Consider the line with the equation: y=x−18 Give the equation of the line parallel to Line 1 which passes through (6,−3) : Give the equation of the line perpendicular to Line 1 which passes through (6,−3) :

Answers

Answer 1

The equation of the line perpendicular to Line 1 which passes through (6, -3) is: y = -x + 3.

To find the equation of the line parallel to Line 1 that passes through (6, -3), we know that both lines have the same slope. Thus, the new line's slope is 1. To find the y-intercept, we can substitute the x and y coordinates of the given point (6, -3) into the equation and solve for b: -3 = (1)(6) + b-3 = 6 + b-9 = b

Therefore, the equation of the line parallel to Line 1 which passes through (6, -3) is: y = x - 9.

To find the equation of the line perpendicular to Line 1 that passes through (6, -3), we know that the new line's slope is the negative reciprocal of Line 1's slope. Line 1's slope is 1, so the new line's slope is -1. To find the y-intercept, we can substitute the x and y coordinates of the given point (6, -3) into the equation and solve for b: -3 = (-1)(6) + b-3 = -6 + b3 = b

Therefore, the equation of the line perpendicular to Line 1 which passes through (6, -3) is: y = -x + 3.

To know more about line, visit:

https://brainly.com/question/30003330

#SPJ11


Related Questions

800 people who bought a moisturiser were asked
whether they would recommend it to a friend.
The ratio of people who said "yes" to people who
said "no" to people who said "maybe" was
21: 5:14.
If this information was displayed in a pie chart, what
would the central angle of the maybe section be?
Give your answer in degrees (°).

Answers

The central angle of the "maybe" section in the pie chart would be 126 degrees.

To find the central angle of the "maybe" section in the pie chart, we need to determine the proportion of people who said "maybe" out of the total number of people surveyed.

The total ratio of people who said "yes," "no," and "maybe" is 21 + 5 + 14 = 40.

To find the proportion of people who said "maybe," we divide the number of people who said "maybe" (14) by the total number of people (40):

Proportion of "maybe" = 14 / 40 = 0.35

To convert this proportion to degrees, we multiply it by 360 (since a circle has 360 degrees):

Central angle of "maybe" section = 0.35 * 360 = 126 degrees

As a result, the "maybe" section of the pie chart's centre angle would be 126 degrees.

for such more question on central angle

https://brainly.com/question/8388651

#SPJ8

Prove that (1) Let m € Z. Prove that if m is not a multiple of 5, then either m² = 1 (mod 5), or m² = − 1 (mod 5). (2) Let a, b e Z. Prove that if ax + by = 1 for some x, y = Z, then ged(a, b) = 1.

Answers

If ax + by = 1 for some x, y = Z, then ged(a, b) = 1 because if d is not equal to 1, then d is a common divisor of a and b that is greater than 1. This contradicts the fact that d is the gcd of a and b. If m is not a multiple of 5, then m² is either congruent to 1 or −1 modulo 5.

(1) Let m be an integer, not divisible by 5.

Hence, we can write, m = 5k + r,

where k and r are integers, and 0 < r < 5

(as if r = 0, then m would be divisible by 5).

If r = ±1,

then m² = (5k ± 1)²

= 25k² ± 10k + 1

= 5(5k² ± 2k) + 1

≡ 1 (mod 5).

If r = ±2,

then m² = (5k ± 2)²

= 25k² ± 20k + 4

= 5(5k² ± 4k) + 4

≡ −1 (mod 5).

Thus, we see that if m is not a multiple of 5, then m² is either congruent to 1 or −1 modulo 5.

(2) Suppose that d is the gcd of a and b.

Then, there exist integers x' and y' such that d = ax' + by' .

Now, suppose that d is not equal to 1, i.e., d > 1.

Then, ax' and by' are both multiples of d, so d divides ax' + by' = d.

Thus, d = ad' for some integer d'.

Hence, b = (1 − ax')y', so b is a multiple of d.

Therefore, if d is not equal to 1, then d is a common divisor of a and b that is greater than 1. This contradicts the fact that d is the gcd of a and b.

So, we see that there cannot exist a common divisor of a and b that is greater than 1, so ged(a, b) = 1.

Learn more about integer -

brainly.com/question/929808

#SPJ11

Without evaluating the integral; Set up the integral that represents 1.1) the volume of the surface that lies below the surface z=4xy−y 3 and above the region D in the xy-plane, where D is bounded by y=0,x=0,x+y=2 and the circle x 2 +y 2 =4.

Answers

The integral that represents the volume of the surface that lies below the surface z = 4xy - y³ and above the region D in the xy-plane is given by:

Volume = ∫[0,2]∫[0,2π] (4rcosθrsinθ - r³sin³θ) rdrdθ.

The given equation is z = 4xy - y³, and the region D is bounded by y = 0, x = 0, x + y = 2, and the circle x² + y² = 4.

To obtain the integral that represents the volume of the surface that lies below the surface z = 4xy - y³ and above the region D in the xy-plane, we will use double integration as follows:

Volume = ∫∫(4xy - y³) dA

Where the limits of integration are as follows:

First, we find the limits of integration with respect to y:

y = 0

y = 2 - x

Secondly, we find the limits of integration with respect to x:

Lower limit: x = 0

Upper limit: x = 2 - y

Now we set up the integral as follows:

Volume = ∫[0,2]∫[0,2π] (4rcosθrsinθ - r³sin³θ) rdrdθ

where D is described by r = 2cosθ.

The above integral is calculated using polar coordinates because the region D is a circular region with a radius of 2 units centered at the origin of the xy-plane.

This implies that we have the following limits of integration: 0 ≤ r ≤ 2cosθ and 0 ≤ θ ≤ 2π.

Therefore, the integral that denotes the volume of the surface above the area D in the xy-plane and beneath the surface z = 4xy - y³ is denoted by:

Volume = ∫[0,2]∫[0,2π] (4rcosθrsinθ - r³sin³θ) rdrdθ.

Learn more about integral

https://brainly.com/question/31433890

#SPJ11

Your teacher built a spring system by attaching a block of mass m to coil with spring constant k. He then displaced it from equilibrium such that it oscillated with amplitude A. Which of the following changes would cause this system to oscillate with a shorter period?
I. Increasing m
II. Increasing A
III. Using a spring with greater k
I only
II only
III only
I or II
I or III
II or III

Answers

The correct option is III. Using a spring with greater k. Only option III (using a spring with greater k) would cause this system to oscillate with a shorter period.

