Consider the initial-value problem xy" - xy + y = 0, (DE7)
(a) Verify that y₁ (x) = x is a solution of (DE7).
(b) Use reduction of order to find a second solution y2(x) in the form of an infinite series. Conjecture an interval of definition for y2(x).

Answers

Answer 1

(a) The solution y₁(x) = x can be verified by substituting it into the equation. (b) By assuming y₂(x) = v(x)y₁(x), where v(x) is an unknown function, and substituting this into the equation, an infinite series solution can be obtained. The interval of definition for y₂(x) can be conjectured as the interval where the series converges.

(a) To verify that y₁(x) = x is a solution of (DE7), we substitute it into the equation:

x(y₁") - x(y₁) + y₁ = 0

Differentiating y₁(x) twice gives y₁" = 0, so the equation becomes:

x(0) - x(x) + x = 0

Simplifying further, we have:

-x² + x + x = 0

-x² + 2x = 0

This equation is satisfied by y₁(x) = x, confirming that it is a solution.

(b) To find a second solution, we can use the method of reduction of order. We assume that y₂(x) = v(x)y₁(x), where v(x) is an unknown function. Substituting this into the equation, we have:

x(y₂") - x(y₂) + y₂ = 0

Substituting y₂(x) = v(x)x, and differentiating twice, we obtain:

x[v''(x)x + 2v'(x)] - x[v(x)x] + v(x)x = 0

Simplifying, we have:

x²v''(x) + 2xv'(x) - x³v(x) + x²v(x) = 0

Dividing through by x², we get:

v''(x) + (2/x)v'(x) - (1 - 1/x²)v(x) = 0

This equation can be solved by assuming a power series solution for v(x). By solving for the coefficients of the series, we can obtain a second solution y₂(x) in the form of an infinite series. The interval of definition for y₂(x) can be conjectured as the interval where the series converges.

Learn more about Differentiating here:

https://brainly.com/question/24062595

#SPJ11


Related Questions

Confirm Stokes' Theorem for the vector field F(x, y, z) = (y - z, x + 82, - x + 8y) and the surfaces defined as the hemisphere z = 25 - x2 - y2 by showing that the integrals fr F. Tds and | vxF. ndo are equal Step 1 of 3: Find line integral fr. F. Tds. Write the exact answer. Do not round. Answer 2 Points 理 Keyboar $F F. Tds =

Answers

The line integral of F·T ds is given by:

F·T ds = ∫∫(F·T) ds

For finding the exact value of this line integral, we need to parameterize the surface defined as the hemisphere z = 25 - x^2 - y^2, calculate the dot product F·T, and integrate over the surface.

The vector field is given as $F(x, y, z) = (y - z, x + 82, -x + 8y)$ and the surface is defined as the hemisphere $z = 25 - x^2 - y^2$.

To find the line integral, we need to parameterize the surface and compute the dot product between the vector field $F$ and the tangent vector $ds$.

Let's parameterize the surface using spherical coordinates. We can express $x$, $y$, and $z$ in terms of $\theta$ and $\phi$:

$x = r\sin(\phi)\cos(\theta)$

$y = r\sin(\phi)\sin(\theta)$

$z = 25 - r^2$

Next, we compute the partial derivatives of $x$, $y$, and $z$ with respect to $\theta$ and $\phi$:

$\frac{\partial(x,y,z)}{\partial(\theta,\phi)} = (-r\sin(\phi)\sin(\theta), r\sin(\phi)\cos(\theta), 0)$

$\frac{\partial(x,y,z)}{\partial(\theta,\phi)} = (r\cos(\phi)\cos(\theta), r\cos(\phi)\sin(\theta), -2r)$

The tangent vector $ds$ is given by the cross product of the partial derivatives:

$ds = \frac{\partial(x,y,z)}{\partial(\theta,\phi)} \times \frac{\partial(x,y,z)}{\partial(\theta,\phi)}$

$ds = (-r\sin(\phi)\sin(\theta), r\sin(\phi)\cos(\theta), 0) \times (r\cos(\phi)\cos(\theta), r\cos(\phi)\sin(\theta), -2r)$

Expanding the cross product and simplifying, we get:

$ds = (2r^2\sin(\phi)\cos(\theta), 2r^2\sin(\phi)\sin(\theta), r\sin^2(\phi)\cos(\phi))$

Now we can compute the dot product between $F$ and $ds$:

$F \cdot ds = (y - z, x + 82, -x + 8y) \cdot (2r^2\sin(\phi)\cos(\theta), 2r^2\sin(\phi)\sin(\theta), r\sin^2(\phi)\cos(\phi))$

$F \cdot ds = (2r^2\sin(\phi)\cos(\theta))(y - z) + (2r^2\sin(\phi)\sin(\theta))(x + 82) + (r\sin^2(\phi)\cos(\phi))(-x + 8y)$

Now, we need to express $x$, $y$, and $z$ in terms of $\theta$ and $\phi$:

$x = r\sin(\phi)\cos(\theta)$

$y = r\sin(\phi)\sin(\theta)$

$z = 25 - r^2$

Substituting these values into the dot product expression:

$F \cdot ds = (2r^2\sin(\phi)\cos(\theta))(r\sin(\phi)\sin(\theta) - (25 - r^2)) + (2r^2\sin(\phi)\sin(\theta))(r\sin(\phi)\cos(\theta) + 82) + (r\sin^2(\phi)\cos(\phi))(-(r\sin(\phi)\cos(\theta)) + 8

Learn more about line integral

brainly.com/question/29850528

#SPJ11

Find the inverse Laplace transform of se-s F(s) = e-2s + s² +9 Select one: O A. f(t)= 8(1-2) + u(t-1) sin(3(t-1)) O B. f(t) = 8(t-2) + u(t-1) cos(3(t-1)) OC. f(t) = u(t-2) + 8(t-1) cos(3(t-1)) OD. f(t) = u(t-2) + 8(t-1) sin(3(t-1)) Find the inverse Laplace transform of se s F(s) = e-2s + s² +9 Select one: O A. f(t)= 8(t-2) + u(t-1) sin(3(t-1)) O B. f(t) = 8(t-2) + u(t-1) cos(3(t-1)) OC. f(t) = u(t-2) + 8(t-1) cos(3(t-1)) O D. f(t) = u(t - 2) + 8(t-1) sin(3(t-1))

Answers

The inverse Laplace transform of se-s F(s) = e-2s + s² +9 Select one, The inverse Laplace transform of se^(-s)F(s) = e^(-2s) + s^2 + 9 is f(t) = u(t-2) + 8(t-1)sin(3(t-1)).

The inverse Laplace transform of se^(-s) is given by taking the derivative of the inverse Laplace transform of F(s) with respect to t. The inverse Laplace transform of e^(-2s) is a unit step function u(t-2), which accounts for the term u(t-2) in the final answer.

The inverse Laplace transform of s^2 is 2(t-1), representing a time delay of 1 unit. The inverse Laplace transform of 9 is simply 9. Combining these terms, we get the final result f(t) = u(t-2) + 8(t-1)sin(3(t-1)).

