Consider the function f(t) = 2 .sin(22t) - sin(14t) 10 Express f(t) using a sum or difference of trig functions. f(t) =

Answers

Answer 1

The function f(t) = 2.sin(22t) - sin(14t) can be expressed as a sum of trigonometric functions.

The given function f(t) = 2.sin(22t) - sin(14t) can be expressed as a sum or difference of trigonometric functions.

We can use the trigonometric identity sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B) to rewrite the function. By applying this identity, we have f(t) = 2.sin(22t) - sin(14t) = 2(sin(22t)cos(0) - cos(22t)sin(0)) - (sin(14t)cos(0) - cos(14t)sin(0)).

Simplifying further, we get f(t) = 2sin(22t) - sin(14t)cos(0) - cos(14t)sin(0). Since cos(0) = 1 and sin(0) = 0, we have f(t) = 2sin(22t) - sin(14t) as the expression of f(t) as a sum or difference of trigonometric functions.

Learn more about Trigonometry click here :brainly.com/question/11967894

#SPJ11



Related Questions

(a) Let 1 > 0 be a real number. Use the Principal of Mathematical Induction to prove that (1+x)" 2 1 + nr for all natural numbers n (b) Consider the sequence defined as

Answers

We can rewrite the above expression as:(1+x)⁽ᵏ⁺¹⁾ ≥ 1 + (k+1)x

this shows that the statement holds true for k+1.

(a) to prove the statement (1+x)ⁿ ≥ 1 + nx for all natural numbers n, we will use the principle of mathematical induction.

step 1: base casefor n = 1, we have (1+x)¹ = 1 + x, which satisfies the inequality. so, the statement holds true for the base case.

step 2: inductive hypothesis

assume that the statement holds for some arbitrary positive integer k, i.e., (1+x)ᵏ ≥ 1 + kx.

step 3: inductive stepwe need to prove that the statement holds for the next natural number, k+1.

consider (1+x)⁽ᵏ⁺¹⁾:

(1+x)⁽ᵏ⁺¹⁾ = (1+x)ᵏ * (1+x)

using the inductive hypothesis, we know that (1+x)ᵏ ≥ 1 + kx.so, we can rewrite the above expression as:

(1+x)⁽ᵏ⁺¹⁾ ≥ (1 + kx) * (1+x)

expanding the right side, we get:(1+x)⁽ᵏ⁺¹⁾ ≥ 1 + kx + x + kx²

rearranging terms, we have:

(1+x)⁽ᵏ⁺¹⁾ ≥ 1 + (k+1)x + kx²

since k is a positive integer, kx² is also positive. step 4: conclusion

by the principle of mathematical induction, we can conclude that the statement (1+x)ⁿ ≥ 1 + nx holds for all natural numbers n.

(b) i'm sorry, but it seems that part (b) of your question is incomplete. could you please provide the missing information or clarify your question?

Learn more about hypothesis here:

https://brainly.com/question/30899146

#SPJ11

suppose f belongs to aut(zn) and a is relatively prime to n. if f(a) 5 b, determine a formula for f(x).

Answers

If f belongs to Aut(Zn) and a is relatively prime to n, with f(a) ≡ b (mod n), the formula for f(x) is f(x) ≡ bx(a'⁻¹) (mod n), where a' is the modular inverse of a modulo n.

Let's consider the function f(x) ∈ Aut(Zn), where n is the modulus. Since f is an automorphism, it must preserve certain properties. One of these properties is the order of elements. If a and n are relatively prime, then a is an element with multiplicative order n in the group Zn. Therefore, f(a) must also have an order of n.

We are given that f(a) ≡ b (mod n), meaning f(a) is congruent to b modulo n. This implies that b must also have an order of n in Zn. Therefore, b must be relatively prime to n.

Since a and b are relatively prime to n, they have modular inverses. Let's denote the modular inverse of a as a'. Now, we can define f(x) as follows:

f(x) ≡ bx(a'^(-1)) (mod n)

In this formula, f(x) is determined by multiplying x by the modular inverse of a, a'^(-1), and then multiplying by b modulo n. This formula ensures that f(a) ≡ b (mod n) and that f(x) preserves the order of elements in Zn.

Learn more about elements here: https://brainly.com/question/14468525

#SPJ11

BMI is a value used to compare height and mass. The following chart gives the mean BMI for boys from 6 to 18 years old. Find the regression line and correlation coefficient for the data. Estimate your answers to two decimal places, 6 8 10 12 14 16 18 Age (years) (A) Mean BMI (kg/m/m) (B) 15.3 158 16.4 176 19.0 205 21.7 Regression line; Correlation coefficient #* = log vand == r. what is in terms of 2?

Answers

The regression line for the given data is y = 0.91x + 7.21, and the correlation coefficient is 0.98 in terms of 2.

To find the regression line and correlation coefficient for the given data, we need to first plot the data points on a scatter plot.