The period of oscillation of a spring-mass system is given by T = 2π√(m/k), where m is the mass attached to the spring and k is the spring constant. Therefore, any change that affects either m or k will affect the period of oscillation.

I. Increasing m: According to the equation above, an increase in mass will result in an increase in the period of oscillation. This is because a larger mass requires more force to move it, and therefore it will take longer for the spring to complete one cycle of oscillation.

Therefore, increasing m will not cause the system to oscillate with a shorter period. Thus, option I can be eliminated.

II. Increasing A: The amplitude of oscillation is the maximum displacement from equilibrium. It does not affect the period of oscillation directly, but it does affect the maximum velocity and acceleration of the mass during oscillation. As a result, increasing A will not cause the system to oscillate with a shorter period. Thus, option II can also be eliminated.

III. Using a spring with greater k: According to the equation above, an increase in spring constant k will result in a decrease in the period of oscillation. This is because a stiffer spring requires more force to stretch it by a certain amount, resulting in a faster rate of oscillation.

Therefore, using a spring with greater k will cause the system to oscillate with a shorter period.

Therefore, the correct answer is option III.

To know more about amplitude refer here:

https://brainly.com/question/23567551#

#SPJ11



Write a quadratic equation with the given solutions. (-5 + √17)/4 , (-5-√17)/4 .

Answers

The required quadratic equation for the given solutions is y = (x + 5)^2 - (17/16).

The given solutions are:

(-5 + √17)/4 and (-5 - √17)/4

In general, if a quadratic equation has solutions a and b,

Then the quadratic equation is given by:

y = (x - a)(x - b)

We will use this formula and substitute the values

a = (-5 + √17)/4 and b = (-5 - √17)/4

To obtain the required quadratic equation. Let y be the quadratic equation with the given solutions. Using the formula

y = (x - a)(x - b), we obtain:

y = (x - (-5 + √17)/4)(x - (-5 - √17)/4)y = (x + 5 - √17)/4)(x + 5 + √17)/4)y = (x + 5)^2 - (17/16)) / 4

Read more about quadratic equation here:

https://brainly.com/question/30098550

#SPJ11

A poll questioned 500 students about their views on pizza for lunch at school. The results indicated that 75% of respondents felt that pizza was a must for lunch at school and would quit school if there was no pizza at lunch. a) Determine the 90% confidence interval. b) What is the margin of error for this response at the 90% confidence level? Question 4: A poll questioned 500 students about their views on pizza for lunch at school. The results indicated that 75% of respondents felt that pizza was a must for lunch at school and would quit school if there was no pizza at lunch. a) Determine the 90% confidence interval. ( 5 marks) b) What is the margin of error for this response at the 90% confidence level?

Answers

The 90% confidence interval is approximately 0.75 ± 0.028, or (0.722, 0.778).

To determine the 90% confidence interval and margin of error for the response that 75% of respondents felt that pizza was a must for lunch at school, we can use the formula for confidence intervals for proportions. a) The 90% confidence interval can be calculated as:

Confidence interval = Sample proportion ± Margin of error. The sample proportion is 75% or 0.75. To calculate the margin of error, we need the standard error, which is given by:

Standard error = sqrt((sample proportion * (1 - sample proportion)) / sample size).

The sample size is 500 in this case. Plugging in the values, we have: Standard error = sqrt((0.75 * (1 - 0.75)) / 500) ≈ 0.017.

Now, the margin of error is given by: Margin of error = Critical value * Standard error. For a 90% confidence level, the critical value can be found using a standard normal distribution table or a statistical software, and in this case, it is approximately 1.645. Plugging in the values, we have:

Margin of error = 1.645 * 0.017 ≈ 0.028.

Therefore, the 90% confidence interval is approximately 0.75 ± 0.028, or (0.722, 0.778). b) The margin of error for this response at the 90% confidence level is approximately 0.028. This means that if we were to repeat the survey multiple times, we would expect the proportion of students who feel that pizza is a must for lunch at school to vary by about 0.028 around the observed sample proportion of 0.75.

To learn more about confidence interval click here: brainly.com/question/32546207

#SPJ11

Consider the differential equation Ï + 0. 01€ + 100x = f(t), where f (t) is defined in 3(a). • What is the angular frequency of the term in the Fourier series of the response x (t) with largest amplitude? What is the amplitude of the term in the Fourier series of the response from part 3(b)?

Answers

In order to determine the angular frequency and amplitude of the term in the Fourier series with the largest amplitude for the response x(t) to the given differential equation, we need more information about the function f(t) in part 3(a).

Without the specific form or properties of f(t), we cannot directly calculate the angular frequency or amplitude. The Fourier series decomposition of the response x(t) will involve different terms with different angular frequencies and amplitudes, depending on the specific characteristics of f(t). The angular frequency is determined by the coefficient of the variable t in the Fourier series, and the amplitude is related to the magnitude of the Fourier coefficients.

To find the angular frequency and amplitude of a specific term in the Fourier series, we need to know the function f(t) and apply the Fourier analysis techniques to obtain the coefficients. Then, we can identify the term with the largest amplitude and calculate its angular frequency.

Therefore, without further information about f(t), we cannot determine the angular frequency or amplitude for the specific term in the Fourier series of the response x(t).

Learn more about amplitude here

https://brainly.com/question/30638319

#SPJ11

What is the probability that either event will occur 3 1 2 circle

Answers

The probability that either event A or event B occurs is 1/4.

Two events A and B overlap each other partially, and the probability of A and B are P(A) and P(B) respectively.The events A and B overlapping each other.The probability that either event A or event B occurs is given by:

[tex]$$P(A \ \text{or} \ B)=P(A)+P(B)-P(A \ \text{and} \ B)$$[/tex]

Given that the probability of event A is 3/12, and the probability of event B is 1/6.

The overlapping area of A and B is given as 2/12.

Using the above formula, we can find the probability of either event A or event B occurs as follows:

[tex]$$\begin{aligned} P(A \ \text{or} \ B)&=P(A)+P(B)-P(A \ \text{and} \ B) \\ &=\frac{3}{12}+\frac{1}{6}-\frac{2}{12} \\ &=\frac{1}{4} \end{aligned}$$[/tex]

Hence, the probability that either event A or event B occurs is 1/4.