Learn more about inverse Laplace transform here: brainly.com/question/31486586

#SPJ11

Convert the complex number to polar form r[cos (0) + i sin(0)]. -4√3+4i T= 0 = (0 < θ < 2π)

Answers

The complex number -4√3 + 4i can be expressed in polar form as 8[cos(5π/6) + i sin(5π/6)].

To convert the complex number -4√3 + 4i to polar form, we need to determine its magnitude (r) and argument (θ).

Step 1: Magnitude (r)

The magnitude of a complex number is given by the absolute value of the number. In this case, the magnitude can be calculated as follows:

|r| = √((-4√3)^2 + 4^2)

   = √(48 + 16)

   = √64

   = 8

Step 2: Argument (θ)

The argument of a complex number is the angle it makes with the positive real axis in the complex plane. We can determine the argument by using the arctan function and considering the signs of the real and imaginary parts. In this case, the argument can be calculated as follows:

θ = arctan(4/(-4√3))

  = arctan(-1/√3)

  = -π/6 + kπ   (where k is an integer)

Since T = 0 lies between 0 and 2π, we can choose k = 1 to get the principal argument within the desired range. Thus, θ = 5π/6.

Step 3: Polar Form

Now, we can express the complex number -4√3 + 4i in polar form as:

-4√3 + 4i = 8[cos(5π/6) + i sin(5π/6)]

Learn more about complex number

brainly.com/question/20566728

#SPJ11

A group of thieves are planning to burglarize either Warehouse A or Warehouse B. The owner of the warehouses has the manpower to secure only one of them. If Warehouse A is burglarized the owner will lose $20,000, and if Warehouse B is burglarized the owner will lose $30,000. There is a 40% chance that the thieves will burglarize Warehouse A and 60% chance they will burglarize Warehouse B. There is a 30% chance that the owner will secure Warehouse A and 70% chance he will secure Warehouse B. What is the owner's expected loss?

Answers

The owner's expected loss is $26,000

To calculate the owner's expected loss, we need to consider the probabilities of each event and the corresponding losses associated with each event.

Let's define the random variables as follows:

A: Event of Warehouse A being burglarized

B: Event of Warehouse B being burglarized

The losses are:

Loss(A) = $20,000 (if Warehouse A is burglarized)

Loss(B) = $30,000 (if Warehouse B is burglarized)

The probabilities are:

P(A) = 0.40 (chance of Warehouse A being burglarized)

P(B) = 0.60 (chance of Warehouse B being burglarized)

P(A') = 0.30 (chance of Warehouse A being secured)

P(B') = 0.70 (chance of Warehouse B being secured)

The expected loss can be calculated using the following formula:

Expected Loss = P(A) * Loss(A) + P(B) * Loss(B)

Substituting the values, we have:

Expected Loss = (0.40 * $20,000) + (0.60 * $30,000)

Expected Loss = $8,000 + $18,000

Expected Loss = $26,000

This means that, on average, the owner can expect to lose $26,000 due to burglaries in either Warehouse A or Warehouse B, considering the probabilities and corresponding losses involved.

For more such questions on  loss

https://brainly.com/question/30937554

#SPJ8

7.1 (1 mark) Write x²+4 x-3 x²(x-3) in terms of a sum of partial fractions. Answer:
Your last answer was:
Your answer is not correct.
Your answer should be a sum of rational terms, c.g. A В x + 1 x-2
Your mark is 0.00.
You have made 3 incorrect attempts.
Use partial fractions to evaluate the integral x²–2x-5 dx (x+3)(1+x²) Note.

Answers

Assume A/(x + 3) + (Bx + C)/(x² + 1), where A, B, and C are constants. We can solve for the values of A, B, and C. Once we determine these values, we can rewrite the integral in terms of the partial fractions and proceed to evaluate it.

To evaluate the integral ∫(x² - 2x - 5) dx / ((x + 3)(1 + x²)), we need to express the integrand as a sum of partial fractions. First, we factor the denominator as (x + 3)(x² + 1). Since the degree of the numerator (2) is less than the degree of the denominator (3), we can assume the partial fraction decomposition to be of the form A/(x + 3) + (Bx + C)/(x² + 1), where A, B, and C are constants to be determined.

Next, we equate the numerators on both sides:

x² - 2x - 5 = A(x² + 1) + (Bx + C)(x + 3).

Expanding the right side and collecting like terms, we have:

x² - 2x - 5 = Ax² + A + Bx² + 3Bx + Cx + 3C.

By comparing the coefficients of x², x, and the constant terms on both sides, we obtain a system of equations:

A + B = 1, -2 + 3B + C = -2, 3C + A = -5.

Solving this system of equations will give us the values of A, B, and C. Once we determine these values, we can rewrite the integrand as a sum of the partial fractions A/(x + 3) + (Bx + C)/(x² + 1).

Now, we can evaluate the integral by integrating each term of the partial fraction decomposition separately. The integral of A/(x + 3) is A ln|x + 3|, and the integral of (Bx + C)/(x² + 1) can be evaluated using a substitution or trigonometric methods.

By performing the necessary integration steps, we can find the final result of the integral ∫(x² - 2x - 5) dx / ((x + 3)(1 + x²)).

To learn more about integral click here, brainly.com/question/31059545

#SPJ11

Evaluate the indefinite integral: √x²-16 dx J

Answers

The indefinite integral of √(x² - 16) dx is 8(arcsin(x/4) + (1/2)sin(2arcsin(x/4))) + C, where C represents the constant of integration.

To evaluate the indefinite integral ∫√(x² - 16) dx, we can use a trigonometric substitution. Let's proceed step by step:

First, we notice that the expression inside the square root resembles a Pythagorean identity, specifically x² - 16 = 4² sin²(θ). To make this substitution, we let x = 4 sin(θ).

Next, we need to express dx in terms of dθ. We differentiate x = 4 sin(θ) with respect to θ, which gives dx = 4 cos(θ) dθ.

Now we can substitute x and dx in terms of θ: ∫√(x² - 16) dx = ∫√(4² sin²(θ) - 16) (4 cos(θ) dθ) = ∫√(16 sin²(θ) - 16) (4 cos(θ) dθ).

Simplify the expression inside the square root:

∫√(16 sin²(θ) - 16) (4 cos(θ) dθ) = ∫√(16 (sin²(θ) - 1)) (4 cos(θ) dθ) = ∫√(16 cos²(θ)) (4 cos(θ) dθ).

We can simplify further by factoring out a 4 cos(θ):

∫(4 cos(θ))√(16 cos²(θ)) dθ = ∫(4 cos(θ))(4 cos(θ)) dθ = 16 ∫cos²(θ) dθ.

We can use the trigonometric identity cos²(θ) = (1 + cos(2θ))/2:

16 ∫cos²(θ) dθ = 16 ∫(1 + cos(2θ))/2 dθ = 8 ∫(1 + cos(2θ)) dθ.

