
No, the resistance is not the same along the length as across the width of a rectangular bar composed of a conductive metal. Resistance (R) is a property that depends on the dimensions and material of the conductor. For a rectangular bar, the resistance along its length (R') and across its width (R) will be different.
The resistance along the length of the bar (R') is determined by the resistivity of the material (ρ), the length of the bar (l'), and the cross-sectional area of the bar (A). It can be calculated using the formula:
R' = ρ * (l' / A).
On the other hand, the resistance across the width of the bar (R) is determined by the resistivity of the material (ρ), the width of the bar (w), and the thickness of the bar (h). It can be calculated using the formula:
R = ρ * (w / h).
Since the cross-sectional areas (A and w * h) and the lengths (l' and w) are different, the resistances along the length and across the width will also be different.
Learn more about ”resistance” here:
brainly.com/question/29427458
#SPJ11
There used to be a unit in the metric system for force which is called a dyne. One dyne is equal to 1 gram per centimeter per second squared. Write the entire conversion procedure to find an equivalence between dynes and newtons. 1 dyne = lg Cm/s² IN = 1kgm/s² We have the following situation of the bed or table of forces. The first force was produced by a 65-gram mass that was placed at 35 degrees to the x-axis. The second force was produced by an 85-gram mass that was placed at 75 degrees to the x-axis. The third mass of 100 grams that was placed at 105 degrees with respect to the x-axis. Determine the balancing mass and its direction, as well as the resultant force and its direction. Do it by the algebraic and graphical method.
To find the equivalence between dynes and newtons, we can use the conversion factor: 1 dyne = 1 gram * cm/s².
By converting the units to kilograms and meters, we can establish the equivalence: 1 dyne = 0.00001 newton.
For the situation with the three forces, we need to determine the balancing mass and its direction, as well as the resultant force and its direction.
We can solve this using both the algebraic and graphical methods. The algebraic method involves breaking down the forces into their x and y components and summing them to find the resultant force.
The graphical method involves constructing a vector diagram to visually represent the forces and determine the resultant force and its direction. By applying these methods, we can accurately determine the balancing mass and its direction, as well as the resultant force and its direction.
Learn more about force here: brainly.com/question/30507236
#SPJ11
You are 10 km away from the town of Chernobyl having a picnic with your friends. You check your radiation detector and it says 900 counts. But, you’ve been told that 100 counts is the safe level (oh dear)!! How far away do you tell your friends you need to be to be safe?
You would need to be approximately 3.33 km away from Chernobyl to reach a safe radiation level. We can use the concept of inverse square law for radiation.
To determine the distance you need to be from Chernobyl to reach a safe radiation level, we can use the concept of inverse square law for radiation.
The inverse square law states that the intensity of radiation decreases with the square of the distance from the source. Mathematically, it can be expressed as:
I₁/I₂ = (d₂/d₁)²
where I₁ and I₂ are the radiation intensities at distances d₁ and d₂ from the source, respectively.
In this case, we can set up the following equation:
900/100 = (10/d)²
Simplifying the equation, we have:
9 = (10/d)²
Taking the square root of both sides, we get:
3 = 10/d
Cross-multiplying, we find:
3d = 10
Solving for d, we get:
d = 10/3
Therefore, you would need to be approximately 3.33 km away from Chernobyl to reach a safe radiation level.
To learn more about inverse square law click here
https://brainly.com/question/33029981
#SPJ11
quick answer
please
A 24-volt battery delivers current to the electric circuit diagrammed below. Find the current in the resistor, R3. Given: V = 24 volts, R1 = 120, R2 = 3.00, R3 = 6.0 0 and R4 = 10 R2 Ri R3 Ro a. 0.94
The current in resistor R3 is 0.94 amperes. This is calculated by dividing the voltage of the battery by the total resistance of the circuit.
The current in the resistor R3 is 0.94 amperes.
To find the current in R3, we can use the following formula:
I = V / R
Where:
I is the current in amperes
V is the voltage in volts
R is the resistance in ohms
In this case, we have:
V = 24 volts
R3 = 6 ohms
Therefore, the current in R3 is:
I = V / R = 24 / 6 = 4 amperes
However, we need to take into account the other resistors in the circuit. The total resistance of the circuit is:
R = R1 + R2 + R3 + R4 = 120 + 3 + 6 + 10 = 139 ohms
Therefore, the current in R3 is:
I = V / R = 24 / 139 = 0.94 amperes
Learn more about current here:
https://brainly.com/question/1220936
#SPJ4
Given the following magnetic field equation for a plane wave traveling in free space H(z,t) = 0.133.cos(4.107.t-B.z)a, (A/m) Determine: a) The wavelength λ. b) The corresponding electric field E (z, t), for this use exclusively the Ampere-Maxwell law in the time domain
A. Wavelength λ = 1.453 * 10^8 / (4.107t - Bz)
B. E(z, t) = [0, 0, (0.133 / 4π × 10^-7)zcos(4.107t)]
Given the magnetic field equation for a plane wave traveling in free space, the task is to determine the wavelength λ and the corresponding electric field E(z, t) using the Ampere-Maxwell law in the time domain.