Learn more about probability  here:-

https://brainly.com/question/31828911

#SPJ11

Alejandro had three ladders that are 10,15, and 12 feet in length.if he is trying to reach a window that is 8 feet from the ground,then…

Answers

Alejandro has two suitable options to reach the window: the 15-foot ladder or the 12-foot ladder. Both ladders provide enough length to reach the window, with the 15-foot ladder having a larger margin. The final choice will depend on factors such as stability, convenience, and personal preference.

If Alejandro wants to reach a window that is 8 feet from the ground, he needs to choose a ladder that is long enough to reach that height. Let's analyze the three ladders he has:

The 10-foot ladder: This ladder is not long enough to reach the window, as it falls short by 2 feet (10 - 8 = 2).

The 15-foot ladder: This ladder is long enough to reach the window with a margin of 7 feet (15 - 8 = 7). Alejandro can use this ladder to reach the window.

The 12-foot ladder: This ladder is also long enough to reach the window with a margin of 4 feet (12 - 8 = 4). Alejandro can use this ladder as an alternative option.

Therefore, Alejandro has two suitable options to reach the window: the 15-foot ladder or the 12-foot ladder. Both ladders provide enough length to reach the window, with the 15-foot ladder having a larger margin. The final choice will depend on factors such as stability, convenience, and personal preference.

for such more question on length

https://brainly.com/question/20339811

#SPJ8

Consider the following.
(a) Sketch the line that appears to be the best fit for the given points.
(b) Find the least squares regression line. (Round your numerical values to two decimal places.)
y(x) =
(c) Calculate the sum of squared error. (Round your answer to two decimal places.)

Answers

The answer is what the sum of the equation is, yx= 15/6

9. Yk+1 = (k+1) yk + (k+1)!, y(0) = yo Xr x(0) = xo 1 + Xr 10. Xr+1=

Answers

The mathematical problem involves two recursive sequences: Yk+1 = (k+1) yk + (k+1)! and Xr+1 = 1 + Xr, with initial values y(0) = yo and x(0) = xo, respectively.

What is the mathematical problem described in the paragraph and how are the recursive sequences defined?

The given paragraph describes a mathematical problem involving two recursive sequences. The first sequence is denoted by Yk+1 and is defined by the equation (k+1) yk + (k+1)!, with an initial value of y(0) = yo. The second sequence is denoted by Xr+1 and is defined by the equation 1 + Xr, with an initial value of x(0) = xo.

In the Yk+1 sequence, each term is obtained by multiplying the previous term, yk, by the value of (k+1), and then adding the factorial of (k+1). This recursive relationship allows for the calculation of subsequent terms in the sequence.

Similarly, the Xr+1 sequence follows a recursive relationship where each term is obtained by adding 1 to the previous term, Xr. This recursive pattern enables the generation of successive terms in the sequence.

To determine specific values of Yk+1 and Xr+1, the initial values (yo and xo) and the desired values of k and r need to be known. By plugging in the initial values and applying the recursive formulas, the sequences can be evaluated to find their respective terms.

Learn more about mathematical problem

brainly.com/question/28165310

#SPJ11

Order -3, 5, -10, 16 from least to greatest. then order the same numbers from closest to zero to farthest from zero. next, describe how your lists are similar to each other. please answer the last part cause we are in need of help plllllllllllllllllleeeeeeeeeeeeeaaaaaaaaaaaaaaase.please thank you

Answers

The similarity lies in the fact that both lists contain the same set of numbers, but their order is determined by different criteria - one based on magnitude and the other based on distance from zero.

Let's order the numbers -3, 5, -10, and 16 as requested.

From least to greatest:

-10, -3, 5, 16

The ordered list from least to greatest is: -10, -3, 5, 16.

Now let's order the same numbers from closest to zero to farthest from zero:

-3, 5, -10, 16

The ordered list from closest to zero to farthest from zero is: -3, 5, -10, 16.

Regarding the similarity between the two lists, both lists contain the same set of numbers: -3, 5, -10, and 16. However, the ordering criteria are different in each case. In the first list, we order the numbers based on their magnitudes, whereas in the second list, we order them based on their distances from zero.

By comparing the two lists, we can observe that the ordering changes since the criteria differ. In the first list, the number -10 appears first because it has the smallest magnitude, while in the second list, -3 appears first because it is closest to zero.

Overall, the similarity lies in the fact that both lists contain the same set of numbers, but their order is determined by different criteria - one based on magnitude and the other based on distance from zero.

Learn more about  number  from

https://brainly.com/question/27894163

#SPJ11

Let X be a nonempty, convex and compact subset of R and f : X →
R a convex
function. Then, arg max x∈X f(x) is nonempty.
TRUE or FALSE and WHY

Answers

TRUE. The set arg max x∈X f(x) is nonempty.

Given that X is a nonempty, convex, and compact subset of ℝ, and f: X → ℝ is a convex function, we can prove that the set arg max x∈X f(x) is nonempty.

By definition, arg max x∈X f(x) represents the set of all points in X that maximize the function f(x). In other words, it is the set of points x in X where f(x) attains its maximum value.

Since X is nonempty and compact, it means that X is closed and bounded. Furthermore, a convex set X is one in which the line segment connecting any two points in X lies entirely within X. This implies that X has no "holes" or "gaps" in its shape.

Additionally, a convex function f has the property that the line segment connecting any two points (x₁, f(x₁)) and (x₂, f(x₂)) lies above or on the graph of f. In other words, the function does not have any "dips" or "curves" that would prevent it from having a maximum point.

Combining the properties of X and f, we can conclude that the set arg max x∈X f(x) is nonempty. This is because X is nonempty and compact, ensuring the existence of points, and f is convex, guaranteeing the existence of a maximum value.

Therefore, it is true that the set arg max x∈X f(x) is nonempty.

Learn more about:Set

brainly.com/question/30705181

#SPJ11

Verify the logical equivalence using logical laws. Show each
step.
∼(p ∧q) ∧q ≡∼p ∧q

Answers

The logical equivalence between ∼(p ∧ q) ∧ q ≡ ∼p ∧ q is proved.