Now we can integrate term by term:

8 ∫(1 + cos(2θ)) dθ = 8(θ + (1/2)sin(2θ)) + C.

Finally, substitute back θ with its corresponding value in terms of x:

8(θ + (1/2)sin(2θ)) + C = 8(arcsin(x/4) + (1/2)sin(2arcsin(x/4))) + C.

Therefore, the indefinite integral of √(x² - 16) dx is 8(arcsin(x/4) + (1/2)sin(2arcsin(x/4))) + C, where C represents the constant of integration.

For more question on integral visit:

https://brainly.com/question/30094386

#SPJ8

In terms of percent,which fits better-a round peg in a square hole or a square peg in a round hole?(Assume a snug fit in both cases.)

Answers

A round peg in a square hole and a square peg in a round hole, fit the same in terms of percent.

Let the sides of the square be s and the diameter of the circle be d.  Then in terms of percent, the area of the circle that is left unoccupied is (1 - pi/4) times the area of the square.  

Similarly, the area of the square that is left unoccupied is (1 - pi/4) times the area of the circle.   So in either case, the percent of empty space is the same.  

Therefore, it makes no difference whether we fit a round peg in a square hole or a square peg in a round hole.

Thus, the answer to the question is that they fit the same in terms of percent.

To learn more about percent visit : https://brainly.com/question/24877689

#SPJ11

For a science project, a student tested how long 16 samples of heavy-duty batteries would power a portable CD player. Here are the running times, in hours:
29, 26, 23, 22, 22, 17, 27, 25, 22, 22, 23, 22, 27, 23, 24, 26
a) Determine the range for these data.
b) Determine a reasonable interval size and the number of intervals.
c) Produce a frequency table for these data.

For a science project, a student tested how long 16 samples of alkaline batteries would power a CD player. Here are the results, in hours:
105, 140, 116, 140, 141, 143, 139, 149, 147, 108, 146, 142, 148, 125, 134, 140
a) Determine the range for these data.
b) Determine a reasonable interval size and the number of intervals.
c) Produce a frequency table for these data.

Answers

a) To determine the range for the first set of data (heavy-duty batteries), we subtract the smallest value from the largest value.

Range = Largest value - Smallest value

      = 29 - 17

      = 12 hours

b) To determine a reasonable interval size and the number of intervals, we can use the formula for determining the number of intervals in a histogram:

Number of intervals = √(Number of data points)

Number of intervals = √16

                  = 4

To determine the interval size, we divide the range by the number of intervals:

Interval size = Range / Number of intervals

             = 12 / 4

             = 3 hours

Therefore, a reasonable interval size for the heavy-duty batteries data is 3 hours, and we will have 4 intervals.

c) To produce a frequency table for the heavy-duty batteries data, we group the data into intervals and count the frequency (number of occurrences) of data points within each interval.

The intervals for the heavy-duty batteries data are:

[17-19), [20-22), [23-25), [26-28), [29-31)

Frequency table:

Interval      Frequency

[17-19)       1

[20-22)       5

[23-25)       5

[26-28)       3

[29-31)       2

Now let's move on to the alkaline batteries data:

a) To determine the range for the alkaline batteries data, we subtract the smallest value from the largest value.

Range = Largest value - Smallest value

      = 149 - 105

      = 44 hours

b) To determine a reasonable interval size and the number of intervals, we can use the formula for determining the number of intervals in a histogram:

Number of intervals = √(Number of data points)

Number of intervals = √16

                  = 4

To determine the interval size, we divide the range by the number of intervals:

Interval size = Range / Number of intervals

             = 44 / 4

             = 11 hours

Therefore, a reasonable interval size for the alkaline batteries data is 11 hours, and we will have 4 intervals.

c) To produce a frequency table for the alkaline batteries data, we group the data into intervals and count the frequency (number of occurrences) of data points within each interval.

The intervals for the alkaline batteries data are:

[105-115), [116-126), [127-137), [138-148), [149-159)

Frequency table:

Interval        Frequency

[105-115)       1

[116-126)       2

[127-137)       1

[138-148)       5

[149-159)       7

Learn more about interval here: brainly.com/question/11051767

#SPJ11

if mEG=72°, what is the value of x​

Answers

The value of x from the given circle is 12°. Therefore, the correct answer is option B.

From the given circle, angle EFG is 6x° and the measure of arc EG is 72°.

Here, ∠EFG = Measure of arc EG

6x°=72°

x=72°/6

x=12°

Therefore, the correct answer is option B.

To learn more about the circle theorems visit:

https://brainly.com/question/19906313.

#SPJ1

5-14. Steve owns a stall in a cafeteria. He is investigating the number of food items wasted per day due to inappropriate handling. Steve recorded the daily number of food items wasted with respective probabilities in the following table: Number of Wasted Food Items. Probability 5 0.20 6 0.12 7 0.29 8 0.11 .9 0.15 10 0.13 Help him determine the mean and standard deviation of the wasted food per day.

Answers

The mean number of food items wasted per day due to inappropriate handling is 7.18 and the standard deviation of the wasted food per day is approximately 2.34.

To find the mean and standard deviation of the wasted food per day given the table:

Number of Wasted Food Items

Probability

Mean μ

Standard Deviation σ

535.00.2 636.00.12 737.00.29 838.00.11 939.00.15 1030.00.13

To find the mean:

Meanμ=∑xi*pi

where xi is the number of wasted food items and pi is the respective probability of wasted food items.

Mean μ=(5*0.2)+(6*0.12)+(7*0.29)+(8*0.11)+(9*0.15)+(10*0.13)= 7.18

Therefore, the mean number of food items wasted per day due to inappropriate handling is 7.18.

To find the standard deviation:

Standard Deviation σ=√∑(xi-μ)²pi where xi is the number of wasted food items, μ is the mean of wasted food items and pi is the respective probability of wasted food items. Standard Deviation σ= √[(5-7.18)²(0.2)+(6-7.18)²(0.12)+(7-7.18)²(0.29)+(8-7.18)²(0.11)+(9-7.18)²(0.15)+(10-7.18)²(0.13)]

Standard Deviationσ=√(5.4628)

Standard Deviationσ=2.34 (approximately)

Therefore, the standard deviation of the wasted food per day is approximately 2.34.

Learn more about Statistics: https://brainly.com/question/31538429

#SPJ11

People with a certain condition have an average of 1.4 headaches per week. A medical researcher believes that the drug she has created will decrease the number of headaches for people with that condition.