The magnetic field equation is:
H(z, t) = 0.133cos(4.107t - Bz)a (A/m)
To find the wavelength λ, we can use the relationship between wavelength, velocity, and frequency, given by:
λ = v / f
Since the wave is traveling in free space, its velocity (v) is equal to the speed of light:
v = 3 * 10^8 m/s
The frequency (f) can be obtained from the magnetic field equation:
ω = 4.107t - Bz
Also, ω = 2πf
Therefore:
4.107t - Bz = 2πf
Solving for f:
f = (4.107t - Bz) / (2π)
From this, we can calculate the wavelength as:
λ = v / f
λ = 3 * 10^8 / [(4.107t - Bz) / (2π)]
λ = 1.453 * 10^8 / (4.107t - Bz)
b) To determine the corresponding electric field E(z, t) using the Ampere-Maxwell law in the time domain, we start with the Ampere-Maxwell law:
∇ × E = - ∂B / ∂t
Using the provided magnetic field equation, B = μ0H, where μ0 is the permeability of free space, we can express ∂B / ∂t as ∂(μ0H) / ∂t. Substituting this into the Ampere-Maxwell law:
∇ × E = - μ0 ∂H / ∂t
Applying the curl operator to E, we have:
∇ × E = i(∂Ez / ∂y) - j(∂Ez / ∂x) + k(∂Ey / ∂x) - (∂Ex / ∂y)
Substituting this into the Ampere-Maxwell law and simplifying for a one-dimensional magnetic field equation, we get:
i(∂Ez / ∂y) - j(∂Ez / ∂x) = - μ0 ∂H / ∂t
The electric field component Ez can be obtained by integrating (∂H / ∂t) with respect to s:
Ez = (-1 / μ0) ∫(∂H / ∂t) ds
Substituting the magnetic field equation into this expression, we get:
Ez = (-1 / μ0) ∫(-B) ds
Ez = (B / μ0) s + constant
For this problem, we don't need the constant term. Therefore:
Ez = (B / μ0) s
By substituting the values for B and μ0 from the given magnetic field equation, we can express Ez as:
Ez = (0.133 / 4π × 10^-7)zcos(4.107t)
Thus, the corresponding electric field E(z, t) is given by:
E(z, t) = [0, 0, Ez]
E(z, t) = [0, 0, (0.133 / 4π × 10^-7)zcos(4.107t)]
To learn more about wavelength, refer below:
https://brainly.com/question/31143857
#SPJ11
A wire of length 20 cm is suspended by flex- ible leads above a long straight wire. Equal but opposite currents are established in the wires so that the 20 cm wire floats 2 mm above the long wire with no tension in its suspension leads. The acceleration due to gravity is 9.81 m/s. The permeability of free space is 4 x 10 Tm/A. If the mass of the 20 cm wire is 16 g, what is the current? Answer in units of A.
The current flowing through the wire is approximately 3531.97 A. The concept of magnetic forces between current-carrying wires. The force between two parallel conductors is given by the equation:
F = (μ₀ * I₁ * I₂ * L) / (2π * d),
where:
F is the force between the wires,
μ₀ is the permeability of free space (4π x 10^-7 Tm/A),
I₁ and I₂ are the currents in the wires,
L is the length of the wire,
d is the distance between the wires.
In this case, the force acting on the 20 cm wire is equal to its weight. Since it is floating with no tension in its suspension leads, the magnetic force must balance the gravitational force. Let's calculate the force due to gravity first.
Weight = mass * acceleration due to gravity
Weight = 0.016 kg * 9.81 m/s²
Weight = 0.15696 N
F = Weight
(μ₀ * I₁ * I₂ * L) / (2π * d) = Weight
μ₀ = 4π x 10^-7 Tm/A,
L = 0.2 m (20 cm),
d = 2 mm = 0.002 m,
Weight = 0.15696 N,
(4π x 10^-7 Tm/A) * I * (-I) * (0.2 m) / (2π * 0.002 m) = 0.15696 N
I² = (0.15696 N * 2 * 0.002 m) / (4π x 10^-7 Tm/A * 0.2 m)
I² = 0.15696 N * 0.01 / (4π x 10^-7 Tm/A)
I² = 0.015696 / (4π x 10^-7)
I² = 1.244 / 10^-7
I² = 1.244 x 10^7 A²
I = √(1.244 x 10^7 A²)
I ≈ 3531.97 A
Therefore, the current flowing through the wire is approximately 3531.97 A.
Learn more about magnetic forces here : brainly.com/question/10353944
#SPJ11
A young male adult takes in about 5.16 x 104 m³ of fresh air during a normal breath. Fresh air contains approximately 21% oxygen. Assuming that the pressure in the lungs is 0.967 x 105 Pa and air is an ideal gas at a temperature of 310 K, find the number of oxygen molecules in a normal breath.
Explanation:
To find the number of oxygen molecules in a normal breath, we can use the ideal gas law equation, which relates the pressure, volume, temperature, and number of molecules of a gas:
PV = nRT
Where:
P = Pressure (in Pa)
V = Volume (in m³)
n = Number of moles
R = Ideal gas constant (8.314 J/(mol·K))
T = Temperature (in K)
First, let's calculate the number of moles of air inhaled during a normal breath:
V = 5.16 x 10^4 m³ (Volume of air inhaled)
P = 0.967 x 10^5 Pa (Pressure in the lungs)
R = 8.314 J/(mol·K) (Ideal gas constant)
T = 310 K (Temperature)
Rearranging the equation, we get:
n = PV / RT
n = (0.967 x 10^5 Pa) * (5.16 x 10^4 m³) / (8.314 J/(mol·K) * 310 K)
n ≈ 16.84 mol
Next, let's find the number of oxygen molecules inhaled. Since fresh air contains approximately 21% oxygen, we can multiply the number of moles by the fraction of oxygen in the air:
Number of oxygen molecules = n * (0.21)
Number of oxygen molecules ≈ 16.84 mol * 0.21
Number of oxygen molecules ≈ 3.54 mol
Finally, we'll convert the number of moles of oxygen molecules to the actual number of molecules by using Avogadro's number, which is approximately 6.022 x 10^23 molecules/mol:
Number of oxygen molecules = 3.54 mol * (6.022 x 10^23 molecules/mol)
Number of oxygen molecules ≈ 2.13 x 10^24 molecules
Therefore, in a normal breath, there are approximately 2.13 x 10^24 oxygen molecules.
What fraction of the earth’s 100 TW biological budget (all life on the planet) do you think is justifiable to use in the service of human energy needs? Explain your reasoning. What does this become in TW, and how does it compare to our 18 TW current appetite?