The logical equivalence between ∼(p ∧ q) ∧ q and ∼p ∧ q can be verified using the following logical laws:

The first logical equivalence is: ∼(p ∧ q) ∧ q ≡ ∼p ∨ (∼q ∧ q) using De Morgan's Law to distribute negation over conjunction. This law can be represented using the following steps:

Step 1: ∼(p ∧ q) ∧ q (Given)

Step 2: ∼p ∨ ∼q ∧ q (De Morgan's Law - Negation over conjunction)

Step 3: ∼q ∧ q ≡ F (Commutative Law)

Step 4: ∼p ∧ q ≡ (∼p ∨ ∼q) ∧ q (From step 2 and step 3, using the distributive Law of ∧ over ∨)

The second logical equivalence is: ∼p ∨ (∼q ∧ q) ≡ ∼p ∧ q, using the distributive law of ∨ over ∧. This law can be represented using the following steps:

Step 1: ∼p ∨ (∼q ∧ q) (Given)

Step 2: (∼p ∨ ∼q) ∧ (∼p ∨ q) (Distributive Law)

Step 3: (∼p ∧ ∼p) ∨ (∼p ∧ q) ∨ (∼q ∧ ∼p) ∨ (∼q ∧ q) (Distributive Law)

Step 4: (∼p ∧ q) ∨ F ∨ (∼q ∧ ∼p) (Complementary Law)

Step 5: ∼p ∧ q ∨ (∼q ∧ ∼p) (Identity Law)

Step 6: ∼p ∧ q (Using the commutative law of ∧)

Therefore, ∼(p ∧ q) ∧ q ≡ ∼p ∧ q is proved.

Learn more about logical equivalence

https://brainly.com/question/32776324

#SPJ11

A mathematician works for hours per day and solves problems per hour, where and are positive integers and . One day, the mathematician drinks some coffee and discovers that he can now solve problems per hour. In fact, he only works for hours that day, but he still solves twice as many problems as he would in a normal day. How many problems does he solve the day he drinks coffee

Answers

The answer is that the mathematician solved 2k problems on the day he drank coffee.

Let's assume that the mathematician works for x hours a day and can solve y problems per hour. Also, the mathematician drinks some coffee and discovers that he can now solve z problems per hour. So, the mathematician works for n hours that day. We are given that:x*y = number of problems solved in a dayz * n = number of problems solved on the day he drank coffee

Then, we can write the equations:x*y = n * 2*z (he still solves twice as many problems as he would in a normal day)andx = n (he only works for n hours that day)Now, we need to simplify these equations to solve for the number of problems solved on the day he drank coffee. Here is how to do it:$$x*y = n * 2*z$$$$\frac{x*y}{x} = \frac{2*n*z}{x}$$$$y = 2 * \frac{n*z}{x}$$Since x, y, n, and z are all positive integers, we can say that the expression 2*n*z/x is also a positive integer. Therefore, we can write:$$\frac{2*n*z}{x} = k$$$$y = 2k$$where k is a positive integer.

Finally, the number of problems solved on the day he drank coffee is:y = 2k Therefore, the answer is that the mathematician solved 2k problems on the day he drank coffee.

To know more about equations refer to

https://brainly.com/question/29657983

#SPJ11

b) The length of a rectangular land is 10 m longer than that of its breadth. The cost of fencing around it with three rounds at Rs. 50 per metre is Rs 13,800. Find the length and breadth of the land,​

Answers

The length and breadth of the rectangular land are 28 meters and 18 meters respectively.

Given that the length of a rectangular land is 10 meters more than the breadth of the land. Also, the cost of fencing around the rectangular land is given as Rs. 13,800 for three rounds at Rs. 50 per meter.

To find: Length and Breadth of the land. Let the breadth of the land be x meters Then the length of the land = (x + 10) meters Total cost of 3 rounds of fencing = Rs. 13800 Cost of 1 meter fencing = Rs. 50

Therefore, length of 1 round of fencing = Perimeter of the rectangular land Perimeter of a rectangular land = 2(l + b), where l is length and b is breadth of the land Length of 1 round = 2(l + b) = 2[(x + 10) + x] = 4x + 20Total length of 3 rounds = 3(4x + 20) = 12x + 60 Total cost of fencing = Total length of fencing x Cost of 1 meter fencing= (12x + 60) x 50 = 600x + 3000 Given that the total cost of fencing around the land is Rs. 13,800

Therefore, 600x + 3000 = 13,800600x = 13800 – 3000600x = 10,800x = 10800/600x = 18Substituting the value of x in the expression of length. Length of the rectangular land = (x + 10) = 18 + 10 = 28 meters Breadth of the rectangular land = x = 18 meters Hence, the length and breadth of the rectangular land are 28 meters and 18 meters respectively.

For more such questions on rectangular land

https://brainly.com/question/28627730

#SPJ8

The number of seconds X after the minute that class ends is uniformly distributed between 0 and 60. Round all answers to 4 decimal places where possible. a. What is the distribution of X?X∼U( then the sampling distribution is b. Suppose that 36 classes are clocked. What is the distribution of xˉ for this group of classes? xˉ∼N( c. What is the probability that the average of 36 classes will end with the second hand between 27 and 32 seconds?

Answers

a. Distribution of X: X ~ U(0, 60) (uniform distribution between 0 and 60 seconds).

b. Distribution of X (sample mean) for 36 classes: X ~ N(30, 5) (approximately normal distribution with mean 30 and standard deviation 5).

c. Probability that average of 36 classes ends between 27 and 32 seconds: approximately 0.9424.

a. The distribution of X is uniformly distributed between 0 and 60 seconds.

X ~ U(0, 60)

b. If 36 classes are clocked, the distribution of X (sample mean) for this group of classes can be approximated by a normal distribution.

X ~ N(mean, variance), where mean = E(X) and

variance = Var(X)/n

Since X follows a uniform distribution U(0, 60).

The mean is (0 + 60) / 2 = 30 and

The variance is (60²)/12 = 300.

c. To find the probability that the average of 36 classes will end with the second hand between 27 and 32 seconds, we need to calculate the probability P(27 ≤X ≤ 32) using the normal distribution.

First, we need to standardize the values using the formula z = (x - mean) / (standard deviation).

For x = 27:

z₁ = (27 - 30) /√(300/36)

z₁ = -1.7321

For x = 32:

z₂ = (32 - 30) /√(300/36)

z₂ = 1.7321

We find the probability using the standard normal distribution table or calculator:

P(27 ≤ X ≤ 32) = P(z₁ ≤ z ≤ z₂)

P(-1.7321 ≤ z ≤ 1.7321)

From the standard normal distribution table, the probability is approximately 0.9424.