1. Identify the population.

A. The average number of headaches the person gets in a week.

B. People who take the drug get less than 1.4 headaches per week on average.

C. People who take the drug get 1.4 headaches per week on average.

D. All individuals who take the medication.


2. What is the variable being examined for individuals in the population?

A. People who take the drug get an average of 1.4 headaches per week

B. The average number of headaches the person gets in a week.

C. The number of headaches the person gets in a week.

D. People who take the drug get less than 1.4 headaches per week on average.


3. Is the variable categorical or quantitative?

A. categorical

B. quantitative


4. Identify the parameter of interest.

A. The proportion of those who take the drug who get a headache.

B. The average (mean) number of headaches that people get per week when using the drug.

C. Whether or not a person who takes the drug gets a headache.

D. All individuals who take the medication.


5. Is the parameter a known value, or is it an unknown value?

A. The parameter is unknown since we don't know the average headaches per week for people who take the medication.

B. The parameter is known: it is an average of 1.4 headaches per week.

Answers

The population consists of all individuals who have the specific condition being studied. The variable being examined for individuals in the population is the number of headaches a person gets in a week. The variable is quantitative. The parameter of interest is the average (mean) number of headaches that people get per week when using the drug. The parameter is an unknown value since we don't know the average headaches per week for people who take the medication.

1. The population refers to the group of individuals who have the specific condition being studied, in this case, people with a certain condition who experience headaches. Therefore, the population is not limited to those who take the drug but includes all individuals with the condition.

2. The variable being examined is the number of headaches a person gets in a week. It is the characteristic that the researcher is interested in studying and comparing between individuals who take the drug and those who do not.

3. The variable is quantitative because it involves measuring the number of headaches, which represents a numerical value.

4. The parameter of interest is the average (mean) number of headaches that people get per week when using the drug. This parameter provides an estimate of the drug's effectiveness in reducing the frequency of headaches.

5. The parameter is an unknown value because the medical researcher believes that the drug will decrease the number of headaches, but the exact average number of headaches per week for individuals who take the medication is not yet known. It is the objective of the study to determine this parameter through research and data analysis.

Learn more  about numerical value here:

https://brainly.com/question/15208111

#SPJ11

Consider the matrices 1 C= -1 0 1 -1 2 1 -1 1 3 -4 1 -1 ; 1 2 0 bi 6 4 -2 5 b2 1 1 2 -1 ( (2.1) Use Gaussian elimination to compute the inverse C-1. b2 (2.2) Use the inverse in (2.1) above to solve the linear systems Cx = b; and Cx = 62. = = (E (2.3) Find the solution of the above two systems by multiplying the matrix [bı b2] by the invers obtained in (2.1) above. Compare the solution with that obtained in (2.2). (4 (2.4) Solve the linear systems in (2.2) above by applying Gaussian elimination to the augmente matrix (C : b1 b2]. (A

Answers

The augmented matrix is [C:b1 b2] = 1 -1 0 1 | 1 2 -1 3 -4 1 | 1 1 2 -1 | 6 4 -2 5.By using Gaussian elimination, we get [I:b1' b2'] = 1 0 0 1 | -2 0 1 | 3 0 1 | -1 0 1 | 1. Hence, the solution to Cx = b1 is x1 = [-2, 3, -1, 1](T), and the solution to Cx = b2 is x2 = [0, 1, 1, 0](T).

By applying the same elementary row operations to the right of C, the inverse C-1 is obtained. C -1=1/10 [3 -7 3 -1 -5 2 -3 7 -2 1 3 -1 -1 3 -1 1](2.2) The system Cx = b is solved using C-1. Cx = b; x = C-1 b = [1,1,0,-1](T).The system Cx = 62 is also solved using C-1.Cx = 62; x = C-1 62 = [9,-7,7,1](T).(2.3) The solution to the two systems is found by multiplying the matrix [b1 b2] by the inverse obtained in (2.1) above. Comparing the solution with that obtained in (2.2).For b1, Cx = b1, so x = C-1 b1 = [1,1,0,-1](T).For b2, Cx = b2, so x = C-1 b2 = [9,-7,7,1](T). The two results agree with those obtained in (2.2).(2.4) To solve the linear systems in (2.2) above by applying Gaussian elimination to the augmented matrix (C:b1 b2].

To know more about matrix visit :-

https://brainly.com/question/29132693

#SPJ11

.Use the information to find and compare Δy and dy. (Round your answers to four decimal places.)
y = x^4 + 6 x = −5 Δx = dx = 0.01

Answers

Here, we are given the following values' = x4 + 6 x = −5 Δx = dx = 0.01To find: Δy and dy. In order to calculate Δy and dy, we will use the following formulas:Δy = f(x + Δx) − f(x)dy = f'(x) dx Where, f(x) = x4 + 6 x

We know that, Δx = dx = 0.01So, let's calculate the values of Δy and dy by putting the given values in the above formulas.Δy = f(x + Δx) − f(x)f(x + Δx) = (x + Δx)4 + 6 (x + Δx)Putting the given values in this formula we get, f(x + Δx) = (-5 + 0.01)4 + 6(-5 + 0.01) = 55.0184f(x) = x4 + 6 x Putting the given values in this formula we get, f(x) = (-5)4 + 6 (-5) = -605Δy = f(x + Δx) − f(x)= 55.0184 - (-605)= 660.0184 dy = f'(x) dx We will find f'(x) first.f(x) = x4 + 6 xf'(x) = 4x³ + 6Now, let's calculate the value of dy by putting the values of f'(x), dx and x in the given formula. dy = f'(x) dx= (4x³ + 6) dx= (4(-5)³ + 6) (0.01)= -499.4Now we can write the final  the given question as follows: Given values: y = x4 + 6 x = −5 Δx = dx = 0.01Formula used:Δy = f(x + Δx) − f(x)dy = f'(x) dx Where ,f(x) = x4 + 6 xf(x + Δx) = (x + Δx)4 + 6 (x + Δx)f(x) = x4 + 6 xf'(x) = 4x³ + 6Values of given variables:Δx = dx = 0.01x = -5Now, let's calculate the value of Δy by putting the given values in the formula.Δy = f(x + Δx) − f(x)f(x + Δx) = (x + Δx)4 + 6 (x + Δx)Putting the given values in this formula we get, f(x + Δx) = (-5 + 0.01)4 + 6(-5 + 0.01) = 55.0184f(x) = x4 + 6 x Putting the given values in this formula we get, f(x) = (-5)4 + 6 (-5) = -605Δy = f(x + Δx) − f(x)= 55.0184 - (-605)= 660.0184

Now, let's calculate the value of dy by putting the values of f'(x), dx and x in the given formula. dy = f'(x) dx= (4x³ + 6) dx= (4(-5)³ + 6) (0.01) = -499.4Therefore, Δy = 660.0184 and dy = -499.4.

To know more about order visit:

https://brainly.com/question/31801586

#SPJ11

1. Using the third column of the Table of Random Numbers, pick 10 sample units from a population of 1,150. Using Remainder Method 2. A sample units of 15 is to be taken from population of 90. Use Systematic sampling method 3. Determine a.) the sample size if 5% margin of error (b.) % share per strata (c.) number of sample units per strata. Use Stratified Proportional Random method Departments Employees % share Administrative 230 Manufacturing 130 Finance 95 Warehousing 25 Research and 10 Development Total ? # Samples units

Answers

In the given scenarios, we will determine the sample units using different sampling methods. Using the Stratified Proportional Random method for different departments with their respective employee counts.