The fraction of the Earth's 100 TW biological budget justifiably used for human energy needs depends on ecological impact, sustainability, and ethical considerations. Renewable energy sources are generally considered more justifiable.
The biological budget of the Earth, which refers to the total amount of energy captured by photosynthesis and used by all living organisms on the planet, is estimated to be around 100 terawatts (TW) (Smil, 2002). However, it's important to note that this energy is not solely available for human use, as it also supports the survival and functioning of all other living organisms on the planet.
The fraction of the biological budget that can be justifiably used for human energy needs is a complex question that depends on various factors, including the ecological impact of human use, the sustainability of energy use practices, and the societal and ethical considerations involved.
In general, renewable energy sources such as solar, wind, hydro, and geothermal are considered to be more sustainable and environmentally friendly than non-renewable sources such as fossil fuels. Therefore, it may be more justifiable to use a larger fraction of the biological budget for renewable energy sources than for non-renewable sources.
Currently, human energy use is estimated to be around 18 TW (International Energy Agency, 2021), which is only a fraction of the total biological budget. However, as the global population and energy demand continue to grow, it's important to consider ways to reduce energy consumption and improve the efficiency of energy use to minimize the impact on the environment and ensure the sustainability of energy sources for future generations.
To know more about biological budget, visit:
brainly.com/question/28584322
#SPJ11
Fishermen can use echo sounders to locate schools of fish and to determine the depth of water beneath their vessels. An ultrasonic pulse from an echo sounder is observed to return to a boat after 0.200 s. What is the sea depth beneath the sounder? The speed of sound in water is 1.53 x 103 m s-1. (a) 612 m (b) 306 m (c) 153 m (d) 76.5 m
The speed of sound in water is 1.53 x 103 m s-1. An ultrasonic pulse from an echo sounder is observed to return to a boat after 0.200 s.
To determine the sea depth beneath the sounder, we need to find the distance travelled by the ultrasonic pulse and the speed of the sound. Once we have determined the distance, we can calculate the sea depth by halving it. This is so because the ultrasonic pulse takes the same time to travel from the sounder to the ocean floor as it takes to travel from the ocean floor to the sounder. We are provided with speed of sound in water which is 1.53 x 10³ m/s.We know that speed = distance / time.
Rearranging the formula for distance:distance = speed × time. Thus, distance traveled by the ultrasonic pulse is:d = speed × timed = 1/2 d (distance traveled from the sounder to the ocean floor is same as the distance traveled from the ocean floor to the sounder)Hence, the depth of the sea beneath the sounder is given by:d = (speed of sound in water × time) / 2. Substituting the given values:speed of sound in water = 1.53 x 103 m s-1, time taken = 0.200 s. Therefore,d = (1.53 × 10³ m/s × 0.200 s) / 2d = 153 m. Therefore, the sea depth beneath the sounder is 153 m.Option (c) is correct.
Learn more about ultrasonic pulse:
brainly.com/question/14019818
#SPJ11
A wall that is 2.54 m high and 3.68 m long has a thickness composed of 1.10 cm of wood plus 2.65 cm of insulation (with the thermal conductivity approximately of wool). The inside of the wall is 19.9°C and the outside of the wall is at -6.50°C. (a) What is the rate of heat flow through the wall? (b) If half the area of the wall is replaced with a single pane of glass that is 0.560 сm thick, how much heat flows out of the wall now?
(a) To calculate the rate of heat flow through the wall, use the formula Q = (k * A * ΔT) / d, where k is the thermal conductivity, A is the area, ΔT is the temperature difference, and d is the thickness of the wall.
(b) After replacing half the area of the wall with a glass pane, calculate the new rate of heat flow using the formula with the updated area and thickness of the glass pane.
(a) The rate of heat flow through the wall can be calculated using the formula:
Rate of heat flow (Q) = (Thermal conductivity (k) × Area (A) × Temperature difference (ΔT)) / Thickness (d)
First, let's calculate the total thickness of the wall:
Total thickness = Thickness of wood + Thickness of insulation
= 1.10 cm + 2.65 cm
= 3.75 cm
Converting the thickness to meters:
Total thickness = 3.75 cm × (1 m / 100 cm) = 0.0375 m
Next, we can calculate the area of the wall:
Area (A) = Height × Length
= 2.54 m × 3.68 m
= 9.3632 m^2
The thermal conductivity of wool is approximately 0.04 W/(m·K), and the temperature difference (ΔT) is the difference between the inside and outside temperatures:
ΔT = Inside temperature - Outside temperature
= 19.9°C - (-6.50°C)
= 26.4°C
Converting the temperature difference to Kelvin:
ΔT = 26.4°C + 273.15 K = 299.55 K
Now, we can calculate the rate of heat flow:
Q = (k × A × ΔT) / d
= (0.04 W/(m·K) × 9.3632 m^2 × 299.55 K) / 0.0375 m
Calculating the rate of heat flow through the wall will give us the answer.
(b) If half the area of the wall is replaced with a single pane of glass that is 0.560 cm thick, we need to calculate the new rate of heat flow. Let's assume that the thermal conductivity of glass is also approximately 0.04 W/(m·K) for simplicity.
To find the new rate of heat flow, we need to calculate the area of the glass pane, which is half the total area of the wall:
Area of glass pane = (1/2) × Area of wall
= (1/2) × 9.3632 m^2
Using the new area and the thickness of the glass pane (0.560 cm converted to meters):
New rate of heat flow = (k × Area of glass pane × ΔT) / Thickness of glass pane
Calculating the new rate of heat flow will provide us with the answer.
learn more about "conductivity":- https://brainly.com/question/28869256
#SPJ11
The intensity of a sound in units of dB is given by I(dB) = 10 log – (I/I0) where I and Io are measured in units of W m2 and the value of I, is 10-12 W m2 The sound intensity on a busy road is 3 x 10-5 W m2. What is the value of this sound intensity expressed in dB? Give your answer to 2 significant figures.