Therefore, the probability that the average of 36 classes will end with the second hand between 27 and 32 seconds is 0.9424.

To learn more on Statistics click:

https://brainly.com/question/30218856

#SPJ4

The mid-points of sides of a triangle are (2, 3), (3, 2) and (4, 3) respectively. Find the vertices of the triangle.​

Answers

Answer:

(1, 2), (3, 4), (5, 2)

Step-by-step explanation:

To find the vertices of the triangle given the midpoints of its sides, we can use the midpoint formula:

[tex]\boxed{\begin{minipage}{7.4 cm}\underline{Midpoint between two points}\\\\Midpoint $=\left(\dfrac{x_2+x_1}{2},\dfrac{y_2+y_1}{2}\right)$\\\\\\where $(x_1,y_1)$ and $(x_2,y_2)$ are the endpoints.\\\end{minipage}}[/tex]

Let the vertices of the triangle be:

[tex]A (x_A,y_A)[/tex][tex]B (x_B,y_B)[/tex][tex]C (x_C, y_C)[/tex]

Let the midpoints of the sides of the triangle be:

D (2, 3) = midpoint of AB.E (4, 3) = midpoint of BC.F (3, 2) = midpoint of AC.

Since D is the midpoint of AB:

[tex]\left(\dfrac{x_B+x_A}{2},\dfrac{y_B+y_A}{2}\right)=(2,3)[/tex]

[tex]\implies \dfrac{x_B+x_A}{2}=2 \qquad\textsf{and}\qquad \dfrac{y_B+y_A}{2}\right)=3[/tex]

[tex]\implies x_B+x_A=4\qquad\textsf{and}\qquad y_B+y_A=6[/tex]

Since E is the midpoint of BC:

[tex]\left(\dfrac{x_C+x_B}{2},\dfrac{y_C+y_B}{2}\right)=(4,3)[/tex]

[tex]\implies \dfrac{x_C+x_B}{2}=4 \qquad\textsf{and}\qquad \dfrac{y_C+y_B}{2}\right)=3[/tex]

[tex]\implies x_C+x_B=8\qquad\textsf{and}\qquad y_C+y_B=6[/tex]

Since F is the midpoint of AC:

[tex]\left(\dfrac{x_C+x_A}{2},\dfrac{y_C+y_A}{2}\right)=(3,2)[/tex]

[tex]\implies \dfrac{x_C+x_A}{2}=3 \qquad\textsf{and}\qquad \dfrac{y_C+y_A}{2}\right)=2[/tex]

[tex]\implies x_C+x_A=6\qquad\textsf{and}\qquad y_C+y_A=4[/tex]

Add the x-value sums together:

[tex]x_B+x_A+x_C+x_B+x_C+x_A=4+8+6[/tex]

[tex]2x_A+2x_B+2x_C=18[/tex]

[tex]x_A+x_B+x_C=9[/tex]

Substitute the x-coordinate sums found using the midpoint formula into the sum equation, and solve for the x-coordinates of the vertices:

[tex]\textsf{As \;$x_B+x_A=4$, then:}[/tex]

[tex]x_C+4=9\implies x_C=5[/tex]

[tex]\textsf{As \;$x_C+x_B=8$, then:}[/tex]

[tex]x_A+8=9 \implies x_A=1[/tex]

[tex]\textsf{As \;$x_C+x_A=6$, then:}[/tex]

[tex]x_B+6=9\implies x_B=3[/tex]

Add the y-value sums together:

[tex]y_B+y_A+y_C+y_B+y_C+y_A=6+6+4[/tex]

[tex]2y_A+2y_B+2y_C=16[/tex]

[tex]y_A+y_B+y_C=8[/tex]

Substitute the y-coordinate sums found using the midpoint formula into the sum equation, and solve for the y-coordinates of the vertices:

[tex]\textsf{As \;$y_B+y_A=6$, then:}[/tex]

[tex]y_C+6=8\implies y_C=2[/tex]

[tex]\textsf{As \;$y_C+y_B=6$, then:}[/tex]

[tex]y_A+6=8 \implies y_A=2[/tex]

[tex]\textsf{As \;$y_C+y_A=4$, then:}[/tex]

[tex]y_B+4=8\implies y_B=4[/tex]

Therefore, the coordinates of the vertices A, B and C are:

A (1, 2)B (3, 3)C (5, 2)

1. In how many ways can you arrange the letters in the word MATH to create a new word (with or without sense)?

2. A shoe company manufacturer's lady's shoes in 8 styles, 7 colors, and 3 sizes. How many combinations are possible?

3. Daniel got coins from her pocket which accidentally rolled on the floor. If there were 8 possible outcomes, how many coins fell on the floor?​

Explain your answer pls

Answers

1. The number of ways to arrange the letters is given as follows: 24.

2. The number of combinations is given as follows: 168 ways.

3. The number of coins on the floor is given as follows: 3 coins.

What is the Fundamental Counting Theorem?

The Fundamental Counting Theorem defines that if there are m ways for one experiment and n ways for another experiment, then there are m x n ways in which the two experiments can happen simultaneously.

This can be extended to more than two trials, where the number of ways in which all the trials can happen simultaneously is given by the product of the number of outcomes of each individual experiment, according to the equation presented as follows:

[tex]N = n_1 \times n_2 \times \cdots \times n_n[/tex]

For item 1, there are 4 letters to be arranged, hence:

4! = 24 ways.

For item 2, we have that:

8 x 7 x 3 = 168 ways.

For item 3, we have that:

2³ = 8, hence there are 3 coins.

More can be learned about the Fundamental Counting Theorem at https://brainly.com/question/15878751

#SPJ1

Problem #1: Let r(t) = = sin(xt/8) i+ t-8 Find lim r(t). t-8 2-64 j + tan²(t) k t-8

Answers

The limit of r(t) as t approaches 8 is (-4i + 2j).

To find the limit of r(t) as t approaches 8, we evaluate each component of the vector separately.

First, let's consider the x-component of r(t):

lim(sin(xt/8)) as t approaches 8

Since sin(xt/8) is a continuous function, we can substitute t = 8 directly into the expression:

sin(x(8)/8) = sin(x) = 0

Next, let's consider the y-component of r(t):

lim(t - 8) as t approaches 8

Again, since t - 8 is a continuous function, we substitute t = 8:

8 - 8 = 0

Finally, for the z-component of r(t):

lim(tan²(t)) as t approaches 8

The tangent function is not defined at t = 8, so we cannot evaluate the limit directly.