1. Remainder Method 2:

Using the third column of the Table of Random Numbers, we can select 10 sample units from a population of 1,150. We start from a random position in the table and pick every 115th unit until we have 10 units.

2. Systematic Sampling Method:

For a population of 90, if we want to select 15 sample units using the systematic sampling method, we calculate the sampling interval as the population size divided by the desired sample size. In this case, the sampling interval would be 90/15 = 6. We start by selecting a random number between 1 and 6 and then pick every 6th unit until we have 15 units.

3. Stratified Proportional Random Method:

To determine the sample size for a 5% margin of error, we need to consider the population size and the desired level of confidence. The margin of error formula is:

Margin of Error = Z * sqrt(p * (1 - p) / N)

Where Z is the Z-score corresponding to the desired level of confidence, p is the estimated proportion, and N is the population size. By rearranging the formula, we can solve for the sample size (n):

n = (Z^2 * p * (1 - p)) / (Margin of Error)^2

For the percentage share per stratum, we divide the employee count of each department by the total employee count and multiply by 100 to obtain the percentage share.

To determine the number of sample units per stratum, we multiply the sample size by the percentage share of each stratum.

By applying the Stratified Proportional Random method to the given departments and their respective employee counts, we can determine the sample size, percentage share per stratum, and number of sample units per stratum. However, the total population count is missing, so we cannot calculate the exact values without that information.

Learn more about sampling methods here:

https://brainly.com/question/31959501

#SPJ11

Consider the feasible region in R³ defined by the inequalities -x1 + x₂ > 1 2 x₁ + x₂x3 ≥ −2, along with x₁ ≥ 0, x2 ≥ 0 and x3 ≥ 0. (i) Write down the linear system obtained by intr

Answers

The linear system obtained by introducing slack variables s₁ and s₂ is: x₁ + x₂ − s₁ = 1x₁ + x₂x₃ + s₂ = −2. Here, s₁ and s₂ are slack variables.

In linear programming, slack variables are introduced to convert inequality constraints into equality constraints. They are used to transform a system of inequalities into a system of equations that can be solved using standard linear programming techniques.

When solving linear programming problems, the objective is to maximize or minimize a linear function while satisfying a set of constraints. Inequality constraints in the form of "less than or equal to" (≤) or "greater than or equal to" (≥) can be problematic for direct application of linear programming algorithms.

Given the feasible region in R³ is defined by the following inequalities- x₁ + x₂ > 12 x₁ + x₂x₃ ≥ −2, and x₁ ≥ 0, x₂ ≥ 0, x₃ ≥ 0.

Then, the linear system obtained by introducing slack variables s₁ and s₂ is: x₁ + x₂ − s₁ = 1x₁ + x₂x₃ + s₂ = −2. Here, s₁ and s₂ are slack variables.

To know more about linear system, visit:

https://brainly.com/question/26544018

#SPJ11








6. An airplane is headed north with a constant velocity of 430 km/h. the plane encounters a west wind blowing at 100 km/h. a) How far will the plane travel in 2 h? b) What is the direction of the plan

Answers

The direction of the plane is still north, because the plane is moving forward at a greater speed than the wind is pushing it back.

a) The plane will travel 760 km in 2 hours. To solve this, we need to first calculate the resultant velocity of the plane.

The resultant velocity is 430 km/h in the northwards direction plus the wind velocity of 100 km/h in the westwards direction.

This results in a velocity vector of  $(430)² + (100)² = 468.3$ km/h in the northwest direction.

As the plane has a velocity of 468.3 km/h in this direction, it will travel $(468.3)(2)$ = 936.6 km in 2 hours.

b) The direction of the plane is northwest.

Therefore, the direction of the plane is still north, because the plane is moving forward at a greater speed than the wind is pushing it back.

Learn more about the velocity here:

https://brainly.com/question/19979064.

#SPJ1

Let R be a commutative ring with 1. Let M₂ (R) be the 2 × 2 matrix ring over R and R[x] be the polyno- mial ring over R. Consider the subsets 0 s={[%]a,bER} S and J = {[86]la,bER} ber} 00 of M₂ (R), and consider the function : R[x] → M₂(R) given for any polynomial p(x) = co+c₁x+ ... + ₂x¹ € R[x] by CO C1 $ (p(x)) = [ 0 CO (1) Show that S is a commutative unital subring of M₂ (R).

Answers

The subset S = {0} is a commutative unital subring of the matrix ring M₂(R) over a commutative ring R with 1.

To show that S = {0} is a commutative unital subring of M₂(R), we need to verify three properties: closure under addition, closure under multiplication, and the existence of an additive identity (zero element).

Closure under Addition:

For any A, B ∈ S, we have A = B = 0. Thus, A + B = 0 + 0 = 0, which is an element of S. Therefore, S is closed under addition.

Closure under Multiplication:

For any A, B ∈ S, we have A = B = 0. Thus, A · B = 0 · 0 = 0, which is an element of S. Therefore, S is closed under multiplication.

Additive Identity (Zero Element):

The zero matrix, denoted by 0, is the additive identity element in M₂(R). Since 0 is an element of S, it serves as the additive identity element for S.

Additionally, since S contains only the zero matrix, it is trivially commutative, as matrix addition and multiplication are commutative operations.

Therefore, S = {0} satisfies all the requirements of being a commutative unital subring of M₂(R).

To learn more about commutative ring visit:
brainly.com/question/30972673

#SPJ11

2. INFERENCE (a) The tabular version of Bayes theorem: You are listening to the statistics podcasts of two groups. Let us call them group Cool og group Clever. i. Prior: Let prior probabilities be proportional to the number of podcasts cach group has made. Cool made 7 podcasts, Clever made 4. What are the respective prior probabilities? ii. In both groups they draw lots to decide which group member should do the podcast intro. Cool consists of 4 boys and 2 girls, whereas Clever has 2 boys and 4 girls. The podcast you are listening to is introduced by a girl. Update the probabilities for which of the groups you are currently listening to. iii. Group Cool docs a toast to statistics within 5 minutes after the intro, on 70% of their podcasts. Group Clever doesn't toast. What is the probability that they will be toasting to statistics within the first 5 minutes of the podcast you are currently listening to?

Answers

The respective prior probabilities for the Cool and Clever groups are 7/11 and 4/11.

The prior probabilities for the Cool and Clever groups can be calculated by dividing the number of podcasts each group has made by the total number of podcasts. In this case, Cool has made 7 podcasts and Clever has made 4 podcasts. The respective prior probabilities are 7/11 for Cool and 4/11 for Clever.

ii. Given that the podcast intro is done by a girl, we need to update the probabilities of listening to the Cool and Clever groups using Bayes' theorem. Cool consists of 4 boys and 2 girls, while Clever has 2 boys and 4 girls. The updated probabilities can be calculated based on the new information.

iii. Group Cool toasts to statistics within the first 5 minutes on 70% of their podcasts, while Group Clever doesn't toast. To calculate the probability of Group Cool toasting within the first 5 minutes of the current podcast, we use the given probability of 70%.