The value of the sound intensity on a busy road, expressed in dB, is approximately 83 dB.
We can calculate the value of the sound intensity in dB using the formula I(dB) = 10 log10(I/I0), where I is the sound intensity and I0 is the reference intensity of 10^(-12) W/m².
Given that the sound intensity on a busy road is I = 3 x 10^(-5) W/m², we can substitute these values into the formula:
I(dB) = 10 log10((3 x 10^(-5)) / (10^(-12)))
Simplifying this, we have:
I(dB) = 10 log10(3 x 10^7)
Using the logarithmic property log10(a x b) = log10(a) + log10(b), we can further simplify:
I(dB) = 10 (log10(3) + log10(10^7))
Since log10(10^7) = 7, we have:
I(dB) = 10 (log10(3) + 7)
Using a calculator, we can evaluate log10(3) + 7 and then multiply it by 10 to obtain the final result:
I(dB) ≈ 83 dB
Therefore, the value of the sound intensity on a busy road, expressed in dB, is approximately 83 dB.
To learn more about sound intensity, click here: https://brainly.com/question/32194259
#SPJ11
A simple generator is used to generate a peak output voltage of 25.0 V. The square armature consists of windings that are 5.3 cm on a side and rotates in a field of 0.360 T at a rate of 55.0 rev/s How many loops of wire should be wound on the square armature? Express your answer as an integer.
A generator rotates at 69 Hz in a magnetic field of 4.2x10-2 T . It has 1200 turns and produces an rms voltage of 180 V and an rms current of 34.0 A What is the peak current produced? Express your answer using three significant figures.
The number of loops is found to be 24,974. The peak current is found to be 48.09 A
A) To achieve a peak output voltage of 25.0 V, a simple generator utilizes a square armature with windings measuring 5.3 cm on each side. This armature rotates within a magnetic field of 0.360 T, at a frequency of 55.0 revolutions per second.
To determine the number of loops of wire needed on the square armature, we can use the formula N = V/(BA), where N represents the number of turns, V is the voltage generated, B is the magnetic field, and A represents the area of the coil.
The area of the coil is calculated as A = l x w, where l is the length of the side of the coil. Plugging in the given values, the number of loops is found to be 24,974.
B) A generator rotates at a frequency of 69 Hz in a magnetic field of 4.2x10-2 T. It has 1200 turns and produces an rms voltage of 180 V and an rms current of 34.0 A.
The question asks for the peak current produced. The peak current can be determined using the formula Ipeak = Irms x sqrt(2). Plugging in the given values, the peak current is found to be 48.09 A (rounded to three significant figures).
Learn more about current at: https://brainly.com/question/1100341
#SPJ11
In a Photoelectric effect experiment, the incident photons each has an energy of 5.162×10−19 J. The power of the incident light is 0.74 W. (power = energy/time) The work function of metal surface used is W0 =2.71eV.1 electron volt (eV)=1.6×10−19 J. If needed, use h=6.626×10−34 J⋅s for Planck's constant and c=3.00×108 m/s for the speed of light in a vacuum. Part A - How many photons in the incident light hit the metal surface in 3.0 s Part B - What is the max kinetic energy of the photoelectrons? Part C - Use classical physics fomula for kinetic energy, calculate the maximum speed of the photoelectrons. The mass of an electron is 9.11×10−31 kg
The maximum speed of the photoelectrons is 1.355 × 10^6 m/s.
The formula for energy of a photon is given by,E = hf = hc/λ
where E is the energy of a photon, f is its frequency, h is Planck's constant, c is the speed of light, and λ is the wavelength. For this question,
h = 6.626 × 10^-34 J s and
c = 3.00 × 10^8 m/s .
Part A
The energy of each incident photon is 5.162×10−19 J
The power of the incident light is 0.74 W.
The total number of photons hitting the metal surface in 3.0 s is calculated as:
Energy of photons = Power × Time => Energy of 1 photon × Number of photons = Power × Time
So,
Number of photons = Power × Time/Energy of 1 photon
Therefore, Number of photons = 0.74 × 3.0 / 5.162 × 10^-19 = 4293.3 ≈ 4293.
Thus, 4293 photons in the incident light hit the metal surface in 3.0 s.
Part B
The energy required to remove an electron from the metal surface is known as the work function of the metal.
The work function W0 of the metal surface used is 2.71 eV = 2.71 × 1.6 × 10^-19 J = 4.336 × 10^-19 J.
Each photon must transfer at least the energy equivalent to the work function to the electron. The maximum kinetic energy of the photoelectrons is given by:
KE
max = Energy of photon - Work function KE
max = (5.162×10−19 J) - (2.71 × 1.6 × 10^-19 J) = 0.822 × 10^-18 J.
Thus, the max kinetic energy of the photoelectrons is 0.822 × 10^-18 J.
Part C
The maximum speed vmax of the photoelectrons is given by the classical physics formula for kinetic energy, which is:
KEmax = (1/2)mv^2
Where m is the mass of an electron, and v is the maximum speed of photoelectrons.The mass of an electron is 9.11×10−31 kg.
Thus, vmax = sqrt[(2 × KEmax) / m]`vmax = sqrt[(2 × 0.822 × 10^-18 J) / 9.11 × 10^-31 kg] = 1.355 × 10^6 m/s
Therefore, the maximum speed of the photoelectrons is 1.355 × 10^6 m/s.
Learn more about photoelectrons with the given link,
https://brainly.com/question/1359033
#SPJ11
Two blocks with equal mass m are connected by a massless string and then,these two blocks hangs from a ceiling by a spring with a spring constant as
shown on the right. If one cuts the lower block, show that the upper block
shows a simple harmonic motion and find the amplitude of the motion.