Therefore, the limit of r(t) as t approaches 8 is (-4i + 2j). The z-component does not have a well-defined limit in this case.

To know more about Vector here:

https://brainly.com/question/15650260.

#SPJ11

In a certain mathematics class, the probabilities have been empirically determined for various numbers of absentees on any given day. These values are shown in the table below. Find the expected number of absentees on a given day. Number absent 0 1 2 3 4 5 6
Probability 0.02 0.04 0.15 0.29 0.3 0.13 0.07
The expected number of absentees on a given day is (Round to two decimal places as needed.)

Answers

The expected number of absentees on a given day is 3.48

Finding the expected number of absentees on a given day

from the question, we have the following parameters that can be used in our computation:

Number absent 0 1 2 3 4 5 6

Probability 0.02 0.04 0.15 0.29 0.3 0.13 0.07

The expected number of absentees on a given day is calculated as

E(x) = ∑xP(x)

So, we have

E(x) = 0 * 0.02 + 1 * 0.04 + 2 * 0.15 + 3 * 0.29 + 4 * 0.3 + 5 * 0.13 + 6 * 0.07

Evaluate

E(x) = 3.48

Hence, the expected number is 3.48

Read more about expected value at

https://brainly.com/question/15858152

#SPJ4

What is the first 4 terms of the expansion for \( (1+x)^{15} \) ? A. \( 1-15 x+105 x^{2}-455 x^{3} \) B. \( 1+15 x+105 x^{2}+455 x^{3} \) C. \( 1+15 x^{2}+105 x^{3}+445 x^{4} \) D. None of the above

Answers

The first 4 terms of the expansion for (1 + x)¹⁵ is

B. 1 + 15x + 105x² + 455x³

How to find the terms

The expansion of (1 + x)¹⁵ can be found using the binomial theorem. According to the binomial theorem, the expansion of (1 + x)¹⁵ can be expressed as

(1 + x)¹⁵= ¹⁵C₀x⁰ + ¹⁵C₁x¹ + ¹⁵C₂x² + ¹⁵C₃x³

the coefficients are solved using combination as follows

¹⁵C₀ = 1

¹⁵C₁ = 15

¹⁵C₂ = 105

¹⁵C₃ = 455

plugging in the values

(1 + x)¹⁵= 1 * x⁰ + 15 * x¹ + 105 * x² + 455 * x³

(1 + x)¹⁵= 1 + 15x + 105x² + 455x³

Learn more about binomial theorem at

https://brainly.com/question/30566558

#SPJ4

Find the area sector r=25cm and tita=130

Answers

To find the area of a sector, we use the formula:

A = (theta/360) x pi x r^2

where A is the area of the sector, theta is the central angle in degrees, pi is a mathematical constant approximately equal to 3.14, and r is the radius of the circle.

In this case, we are given that r = 25 cm and theta = 130 degrees. Substituting these values into the formula, we get:

A = (130/360) x pi x (25)^2

A = (13/36) x pi x 625

A ≈ 227.02 cm^2

Therefore, the area of the sector with radius 25 cm and central angle 130 degrees is approximately 227.02 cm^2. <------- (ANSWER)

Use determinants to decide if the set of vectors is linearly independent.
3 2 -2 0
5 -6 -1 0
-12 0 6 0
4 7 0 -2
The determinant of the matrix whose columns are the given vectors is (Simplify your answer.)
Is the set of vectors linearly independent? Choose the correct answer below.
OA. The set of vectors is linearly independent.
OB. The set of vectors is linearly dependent

Answers

The determinant of the matrix whose columns are the given vectors is the set of vectors is linearly independent. Thus, option A is correct.

To determine if the set of vectors is linearly independent, we need to check if the determinant of the matrix formed by these vectors is zero.

The given matrix is:

```

3   2  -2   0

5  -6  -1   0

-12  0   6   0

4   7   0  -2

```

By calculating the determinant of this matrix, we find:

Determinant = -570

Since the determinant is not zero, the set of vectors is linearly independent.

Therefore, the correct answer is:

OA. The set of vectors is linearly independent.

Learn more about matrix

https://brainly.com/question/29132693

#SPJ11

Which one of the following properties does the function f(x,y)=x^3+2xy^2−20x−16y+29 have? 1. local min value −19 at (2,2) 2. saddle point at (2,2) 3. local max value −19 at (−2,2) 4. local min value −19 at (−2,2) 5. saddle point at (−2,2) 6. local max value −19 at (2,2)

Answers

The function f(x, y) = x³ + 2xy² − 20x − 16y + 29 has saddle points at (2, 2) and (-2, 2), but no local maximum or local minimum values of -19 at any point.

The function f(x, y) = x³ + 2xy² − 20x − 16y + 29 has the following properties:

1. Local minimum value -19 at (2, 2)
2. Saddle point at (2, 2)
3. Local maximum value -19 at (-2, 2)
4. Local minimum value -19 at (-2, 2)
5. Saddle point at (-2, 2)
6. Local maximum value -19 at (2, 2)


To determine the properties of the function, we need to examine its critical points. Critical points occur when the derivative of the function is equal to zero or does not exist.

To find the critical points, we need to calculate the partial derivatives with respect to x and y and set them equal to zero:

∂f/∂x = 3x² + 2y² - 20 = 0
∂f/∂y = 4xy - 16 = 0

Solving these equations simultaneously, we find two critical points: (2, 2) and (-2, 2).

Next, we need to classify these critical points as local maximum, local minimum, or saddle points. To do this, we evaluate the second-order partial derivatives of the function at each critical point.

The second-order partial derivatives are:
∂²f/∂x² = 6x
∂²f/∂y² = 4x
∂²f/∂x∂y = 4y

Substituting the critical point (2, 2) into these derivatives, we get:
∂²f/∂x² = 12
∂²f/∂y² = 8
∂²f/∂x∂y = 8

The determinant of the Hessian matrix (D) is given by D = (∂²f/∂x²)(∂²f/∂y²) - (∂²f/∂x∂y)² = (12)(8) - (8)² = 0

Since D = 0, the second derivative test is inconclusive, and we need to use further analysis.