Therefore, the probability that Group Cool will be toasting statistics within the first 5 minutes of the podcast you are currently listening to is 70%.

To learn more about “probabilities” refer to the https://brainly.com/question/23286309

#SPJ11

given an initially empty tree. build a 2-3-4 tree using the sequence of keys 32, 22, 11, 8, 44, 4, 21, 30, 23, 90, 34, 56, 7, 96.

Answers

A 2-3-4 tree is a self-balancing tree that is useful in computing, programming, and other related fields The internal nodes can have either two, three, or four child nodes, also called a 2-4 tree.

Given the sequence of keys: 32, 22, 11, 8, 44, 4, 21, 30, 23, 90, 34, 56, 7, 96, we can build a 2-3-4 tree from it as follows:Insert 32 into the empty tree.Insert 22 to the left of 32.Insert 11 to the left of 22, and convert 32 to a 2-node.Insert 8 to the left of 11, and convert 22 to a 2-node.Insert 44 to the right of 32.Convert 32 to a 3-node and add 30 to the middle.Convert 23 to the left of 30 and 21 to the left of 23.Convert 90 to the right of 44 and 34 to the left of 44.Convert 56 to the right of 44 and add 96 to the rightmost position in the tree.The final 2-3-4 tree is: 4 8 11 21 22 23 30 32 34 44 56 90 96

Thus, the 2-3-4 tree built using the given sequence of keys is : 4 8 11 21 22 23 30 32 34 44 56 90 96

To learn more about tree, visit:

brainly.com/question/29807531

#SPJ11




Prove that if E is a countable set then the set EU {a} is also countable where a is an object not in E.

Answers

Since there exists a one-to-one correspondence between E U {a} and the set of natural numbers, we conclude that E U {a} is countable.

We have,

To prove that the set E U {a} is countable when E is a countable set and a is an object not in E, we need to show that there exists a one-to-one correspondence between the set E U {a} and the set of natural numbers (countable set).

Since E is countable, we can enumerate its elements as {e1, e2, e3, ...}.

Now, we can construct a mapping between the elements of E U {a} and the natural numbers as follows:

For every element e in E, assign it the natural number n, where n represents the position of e in the enumeration of E.

In other words, e1 corresponds to 1, e2 corresponds to 2, and so on.

For the element a that is not in E, assign it the natural number 0 (or any other natural number that is not assigned to any element in E).

This mapping establishes a one-to-one correspondence between the elements of E U {a} and the natural numbers.

Every element in E U {a} is uniquely assigned a natural number, and every natural number corresponds to a unique element in E U {a}.

Since there exists a one-to-one correspondence between E U {a} and the set of natural numbers, we conclude that E U {a} is countable.

Thus,

E U {a} is countable.

Learn more about countable sets here:

https://brainly.com/question/31387833

#SPJ4

Using Gauss's law, obtain the profile of the electric field density vector D(P), the electric flux Ψrho), and the resulting electric field vector E() at a point zep far from a charge Q uniformly distributed in the plane parallel to the (x,y) axes at z=0.

Answers

The resulting electric field vector E() at a point z_0 far from the charge distribution is given by E = (ρ₀ × ρ) / (2ε₀εz_0)

Let's consider a cylindrical Gaussian surface of radius ρ and height z_0, centered at the origin and aligned with the z-axis.

The top and bottom surfaces of the cylinder do not contribute to the flux since the charge is uniformly distributed in the plane at z = 0.

Therefore, the only contribution comes from the curved surface of the cylinder.

By symmetry, the electric field D(P) is radially directed and has the same magnitude at every point on the curved surface.

We can express D(P) as D(P) = D(ρ), where ρ is the distance from the z-axis to the point P on the curved surface.

Now, let's calculate the electric flux Ψ(ρ) through the curved surface of the cylinder:

Ψ(ρ) = ∮S D · dA = D(ρ) × A

where A is the area of the curved surface, given by A = 2πρ× z_0.

Using Gauss's law, we can equate the flux to the enclosed charge divided by ε₀:

Ψ(ρ) = Q_enclosed / ε₀

Q_enclosed is simply the charge density (ρ₀) multiplied by the area of the cylinder's base:

Q_enclosed = ρ₀ × A_base

where A_base is the area of the circular base of the cylinder, given by A_base = πρ².

Combining the equations, we have:

D(ρ) × A = (ρ₀ × A_base) / ε₀

Substituting the expressions for A and A_base, we get:

D(ρ) × (2πρ × z_0) = (ρ₀ × πρ²) / ε₀

D(ρ) = (ρ₀ ×ρ) / (2ε₀z_0)

The electric field vector E can be obtained by dividing the electric displacement vector D(P) by the permittivity of the medium (ε):

E = D(P) / ε

Therefore, the resulting electric field vector E() at a point z_0 far from the charge distribution is given by:

E = (ρ₀ × ρ) / (2ε₀εz_0)

where ε is the relative permittivity (also known as the dielectric constant) of the medium surrounding the charge distribution.

To learn more on Guess law click:

https://brainly.com/question/30490908

#SPJ4

The prescriber ordered 750mg of methicillin sodium. The pharmacy sends up methicillin in a vial of powdered drug containing 1 gram. The directions states add 1.5mL of 0.9% sodium chloride to the vial this will yield 50mg in 1mL. How many mL should the nurse withdraw from the vial after reconstituting the dru as directed? ml

Answers

To determine how many milliliters (mL) the nurse should withdraw from the vial after reconstituting the drug, we need to consider the concentration and desired dose.

Given:
Ordered dose: 750 mg
Concentration: 50 mg/mL

To calculate the required volume, we can use the formula:

Volume (mL) = Dose (mg) / Concentration (mg/mL)

Substituting the values:
Volume (mL) = 750 mg / 50 mg/mL
Volume (mL) = 15 mL

Therefore, the nurse should withdraw 15 mL of the reconstituted drug from the vial to obtain the prescribed dose of 750 mg of methicillin sodium.

Fill in the blanks. If c>0, │u│= c is equivalent to u = _____= or u If c>0, u = c is equivalent to u= _____or u =

Answers

If c > 0, │u│ = c is equivalent to u = c or u = -c, and if c > 0, u = c is equivalent to u = c.

If c > 0, │u│ = c is equivalent to u = c or u = -c.

If c > 0, u = c is equivalent to u = c or u = c.

The absolute value of a real number is the number itself or its negative; that is, if x is a real number, then the absolute value of x is |x| = x if x > 0, |x| = -x if x < 0, and

|x| = 0 if x = 0.

So, if │u│= c, then we have two cases.

One is when u is positive, and the other is when u is negative. If u is positive, we have u = c.

If u is negative, we have u = -c.

As a result, we can write this as u = c or u = -c.

Alternatively, we can write this as u = ±c.

Thus, the answer to the first blank is +c or -c.

If u = c, we have only one possibility. If u = -c, we have the second possibility.

As a result, we can write this as u = c or u = -c.

Alternatively, we can write this as u = ±c.