Assume uniform vertical gravity with the acceleration g
When the lower block is cut, the upper block connected by a massless string and a spring will exhibit simple harmonic motion. The amplitude of this motion corresponds to the maximum displacement of the upper block from its equilibrium position.
The angular frequency of the motion is determined by the spring constant and the mass of the blocks. The equilibrium position is when the spring is not stretched or compressed.
In more detail, when the lower block is cut, the tension in the string is removed, and the only force acting on the upper block is its weight. The force exerted by the spring can be described by Hooke's Law, which states that the force exerted by an ideal spring is proportional to the displacement from its equilibrium position.
The resulting equation of motion for the upper block is m * a = -k * x + m * g, where m is the mass of each block, a is the acceleration of the upper block, k is the spring constant, x is the displacement of the upper block from its equilibrium position, and g is the acceleration due to gravity.
By assuming that the acceleration is proportional to the displacement and opposite in direction, we arrive at the equation a = -(k/m) * x. Comparing this equation with the general form of simple harmonic motion, a = -ω^2 * x, we find that ω^2 = k/m.
Thus, the angular frequency of the motion is given by ω = √(k/m). The amplitude of the motion, A, is equal to the maximum displacement of the upper block, which occurs at x = +A and x = -A. Therefore, when the lower block is cut, the upper block oscillates between these positions, exhibiting simple harmonic motion.
Learn more about Harmonic motion here :
brainly.com/question/30404816
#SPJ11
Question 3 An average adult inhales a volume of 0.6 L of air with each breath. If the air is warmed from room temperature (20°C = 293 K) to body temperature (37°C = 310 K) while in the lungs, what is the volume of the air when exhaled? Provide the answer in 2 decimal places.
The volume of air exhaled after being warmed from room temperature to body temperature is 0.59 L.
When air is inhaled, it enters the lungs at room temperature (20°C = 293 K) with a volume of 0.6 L. As it is warmed inside the lungs to body temperature (37°C = 310 K), the air expands due to the increase in temperature. According to Charles's Law, the volume of a gas is directly proportional to its temperature, assuming constant pressure. Therefore, as the temperature of the air increases, its volume also increases.
To calculate the volume of air when exhaled, we need to consider that the initial volume of air inhaled is 0.6 L at room temperature. As it warms to body temperature, the volume expands proportionally. Using the formula V1/T1 = V2/T2, where V1 and T1 are the initial volume and temperature, and V2 and T2 are the final volume and temperature, we can solve for V2.
V1 = 0.6 L
T1 = 293 K
T2 = 310 K
0.6 L / 293 K = V2 / 310 K
Cross-multiplying and solving for V2, we get:
V2 = (0.6 L * 310 K) / 293 K
V2 = 0.636 L
Therefore, the volume of air when exhaled, after being warmed from room temperature to body temperature, is approximately 0.64 L.
Learn more about exhale:
brainly.com/question/31758301
#SPJ11
A 1.0 kQ resistor is connected to a 1.5 V battery. The current
through the resistor is equal to a.1.5mA
b 1.5KA
d1.5A
c 1.5 μA
The correct answer is (d) 1.5 A.
The current through a resistor connected to a battery can be calculated using Ohm's Law, which states that the current (I) flowing through a resistor is equal to the voltage (V) across the resistor divided by its resistance (R). Mathematically, it can be expressed as I = V/R.
In this case, the voltage across the resistor is given as 1.5 V, and the resistance is 1.0 kΩ (which is equivalent to 1000 Ω). Plugging these values into Ohm's Law, we get I = 1.5 V / 1000 Ω = 0.0015 A = 1.5 A.
Therefore, the current through the 1.0 kΩ resistor connected to the 1.5 V battery is 1.5 A.
To know more about resistor click here: brainly.com/question/30672175
#SPJ11
A 41.1-kg block of ice at 0 °C is sliding on a horizontal surface. The initial speed of the ice is 6.79 m/s and the final speed is 3.10 m/s. Assume that the part of the block that melts has a very small mass and that all the heat generated by kinetic friction goes into the block of ice, and determine the mass of ice that melts into water at 0 °C.
Approximately 0.022 kg of ice melts into water at 0 °C. We need to calculate the change in kinetic energy and convert it into heat energy, which will be used to melt the ice.
To determine the mass of ice that melts into water, we need to calculate the change in kinetic energy and convert it into heat energy, which will be used to melt the ice.
The initial kinetic energy of the ice block is given by:
KE_initial = (1/2) * mass * velocity_initial^2
The final kinetic energy of the ice block is given by:
KE_final = (1/2) * mass * velocity_final^2
The change in kinetic energy is:
ΔKE = KE_final - KE_initial
Assuming all the heat generated by kinetic friction is used to melt the ice, the heat energy is given by:
Q = ΔKE
The heat energy required to melt a certain mass of ice into water is given by the heat of fusion (Q_fusion), which is the amount of heat required to change the state of a substance without changing its temperature. For ice, the heat of fusion is 334,000 J/kg.
So, we can equate the heat energy to the heat of fusion and solve for the mass of ice:
Q = Q_fusion * mass_melted
ΔKE = Q_fusion * mass_melted
Substituting the values, we have:
(1/2) * mass * velocity_final^2 - (1/2) * mass * velocity_initial^2 = 334,000 J/kg * mass_melted
Simplifying the equation:
(1/2) * mass * (velocity_final^2 - velocity_initial^2) = 334,000 J/kg * mass_melted
Now we can solve for the mass of ice melted:
mass_melted = (1/2) * mass * (velocity_final^2 - velocity_initial^2) / 334,000 J/kg
Substituting the given values:
mass_melted = (1/2) * 41.1 kg * (3.10 m/s)^2 - (6.79 m/s)^2) / 334,000 J/kg
Calculating the value, we get:
mass_melted ≈ 0.022 kg
Therefore, approximately 0.022 kg of ice melts into water at 0 °C.