By evaluating the function at (2, 2), we find that f(2, 2) = 9. This means that (2, 2) is a saddle point, as the function decreases in some directions and increases in others around this point.

Similarly, evaluating the function at (-2, 2), we find that f(-2, 2) = 9. Therefore, (-2, 2) is also a saddle point.


To know more about function, refer to the link below:

https://brainly.com/question/33401122#

#SPJ11

The measures of the angles of a triangle are shown in the figure below. Solve for x.

Answers

The value of x from the given triangle is approximately 29.

How to find the value of x in the triangle given

We are asked to solve for x. We are given a triangle and all 2 angles are labeled. We know that the sum of the angles in a triangle must be 180 degrees. Therefore, the given angles: 63 and (4x + 3) must add to 180. We can set up an equation.

[tex]63+(4\text{x}+3)=180[/tex]

Now we can solve for x. Begin by combing like terms on the left side of the equation. All the constants (terms without a variable) can be added.

[tex](63+3)+4\text{x}=180[/tex]

[tex]66+4\text{x}=180[/tex]

We will solve for x by isolating it. 66 is being added to 4x. The inverse operation of addition is subtraction. Subtract 66 from both sides of the equation.

[tex]66-66+4\text{x}=180-66[/tex]

[tex]4\text{x}=180-66[/tex]

[tex]4\text{x}=114[/tex]

x is being multiplied by 4. The inverse operation of multiplication is division. Divide both sides by 4.

[tex]\dfrac{4\text{x}}{4}=\dfrac{114}{4}[/tex]

[tex]\text{x}=\dfrac{114}{4}[/tex]

[tex]\text{x}=28.5[/tex]

[tex]\bold{x\thickapprox29}^\circ[/tex]

The value of x is approximately 29.

Learn more about angles at:

https://brainly.com/question/30147425

Basketball team won 84 games. the team won 14 more games than it lost. how many game did the team lose

Answers

The team lost 70 games. This solution satisfies the given conditions since the team won 14 more games (70 + 14 = 84) than it lost.

The basketball team won a total of 84 games and won 14 more games than it lost. To determine the number of games the team lost, we can set up an equation using the given information. By subtracting 14 from the total number of wins, we can find the number of losses. The answer is that the team lost 70 games.

Let's assume that the number of games the team lost is represented by the variable 'L'. Since the team won 14 more games than it lost, the number of wins can be represented as 'L + 14'. According to the given information, the total number of wins is 84. We can set up the following equation:

L + 14 = 84

By subtracting 14 from both sides of the equation, we get:

L = 84 - 14

L = 70

Therefore, the team lost 70 games. This solution satisfies the given conditions since the team won 14 more games (70 + 14 = 84) than it lost.

Learn more about Solutions here:

brainly.com/question/30109489

#SPJ11

Use Gaussian Elimination Method. 2X + Y + 1 = 4 0. IX -0. 1Y+0. 1Z = 0. 4 3x + 2Y + 1 = 2 X-Y+Z = 4 -2X + 2Y - 22 = - 8 + = 2. ) Find the values of X, Y, and Z. (3+i)X - 3Y+(2+i)Z = 3+4i 2X + Y - Z = 2 +į 3X + (1+i)Y -4Z = 5 + 21 = + =

Answers

Answer:

To solve the given system of equations using Gaussian elimination, let's rewrite the equations in matrix form:

```

[ 2 1 1 ] [ X ] [ 4 ]

[ 0 1 -0.1] * [ Y ] = [ 0.4]

[ 3 2 1 ] [ Z ] [ 2 ]

```

Performing Gaussian elimination:

1. Row 2 = Row 2 - 0.1 * Row 1

```

[ 2 1 1 ] [ X ] [ 4 ]

[ 0 0 0 ] * [ Y ] = [ 0 ]

[ 3 2 1 ] [ Z ] [ 2 ]

```

2. Row 3 = Row 3 - (3/2) * Row 1

```

[ 2 1 1 ] [ X ] [ 4 ]

[ 0 0 0 ] * [ Y ] = [ 0 ]

[ 0 1/2 -1/2] [ Z ] [ -2 ]

```

3. Row 3 = 2 * Row 3

```

[ 2 1 1 ] [ X ] [ 4 ]

[ 0 0 0 ] * [ Y ] = [ 0 ]

[ 0 1 -1 ] [ Z ] [ -4 ]

```

Now, we have reached an upper triangular form. Let's solve the system of equations:

From the third row, we have Z = -4.

Substituting Z = -4 into the second row, we have 0 * Y = 0, which implies that Y can take any value.

Finally, substituting Z = -4 and Y = k (where k is any arbitrary constant) into the first row, we can solve for X:

2X + 1k + 1 = 4

2X = 3 - k

X = (3 - k) / 2

Therefore, the solution to the system of equations is:

X = (3 - k) / 2

Y = k

Z = -4

Note: The given system of equations in the second part of your question is not clear due to missing operators and formatting issues. Please provide the equations in a clear and properly formatted manner if you need assistance with solving that system.

ms.kitts work at a music store. Last week she sold 6 more then 3 times the number of CDs that she sold this week. MS.Kitts sold a total of 110 Cds over the 2 weeks. Which system of equations can be used to find I, The number of Cds she sold last week, and t, The number of Cds she sold this week. make 2 equations

Answers

Answer:

Equation 1: "Ms. Kitts sold 6 more than 3 times the number of CDs that she sold this week."

I = 3t + 6

Equation 2: "Ms. Kitts sold a total of 110 CDs over the 2 weeks."

I + t = 110

Step-by-step explanation:

A plot has a concrete path within its borders on all sides having uniform width of 4m. The plot is rectangular with sides 20m and 15m. Charge of removing concrete is Rs. 6 per sq.m. How much is spent ​

Answers

Rs. 2,856 is spent on removing the concrete path.

We must first determine the path's area in order to determine the cost of removing the concrete.

The plot is rectangular with dimensions 20m and 15m. The concrete path runs along all sides with a uniform width of 4m. This means that the dimensions of the inner rectangle, excluding the path, are 12m (20m - 4m - 4m) and 7m (15m - 4m - 4m).

The area of the inner rectangle is given by:

Area_inner = length * width

Area_inner = 12m * 7m

Area_inner = 84 sq.m

The area of the entire plot, including the concrete path, can be calculated by adding the area of the inner rectangle and the area of the path on all four sides.