Thus, the result to the second blank is +c or -c.

Know more about the real number

https://brainly.com/question/17201233

#SPJ11

Z Find zw and Leave your answers in polar form. W z=4(cos 110° + i sin 110°) w=5( cos 350° + i sin 350°) CO What is the product? COS + i sin (Simplify your answers. Type any angle measures in degr

Answers

The product zw is 20(cos 460° + i sin 460°) in polar form.

To find the product zw, where z = 4(cos 110° + i sin 110°) and w = 5(cos 350° + i sin 350°), we can use the properties of complex numbers in polar form:

zw = |z| |w| (cos(θz + θw) + i sin(θz + θw))

Given:

z = 4(cos 110° + i sin 110°)

w = 5(cos 350° + i sin 350°)

Step 1: Calculate the absolute values (moduli) of z and w:

|z| = 4

|w| = 5

Step 2: Calculate the sum of the angles (arguments) of z and w:

θz + θw = 110° + 350° = 460°

Step 3: Calculate the product zw:

zw = |z| |w| (cos(θz + θw) + i sin(θz + θw))

= 4 * 5 (cos 460° + i sin 460°)

= 20 (cos 460° + i sin 460°)

Therefore, the product zw is 20(cos 460° + i sin 460°) in polar form.

To know more about polar forms, visit:

https://brainly.com/question/11741181
#SPJ11

(d) Determine the type and stability of critical point (0, 0) for the linearized system in (c)
e) Hence, predict the type and stability of critical point (4, 3) for the nonlinear system.

Answers

To determine the type and stability of the critical point (0, 0) for the linearized system in (c), we need to analyze the eigenvalues of the linearized system's Jacobian matrix evaluated at (0, 0).

If the eigenvalues have real parts greater than zero, the critical point is unstable. If the eigenvalues have real parts less than zero, the critical point is stable. If the eigenvalues have real parts equal to zero, further analysis is required.

To predict the type and stability of the critical point (4, 3) for the nonlinear system, we can make an inference based on the behavior of the linearized system around the critical point (0, 0). If the nonlinear system exhibits similar behavior to the linearized system, we can expect the critical point (4, 3) to have similar stability properties as the critical point (0, 0) of the linearized system.

Further analysis and calculations involving the nonlinear system's Jacobian matrix and eigenvalues are required to make a definitive prediction about the type and stability of the critical point (4, 3) for the nonlinear system.

Learn more about critical point here: brainly.com/question/33583755
#SPJ11

3. Draw the graphs of the following linear equations.
(i) y=2x1
Also find slope and y-intercept of these lines.

Answers

The graph of the function y = 2x + 1 is added as an attachment

The slope is 2 and the y-intercept is 1

Sketching the graph of the function

From the question, we have the following parameters that can be used in our computation:

y = 2x + 1

The above function is an linear function that has been transformed as follows

Vertically stretched by a factor of 2Shifted up by 1 unit

Next, we plot the graph using a graphing tool by taking not of the above transformations rules

The graph of the function is added as an attachment

From the graph, we have

Slope = 2

y-intercept = 1

Read more about functions at

brainly.com/question/2456547

#SPJ4

e) Without using the simplex method, solve the LPP Max Z = (n-j+1)x; j=1 subject to the n conditions k≤i for 1 ≤ i ≤n k=1 and the non-negativity constraints xi≥0 for 1 ≤ i ≤n (2)

Answers

Given LPP is solved by finding the corner points of the feasible region and calculating the objective function at those points.

For solving the LPP Max Z = (n-j+1)x; j=1 subject to the n conditions k≤i for 1 ≤ i ≤n k=1 and the non-negativity constraints xi≥0 for 1 ≤ I ≤n (2), we have to first convert the inequality constraint k≤ I for 1 ≤ i ≤n into equality constraints.

Since we have k=1 for all constraints, we can replace k in the constraints by 1 to get the equations as: i≤1, i≤2, i≤3, ... i≤n.

We can solve for I by taking the minimum of all these equations.

So, i=min {1,2,3,...,n}=1.

Thus, the equation of the feasible region becomes:

x1≥0, x2≥0, x3≥0, ... xn≥0.

Now, we can solve the problem by calculating the value of objective function at each corner point of the feasible region. The corner points are:(0,0,0,....0),(0,0,0,...1),....(1,1,1,...1)

There are n+1 corner points. After calculating the values at each corner point, the maximum value of Z will be the optimal solution.

Learn more about inequality constraint here:

https://brainly.com/question/32668098

#SPJ11









The lifespans (in years) of ten beagles were 9; 9; 11; 12; 8; 7; 10; 8; 9; 12. Calculate the coefficient of variation of the dataset.

Answers

The coefficient of variation (CV) for the given dataset is approximately 13.79%.

We have a dataset: 9, 9, 11, 12, 8, 7, 10, 8, 9, 12

First, calculate the mean

Mean = (9 + 9 + 11 + 12 + 8 + 7 + 10 + 8 + 9 + 12) / 10 = 95 / 10 = 9.5

Calculate the standard deviation:

Using the formula for sample standard deviation:

Standard deviation = √[(Σ(xi -x_bar )²) / (n - 1)]

where Σ represents the sum, xi represents each value in the dataset, x_bar represents the mean, and n represents the number of values.

Plugging the values:

Standard deviation = √[((9 - 9.5)² + (9 - 9.5)² + (11 - 9.5)² + (12 - 9.5)² + (8 - 9.5)² + (7 - 9.5)² + (10 - 9.5)² + (8 - 9.5)² + (9 - 9.5)² + (12 - 9.5)²) / (10 - 1)]

Standard deviation ≈ √[15.5 / 9] ≈ √1.722 ≈ 1.31

Calculate the coefficient of variation:

Coefficient of Variation (CV) = (Standard deviation / Mean) * 100

CV = (1.31 / 9.5) * 100 ≈ 13.79

Therefore, the coefficient of variation (CV) = 13.79%.

Learn more about coefficient of variation here:

https://brainly.com/question/32616855

#SPJ11

Find the exact length of the polar curve. r=θ², 0≤θ ≤ 5π/4 . 2.Find the area of the region that is bounded by the given curve and lies in the specified sector. r=θ², 0≤θ ≤ π/3

Answers

The area of the region bounded by the curve r = θ² and the sector 0 ≤ θ ≤ π/3 is π⁵/8100

The exact length of the polar curve r = θ² for 0 ≤ θ ≤ 5π/4, we can use the arc length formula for polar curves:

L = ∫[a, b] √(r(θ)² + (dr(θ)/dθ)²) dθ

In this case, we have r(θ) = θ². To find dr(θ)/dθ, we differentiate r(θ) with respect to θ:

dr(θ)/dθ = 2θ

Now we can substitute these values into the arc length formula:

L = ∫[0, 5π/4] √(θ⁴ + (2θ)²) dθ

= ∫[0, 5π/4] √(θ⁴ + 4θ²) dθ

= ∫[0, 5π/4] √(θ²(θ² + 4)) dθ

= ∫[0, 5π/4] θ√(θ² + 4) dθ

This integral does not have a simple closed-form solution. It would need to be approximated numerically using methods such as numerical integration or numerical methods in software.