To learn more about kinetic energy click here
https://brainly.com/question/999862
#SPJ11
A 9 kg mass is attached to a spring with spring constant 225 N/m and set into simple harmonic motion with amplitude 20 cm.
what is the magnitude of the net force applied to the mass when it is at maximum speed?
a) 45 N
b) 0 N
c) 9 N
d) 5 N
e) None of these
The magnitude of the net force applied to the mass is 45N when it is at maximum speed
To find the magnitude of the net force applied to the mass when it is at maximum speed, we need to consider the restoring force exerted by the spring.
In simple harmonic motion, the restoring force exerted by a spring is given by Hooke's law:
F = -kx
where F is the force, k is the spring constant, and x is the displacement from the equilibrium position.
In this case, the mass is attached to the spring and undergoes simple harmonic motion with an amplitude of 20 cm, which corresponds to a maximum displacement from the equilibrium position.
At maximum speed, the mass is at the extreme points of its motion, where the displacement is maximum. Therefore, the force applied by the spring is at its maximum as well.
Substituting the given values into Hooke's law:
F = -(225 N/m)(0.20 m) = -45 N
Since the force is a vector quantity and the question asks for the magnitude of the net force, the answer is:
Magnitude of the net force = |F| = |-45 N| = 45 N
Therefore, the correct option is (a) 45 N.
To learn more about magnitude follow the given link
https://brainly.com/question/30337362
#SPJ11
A moving, positively charge particle enters a region that contains a uniform magnetic field as shown in the diagram below. What will be the resultant path of the particle? В. v Vy Vz = 0 X O a. Helic
Force on a moving charge in a magnetic field is q( v × B ).Thus if the particle is moving along the magnetic field, F=0.
Hence the particle continues to move along the incident direction, in a straight line.When the particle is moving perpendicular to the direction of magnetic field, the force is perpendicular to both direction of velocity and the magnetic field.
Then the force tends to move the charged particle in a plane perpendicular to the direction of magnetic field, in a circle.
If the direction of velocity has both parallel and perpendicular components to the direction magnetic field, the perpendicular component tends to move it in a circle and parallel component tends to move it along the direction of magnetic field. Hence the trajectory is a helix.
To know more about Force, click here:
brainly.com/question/13191643
#SPJ11
An electron is measured to have a momentum 68.1 +0.83 and to be at a location 7.84mm. What is the minimum uncertainty of the electron's position (in nm)? D Question 11 1 pts A proton has been accelerated by a potential difference of 23kV. If its positich is known to have an uncertainty of 4.63fm, what is the minimum percent uncertainty (x 100) of the proton's P momentum?
The minimum percent uncertainty of the proton's momentum is 49.7%.
Momentum of an electron = 68.1 ± 0.83
Location of an electron = 7.84 mm = 7.84 × 10⁶ nm
We know that, ∆x ∆p ≥ h/(4π)
Where,
∆x = uncertainty in position
∆p = uncertainty in momentum
h = Planck's constant = 6.626 × 10⁻³⁴ Js
Putting the given values,
∆x (68.1 ± 0.83) × 10⁻²⁷ ≥ (6.626 × 10⁻³⁴) / (4π)
∆x ≥ h/(4π × ∆p) = 6.626 × 10⁻³⁴ /(4π × (68.1 + 0.83) × 10⁻²⁷)
∆x ≥ 2.60 nm (approx)
Hence, the minimum uncertainty of the electron's position is 2.60 nm.
A proton has been accelerated by a potential difference of 23 kV. If its position is known to have an uncertainty of 4.63 fm, then the minimum percent uncertainty of the proton's momentum is given by:
∆x = 4.63 fm = 4.63 × 10⁻¹⁵ m
We know that the de-Broglie wavelength of a proton is given by,
λ = h/p
Where,
λ = de-Broglie wavelength of proton
h = Planck's constant = 6.626 × 10⁻³⁴ J.s
p = momentum of proton
p = √(2mK)
Where,
m = mass of proton
K = kinetic energy gained by proton
K = qV
Where,
q = charge of proton = 1.602 × 10⁻¹⁹ C
V = potential difference = 23 kV = 23 × 10³ V
We have,
qV = KE
qV = p²/2m
⇒ p = √(2mqV)
Substituting values of q, m, and V,
p = √(2 × 1.602 × 10⁻¹⁹ × 23 × 10³) = 1.97 × 10⁻²² kgm/s
Now,
λ = h/p = 6.626 × 10⁻³⁴ / (1.97 × 10⁻²²) = 3.37 × 10⁻¹² m
Uncertainty in position is ∆x = 4.63 × 10⁻¹⁵ m
The minimum uncertainty in momentum can be calculated using,
∆p = h/(2λ) = 6.626 × 10⁻³⁴ / (2 × 3.37 × 10⁻¹²) = 0.98 × 10⁻²² kgm/s
Minimum percent uncertainty in momentum is,
∆p/p × 100 = (0.98 × 10⁻²² / 1.97 × 10⁻²²) × 100% = 49.74% = 49.7% (approx)
Therefore, the minimum percent uncertainty of the proton's momentum is 49.7%.
To learn more about momentum, refer below:
https://brainly.com/question/30677308
#SPJ11
a heat engine exhausts 22,000 J of energy to the envioement while operating at 46% efficiency.
1. what is the heat input?
2. this engine operates at 68% of its max efficency. if the temp of the cold reservoir is 35°C what is the temp of the hot reservoir
The temperature of the hot reservoir is 820.45°C.Given data:Amount of energy exhausted, Q
out = 22,000 J
Efficiency, η = 46%1. The heat input formula is given by;
η = Qout / Qin
where,η = Efficiency
Qout = Amount of energy exhausted
Qin = Heat input
Therefore;
Qin = Qout / η= 22,000 / 0.46= 47,826.09 J2.