The area of the path along the length of the plot is given by:

Area_path_length = length * width_path

Area_path_length = 20m * 4m

Area_path_length = 80 sq.m

The area of the path along the width of the plot is given by:

Area_path_width = width * width_path

Area_path_width = 15m * 4m

Area_path_width = 60 sq.m

Since there are four sides, we multiply the areas of the path by 4:

Total_area_path = 4 * (Area_path_length + Area_path_width)

Total_area_path = 4 * (80 sq.m + 60 sq.m)

Total_area_path = 4 * 140 sq.m

Total_area_path = 560 sq.m

The area spent on removing the concrete is the difference between the total area of the plot and the area of the inner rectangle:

Area_spent = Total_area - Area_inner

Area_spent = 560 sq.m - 84 sq.m

Area_spent = 476 sq.m

The cost of removing concrete is given as Rs. 6 per sq.m. Therefore, the amount spent on removing the concrete path is:

Amount_spent = Area_spent * Cost_per_sqm

Amount_spent = 476 sq.m * Rs. 6/sq.m

Amount_spent = Rs. 2,856

Therefore, Rs. 2,856 is spent on removing the concrete path.

for such more question on amount spent

https://brainly.com/question/17206790

#SPJ8

Other Questions
anyway, pete and i always said, no tears, nothing like that. its our third marriage each and were independent. be independent, we always said. he said, if i get killed off, you just go right ahead and dont cry, but get married again and dont think of me. completely review the APA style workshop on the Purdue owl website.you will be using the APA format extensively in your education and career. do not take these exercises lightly. They are foundational for your writing as we move forward in the program. For this assignment you must submit an example of a reference from each of the topics under the APA citations and Reference list. There are 8 items on the reference list.drawexplain why the circle of Willis is important in cerebral circulation. Please answer all parts of the question(s). Please round answer(s) to the nearest thousandths place if possible. The function x = (5.1 m) cos[(2rad/s)t + /5 rad] gives the simple harmonic motion of a body. At t = 4.0 s, what are the (a) displacement, (b) velocity, (c) acceleration, and (d) phase of the motion? Also, what are the (e) frequency and (f) period of the motion? (a) Number i Units (b) Number i Units (c) Number i Units (d) Number i Units (e) Number Units (f) Number Units i > Question 1 ListenAmalgamated Industries 5.4% bonds pat interest annually. The bonds sell for $990 and have a par value of $1,000. If these bonds mature in 30 years, what is their yield to maturity?5.47%5.30%5.85%5.14%6.02%2:Fish Company bonds have a face value of $1,000 and are currently quoted at 98.4% of par. The bonds pay $60 annually. What is the current yield on these bonds?7.20%6.10%6.52%6.71%6.95%Stingray Corporation's 5.1% bonds have a par value of $1,000 and pay interest semi- annually. If the bonds mature in 29 years and have a yield to maturity of 4.4%, how much should they sell for?$980.37$1,114.06$1,024.94$1,047.22$1,147.48 22. Direct Oral Anticoagulants (DOACs) have some advantages over warfarin. What are they? What are the ADRS and are they similar to warfarin? Do you as the nurse need to monitor any labs when administering a DOAC? Do you as the nurse need to consider the patient's renal or hepatic status? 3. Answer ALL parts. (a) a Describe an experimental technique which may be used to determine the fluorescence lifetime of a material. Illustrate your answer with a suitable diagram detailing the experimental set-up. ) (b) [10 marks] Two vibrational modes of CO2 are shown below. Indicate which vibrational mode you would expect to observe in the infrared region, clearly stating a reason for your answer. [6 marks] Discuss the origin of Raman scattering in molecules. Your discussion should outline the selection rule associated with Raman spectroscopy, and include any relevant equations. [6 marks] (d) Raman spectroscopy is a versatile spectroscopic technique often used in the analysis of aqueous samples and biological materials, such as tissue and cells. Account for the weak Raman activity of water molecules. [6 marks] The electronic absorption spectra of coordination complexes have a number of different components which may contribute to their overall spectra. Describe, using suitable examples, the origins of electronic absorption spectra in coordination complexes under the following headings: (e) (i) Charge transfer spectra. (ii) d-d spectra. (iii) Ligand spectra. [12 marks] 1. Attitudes affect behaviour especially when_________________________.2. Social psychology is __________________________________________.3. When unsure about our judgments, we are most likely to________________.4. According to studies on social influence studies, minority group influence is more likely when_______________________________________________.5. Social thinking research findings indicate that after the first acts of compliance or resistance, attitudes _________________________ During which of the group development stages are group members learning the rules and culture of the group as they are developing a sense of group identity?Forming?Norming?Performing?Storming?Adjourning? What do the ERW authors mean by the "engineering approach" toethical decision-making? Colonists argued that the Stamp Act was not proper or fair because: 1. The tax was too high 2. Colonies could only be taxed by their local representative assemblies 3. The money raised from the tax would not be spent in the colonies 4. The tax only affected a few people in the colonies, so the burden was not evenly shared will lyft try to be like uber? how can lyft differ differentiatethemselves from uber and how is lyft better ? Square of a negative number? Explain the importance for early childhood services in promotingnutrition, diet and food with families and the broadercommunity. Briefly explain how the Doppler effect works and why sounds change as an object is moving towards you or away from you explain the process of maintaining the pH balance and explain how the movement of an ion (or ions) was important for the cellular physiology AND how that affected or played a role in the systemic physiology. With her advanced education Jacky decides to become a nuclear engineer for the Navy and is currently on a submarine off the coast of North Korea. If the pressure of the water outside of Jacky's submarine is 32 atm, how deep is her submarine?[the density of sea water is 1,025 kg/m^3]Group of answer choicesA. 311.7 mB. 51.1 mC. 117.6 mD. 277.2 m priya and han each wrote an equation of a line with slope 1/3 that passes through the point (1,2). priyas equation is y - 2 = 1/3 (x-1) and hans equation is 3y-x=5. do you agree with either of them? explain or show your reasoning what is 2.35 times 2/3 Topic: The Impact of Part-Time Employment on Students Academic AchievementExplain why and how you would use sampling to conduct your research on this topic. OR explain why you would NOT use sampling. How would you go about sampling if you were actually to conduct a research? For example, who your sample group would be that is affected Describe a situation where utilizing predictive 1RM tests wouldbe applicable.