For the second part, to find the area of the region bounded by the curve r = θ² and the sector 0 ≤ θ ≤ π/3, we can use the formula for the area enclosed by a polar curve:

A = 1/2 ∫[a, b] r(θ)² dθ

In this case, we have r(θ) = θ² and the sector limits are 0 ≤ θ ≤ π/3:

A = 1/2 ∫[0, π/3] (θ²)² dθ

= 1/2 ∫[0, π/3] θ⁴ dθ

= 1/2 [θ⁵/5] | [0, π/3]

= 1/2 (π/3)⁵/5

= π⁵/8100

Therefore, the area of the region bounded by the curve r = θ² and the sector 0 ≤ θ ≤ π/3 is π⁵/8100.

To know more about area click here :

https://brainly.com/question/13252576

#SPJ4


b. A retail chain sells snowboards for $855.00 plus GST and PST.
What is the price difference for consumers in London, Ontario, and
Lethbridge, Alberta?

Answers

Given that a retail chain sells snowboards for $855.00 plus GST and PST, the price difference for consumers in London, Ontario, and Lethbridge, Alberta is $136.80.

In Canada, different provinces have different tax rates, so the price difference for consumers in London, Ontario, and Lethbridge, Alberta, will be based on the different GST and PST rates in the two provinces. Let us first calculate the price of the snowboards including tax:

Price of snowboards = $855.00

GST rate in Ontario = 13%

PST rate in Ontario = 8%

Tax in Ontario = GST + PST = 13% + 8% = 21%

Tax in Ontario = (21/100) × $855.00 = $179.55

Price of snowboards in Ontario = $855.00 + $179.55 = $1034.55

GST rate in Alberta = 5%

PST rate in Alberta = 0%

Tax in Alberta = GST + PST = 5% + 0% = 5%

Tax in Alberta = (5/100) × $855.00 = $42.75

Price of snowboards in Alberta = $855.00 + $42.75 = $897.75

Price difference for consumers in London, Ontario, and Lethbridge, Alberta = $1034.55 - $897.75 = $136.80

More on price difference: https://brainly.com/question/28068145

#SPJ11

Other Questions
Let A Find the characteristic polynomial. 7 Det(A - 2) = (2-2)(+6) Find the eigenvalues and eigenvectors for each eigenvalue. (Order your answers from smallest to largest eigenvalue.) 26 has eigenspace span 2 = 2 X has eigenspace span 1 Find a matrix P such that p-'AP is a diagonal matrix - 1 P= Treasury bill with a par value of $5000 sold at $4,750. After six month the discount of this treasury bill is 8.6% . Show your answer. TRUE/False :d.Assuming free markets, purchasing power parity refers to a situation in which the real purchasing power of a currency is the same in domestic and international trade. TRUE/False : e. When companies accumulate too much debt, they usually engage in secondary offerings to acquire money for paying the debt. TRUE/False : Help is due today Push and Pull Factors for immigration. This is the topic what are the three sources of variation in the analysis of regression Find the coordinates of the point on the sphere of radius 2 withcenter at the origin, closest to the plane x + y + z = 4 1.-. Define the term revenue and distinguish between revenue andother financing sources.2.-. Explain the difference between an expenditure and anexpense. FO) Vilano Tutanken og bebas ide sew how balance 1. Prove, by induction, for all integers n, n>1, 221 1 is divisible by 3 the nurse understands that patients working in which occupations may have an increased risk for developing chronic obstructive pulmonary disease (copd)? Current Attempt in Progress Fallon Company uses flexible budgets to control its selling expenses. Monthly sales are expected to range from $174,300 to $212,400. Variable costs and their percentage relationship to sales are sales commissions 7%, advertising 4%, travel 3%, and delivery 2%. Fixed selling expenses will consist of sales salaries $35,200, depreciation on delivery equipment $6,600, and insurance on delivery equipment $1,700. Prepare a monthly selling expense flexible budget for each $12,700 increment of sales within the relevant range for the year ending December 31, 2020. (List variable costs before fixed costs.) FALLON COMPANY Monthly Selling Expense Flexible Budget For the Year 2020 : FALLON COMPANY Monthly Selling Expense Flexible Budget For the Year 2020 $ $ A factory sells produces and sells 1,00,000 units at 1 per unit. Variable cost $. 40,000. Fixed cost $. 50,000. Ascertain the effect if (a) 10% decrease in sale price (b) 10% increase in profit & volume ratio and margin of safety. Which communication process is in the Monitoring and Controlling process group? Manage Communications. o Monitor Communications. None of the communications processes. Plan Communications Management. A small software development project at Krishna Dhir's firm has five major activities. The times are estimated and provided in the table below. IMMEDIATE PREDECESSOR a m b ACTIVITY A B D 5 4 4 8 7 B 13 11 16 14 4 8 2 4 E 4 a) Find the expected completion time for this project. The expected completion time for this project is (enter your response as a whole number). b) What variance value would be used to find probabilities of finishing by a certain time? The project variance value of completion time is (enter your response as a whole number). a single indirect cost rate may distort product costs because:___ a) Evaluate the integral of the following tabular data 0 0.15 0.32 0.48 0.64 0.7 0.81 0.92 1.03 3.61f(x) 3.2 11.9048 13.7408 15.57 19.34 21.6065 23.4966 27.3867 31.3012 44.356 using a combination of the trapezoidal and Simpson's rules. b) How to get a higher accuracy in the solution? Please explain in brief. c) Which method provides more accurate result trapezoidal or Simpson's rule? d) How can you increase the accuracy of the trapezoidal rule? Please explain your comments with this given data. Japan can produce 80 tablets or 200 cellphones per day. South Korea can produce 90 tablets and 270 cellphones per day.1. Which country has the absolute advantage in producing tablets?2. Which country has the absolute advantage in producing cellphones?3. What is Japan's opportunity cost of producing 1 tablet? What is South Korea's opportunity cost of producing 1 tablet?4. What is Japan's opportunity cost of producing 1 cellphone? What is South Korea's opportunity cost of producing 1 cellphone?5. Which country has the comparative advantage in producing tablets and cellphones? Can you elaborate on that detail?GDP per capita 2019 GDP percapita 100000- 75000- 50000- 25000- O. 10000 20000 30000 GDP per capita 2000 40000 50000 what component of the food would increase the number of chylomicrons in the lacteals? Find the angle between the plane2x+2y+5z=2002x+2y+5z=200and the liner=(6,7,2)+t(9,4,3)r_=(6,7,2)+t(9,4,3)Write the answer in radians and keep at least 4 numbers after the decimal point==Also determine the point at which the line crosses the plane. when detritivores completely break down the remains of a large animal, many nutrients from the animal return to the soil. which physical law is being directly demonstrated in this situation? the joining of firms that are producing or selling a similar product is