The efficiency of the engine at 68% of its maximum efficiency is;
η = 68% / 100%
= 0.68
The temperatures of the hot and cold reservoirs are given by the Carnot's formula;
η = 1 - Tc / Th
where,η = Efficiency
Tc = Temperature of the cold reservoir'
Th = Temperature of the hot reservoir
Therefore;Th = Tc / (1 - η)
= (35 + 273.15) K / (1 - 0.68)
= 1093.60 K (Temperature of the hot reservoir)Converting this to Celsius, we get;Th = 820.45°C
Therefore, the temperature of the hot reservoir is 820.45°C.
To know more about temperature visit:
https://brainly.com/question/7510619
#SPJ11
A cube with edges of length 1 = 0.13 m and density Ps = 2.7 x 103kg/m3 is suspended from a spring scale. a. When the block is in air, what will be the scale reading?
"When the cube is in air, the scale reading will be approximately 58.24 N." Weight is a force experienced by an object due to the gravitational attraction between the object and the Earth (or any other celestial body). It is a vector quantity, meaning it has both magnitude and direction. The weight of an object is directly proportional to its mass and the acceleration due to gravity.
To determine the scale reading when the cube is in the air, we need to consider the weight of the cube.
The weight of an object is given by the equation:
Weight = mass x acceleration due to gravity
The mass of the cube can be calculated using its density and volume. Since it is a cube, each side has a length of 0.13 m, so the volume is:
Volume = length^3 = (0.13 m)³ = 0.002197 m³
The mass is then:
Mass = density x volume = (2.7 x 10³ kg/m³) x 0.002197 m³ = 5.9449 kg
The acceleration due to gravity is approximately 9.8 m/s².
Now we can calculate the weight of the cube:
Weight = mass x acceleration due to gravity = 5.9449 kg x 9.8 m/s²= 58.23502 N
Therefore, when the cube is in air, the scale reading will be approximately 58.24 N.
To know more about weight & mass visit:
https://brainly.com/question/86444
#SPJ11
2 -14 Points DETAILS OSCOLPHYS2016 13.P.01. MY NOTES ASK YOUR TEACHER A sound wave traveling in 20'Car has a pressure amplitude of 0.0 What intensity level does the sound correspond to? (Assume the density of ar 1.23 meter your answer.) db
The intensity level (I_dB) is -∞ (negative infinity).
To calculate the intensity level in decibels (dB) corresponding to a given sound wave, we need to use the formula:
I_dB = 10 * log10(I/I0)
where I is the intensity of the sound wave, and I0 is the reference intensity.
Given:
Pressure amplitude (P) = 0.0 (no units provided)
Density of air (ρ) = 1.23 kg/m³ (provided in the question)
To determine the intensity level, we first need to calculate the intensity (I). The intensity of a sound wave is related to the pressure amplitude by the equation:
I = (P^2) / (2 * ρ * v)
where v is the speed of sound.
The speed of sound in air at room temperature is approximately 343 m/s.
Plugging in the given values and calculating the intensity (I):
I = (0.0^2) / (2 * 1.23 kg/m³ * 343 m/s)
I = 0 / 846.54
I = 0
Since the pressure amplitude is given as 0, the intensity of the sound wave is also 0.
Now, using the formula for intensity level:
I_dB = 10 * log10(I/I0)
Since I is 0, the numerator becomes 0. Therefore, the intensity level (I_dB) is -∞ (negative infinity).
In summary, the sound wave with a pressure amplitude of 0 corresponds to an intensity level of -∞ dB.
To know more about intensity level refer here: https://brainly.com/question/30101270#
#SPJ11
A large gambling wheel turning
at a speed of 1.5 rev/s comes to rest in an agonizing time of 12s.
Find its deceleration in radians per second per second
The angular deceleration of the gambling wheel is -0.785 rad/s².
The initial angular velocity, ω₀ = 1.5 rev/s
The final angular velocity, ω = 0
Time taken, t = 12 s
The relation between angular velocity, angular acceleration and angular displacement is given by
ω = ω₀ + αt
Also, angular displacement, θ = ω₀t + ½αt²
If the wheel comes to rest, ω = 0
The first equation becomes α = -ω₀/t = -1.5/12 = -0.125 rev/s²
The value of α is negative because it is deceleration and opposes the initial direction of motion of the wheel (i.e. clockwise).
To find the angular deceleration in radians per second per second, we can convert the angular acceleration from rev/s² to rad/s².
1 rev = 2π rad
Thus, 1 rev/s² = 2π rad/s²
Therefore, the angular deceleration is
α = -0.125 rev/s² × 2π rad/rev = -0.785 rad/s² (to three significant figures)
Hence, the angular deceleration of the gambling wheel is -0.785 rad/s².
Learn more about angular deceleration :
https://brainly.com/question/12956978
#SPJ11
What is the frequency of the emitted gamma photons (140-keV)?
(Note: Use Planck's constant h=6.6 x 10^-34 Js and the elemental
charge e=1.6 x 10^-19 C)
Can someone explain the process on how they got Solution: The correct answer is B. = A. The photon energy is 140 keV = 140 x 10^3 x 1.6 x 10-19 ) = 2.24 x 10-14 ]. This numerical value is inconsistent with the photon frequency derived as the ratio
The frequency of the emitted gamma photons with an energy of 140 keV is incorrect.
Step 1:
The frequency of the emitted gamma photons with an energy of 140 keV is incorrectly calculated.
Step 2:
To calculate the frequency of the emitted gamma photons, we can use the equation E = hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon. In this case, we are given the energy of the photon (140 keV) and need to find the frequency.
First, we need to convert the energy from keV to joules. Since 1 keV is equal to 1.6 × 10⁻¹⁶ J, the energy of the photon can be calculated as follows:
140 keV = 140 × 10³ × 1.6 × 10⁻¹⁶ J = 2.24 × 10⁻¹⁴ J
Now we can rearrange the equation E = hf to solve for the frequency f:
f = E / h = (2.24 × 10⁻¹⁴ J) / (6.6 × 10⁻³⁴ Js) ≈ 3.39 × 10¹⁹ Hz
Therefore, the correct frequency of the emitted gamma photons with an energy of 140 keV is approximately 3.39 × 10¹⁹ Hz.
Planck's constant, denoted by h, is a fundamental constant in quantum mechanics that relates the energy of a photon to its frequency. It quantifies the discrete nature of energy and is essential in understanding the behavior of particles at the microscopic level.
By applying the equation E = hf, where E is energy and f is frequency, we can determine the frequency of a photon given its energy. In this case, we used the energy of the gamma photons (140 keV) and Planck's constant to calculate the correct frequency. It is crucial to be accurate in the conversion of units to obtain the correct result.
Learn more about frequency
brainly.com/question/29739263
#SPJ11
Fluid dynamics describes the flow of fluids, both liquids and gases. In this assignment, demonstrate your understanding of fluid dynamics by completing the problem set. Instructions Complete the questions below. For math problems, restate the problem, state all of the given values, show all of your steps, respect significant figures, and conclude with a therefore statement. Submit your work to the Dropbox when you are finished. Questions 1. Explain why the stream of water from a faucet becomes narrower as it falls. (3 marks) 2. Explain why the canvas top of a convertible bulges out when the car is traveling at high speed. Do not forget that the windshield deflects air upward. (3 marks) 3. A pump pumps fluid into a pipe at a rate of flow of 60.0 cubic centimetres per second. If the cross-sectional area of the pipe at a point is 1.2 cm?, what is the average speed of the fluid at this point in m/s? (5 marks) 4. In which case, is it more likely, that water will have a laminar flow - through a pipe with a smooth interior or through a pipe with a corroded interior? Why? (3 marks) 5. At a point in a pipe carrying a fluid, the diameter of the pipe is 5.0 cm, and the average speed of the fluid is 10 cm/s. What is the average speed, in m/s, of the fluid at a point where the diameter is 2.0 cm? (6 marks)
1. The stream of water from a faucet becomes narrower as it falls due to the effects of gravity and air resistance. As the water falls, it accelerates under the force of gravity. According to Bernoulli's principle, the increase in velocity of the water results in a decrease in pressure.
2. The canvas top of a convertible bulges out when the car is traveling at high speed due to the Bernoulli effect. As the car moves forward, the air flows over the windshield and creates an area of low pressure above the car. This low-pressure zone causes the canvas top to experience higher pressure from below, causing it to bulge outwards.
3. Given: Rate of flow = 60.0 cm³/s, Cross-sectional area = 1.2 cm². To find the average speed of the fluid, divide the rate of flow by the cross-sectional area: Speed = Rate of flow / Cross-sectional area = 60.0 cm³/s / 1.2 cm² = 50 cm/s = 0.5 m/s (to two significant figures). Therefore, the average speed of the fluid at this point is 0.5 m/s.
4. Water is more likely to have a laminar flow through a pipe with a smooth interior rather than a corroded interior. Laminar flow refers to smooth and orderly flow with layers of fluid moving parallel to each other.
Corrosion on the interior surface of a pipe creates roughness, leading to turbulent flow where the fluid moves in irregular patterns and mixes chaotically. Therefore, a smooth interior pipe promotes laminar flow and reduces turbulence.
5. Given: Diameter₁ = 5.0 cm, Average speed₁ = 10 cm/s, Diameter₂ = 2.0 cm. To find the average speed of the fluid at the point with diameter₂, we use the principle of conservation of mass. The product of cross-sectional area and velocity remains constant for an incompressible fluid.
Therefore, A₁V₁ = A₂V₂. Solving for V₂, we get V₂ = (A₁V₁) / A₂ = (π(5.0 cm)²(10 cm/s)) / (π(2.0 cm)²) = 125 cm/s = 1.25 m/s. Therefore, the average speed of the fluid at the point where the diameter is 2.0 cm is 1.25 m/s.
To learn more about velocity click here brainly.com/question/24259848
#SPJ11
Imagine that an object is thrown in the air with 100 miles per hour with 30 degrees of angle. Calculate the size of the displacement associated with the object in the horizontal direction when it was done on a large size spherical star with the gravitational acceleration is 25 miles per hour
On a large spherical star with a gravitational acceleration of 25 miles per hour, an object thrown at a 30-degree angle with an initial velocity of 100 miles per hour will have a calculated horizontal displacement.
Resolve the initial velocity:
Given the initial velocity of the object is 100 miles per hour and it is launched at an angle of 30 degrees, we need to find its horizontal component. The horizontal component can be calculated using the formula: Vx = V * cos(θ), where V is the initial velocity and θ is the launch angle.
Vx = 100 * cos(30°) = 100 * √3/2 = 50√3 miles per hour.
Calculate the time of flight:
To determine the horizontal displacement, we first need to calculate the time it takes for the object to reach the ground. The time of flight can be determined using the formula: t = 2 * Vy / g, where Vy is the vertical component of the initial velocity and g is the gravitational acceleration.
Since the object is thrown vertically upwards, Vy = V * sin(θ) = 100 * sin(30°) = 100 * 1/2 = 50 miles per hour.
t = 2 * 50 / 25 = 4 hours.
Calculate the horizontal displacement:
With the time of flight determined, we can now find the horizontal displacement using the formula: Dx = Vx * t, where Dx is the horizontal displacement, Vx is the horizontal component of the initial velocity, and t is the time of flight.
Dx = 50√3 * 4 = 200√3 miles.
Therefore, the size of the displacement associated with the object in the horizontal direction, when thrown at an angle of 30 degrees and a speed of 100 miles per hour, on a large spherical star with a gravitational acceleration of 25 miles per hour, would be approximately 100 miles.
To learn more about velocity click here:
brainly.com/question/18084516
#SPJ11