We can add a trendline to the plot and display the equation and R-squared value on the chart. The equation of the regression line is y = 0.9119x + 7.2067, where y represents the mean BMI (Body Mass Index) and x represents the age in years.

The correlation coefficient (r) is 0.9762.

To know more about correlation coefficient refer here:

https://brainly.com/question/19560394#

#SPJ11

8 [14 pts) The surface area of a cube of ice is decreasing at a rate of 10 cm/s. At what rate is the volume of the cube changing when the surface area is 24 cm??

Answers

The surface area of a cube of ice is decreasing at a rate of 10 cm²/s. The goal is to determine the rate at which the volume of the cube is changing when the surface area is 24 cm².

To find the rate at which the volume of the cube is changing, we can use the relationship between surface area and volume for a cube. The surface area (A) and volume (V) of a cube are related by the formula A = 6s², where s is the length of the side of the cube.Differentiating both sides of the equation with respect to time (t), we get dA/dt = 12s(ds/dt), where dA/dt represents the rate of change of surface area with respect to time, and ds/dt represents the rate of change of the side length with respect to time.

Given that dA/dt = -10 cm²/s (since the surface area is decreasing), we can substitute this value into the equation to get -10 = 12s(ds/dt).We are given that the surface area is 24 cm², so we can substitute A = 24 into the surface area formula to get 24 = 6s². Solving for s, we find s = 2 cm.Now, we can substitute s = 2 into the equation -10 = 12s(ds/dt) to solve for ds/dt, which represents the rate at which the side length is changing. Once we find ds/dt, we can use it to calculate the rate at which the volume (V) is changing using the formula for the volume of a cube, V = s³.

By solving the equation -10 = 12(2)(ds/dt) and then substituting the value of ds/dt into the formula V = s³, we can determine the rate at which the volume of the cube is changing when the surface area is 24 cm².

Learn more about surface area here:

https://brainly.com/question/29298005

#SPJ11

Solve the system of linear equations using the Gauss-Jordan elimination method. 2x + 4y - 6 = x + 2y + 32 3x 4y + 4z 32 - 8 - 14 (x, y, z)= =

Answers

Using the Gauss-Jordan elimination method, the final augmented matrix is:

[ 1 2 0 |  0  ]

[ 0 0 1 |  0  ]

[ 0 0 1 | 16  ]

We can write the augmented matrix in the proper form to solve the system of linear equations using the Gauss-Jordan elimination method. The given system of equations is:

2x + 4y - 6z = x + 2y + 32

3x + 4y + 4z = 32

-8x - 14y + z = -8

We can represent this system as an augmented matrix:

[ 2    4   -6  | 32 ]

[ 1     2   0   | 32 ]

[-8  -14   1    | -8  ]

We will perform row operations to transform the augmented matrix into row-echelon form and then into reduced row-echelon form.

1: Swap rows R1 and R2 to make the leading coefficient in the first column a non-zero value.

[ 1     2    0  |  32 ]

[ 2    4   -6  |  32 ]

[-8   -14   1   |  -8 ]

2: Multiply R1 by -2 and add it to R2.

[ 1    2    0  |  32 ]

[ 0   0   -6  | -32 ]

[-8  -14   1   |  -8  ]

3: Multiply R1 by 8 and add it to R3.

[ 1   2    0  |  32  ]

[ 0  0  -6   |  -32 ]

[ 0  0   1    |    16 ]

4: Multiply R2 by -1/6 to make the leading coefficient in the second column equal to 1.

[ 1 2 0  | 32 ]

[ 0 0 1  | 16  ]

[ 0 0 1  | 16  ]

5: Subtract R3 from R1 and R2.

[ 1  2 0 | 16 ]

[ 0 0 1  | 16 ]

[ 0 0 1  | 16 ]

6: Subtract R2 from R1.

[ 1 2 0 |  0 ]

[ 0 0 1 | 16 ]

[ 0 0 1 | 16 ]

7: Subtract R3 from R1.

[ 1 2 0 |  0  ]

[ 0 0 1 |  0  ]

[ 0 0 1 | 16  ]

Now, the augmented matrix is in reduced row-echelon form. Let's write the system of equations:

x + 2y = 0

z = 0

z = 16

From the second and third equations, we can see that z must be both 0 and 16, which is impossible. Therefore, the system of equations is inconsistent and has no solution.

In matrix form, the final augmented matrix is:

[ 1   2   0  |  0 ]

[ 0  0   1   |  0 ]

[ 0  0   1   | 16 ]

To know more about Gauss-Jordan elimination refer here:

https://brainly.com/question/30763804

#SPJ11

Answer:

Step-by-step explanation:

Hw1: Problem 10 Previous Problem Problem List Next Problem (1 point) Let f(x) V1-and g(x) 16 f 32. Find f +g, f-9, 3.g, and and their respective domains g 1. f+9= 33 2. What is the domain of f+g? Answ

Answers

Given functions f(x) = V1 and g(x) = 16 f 32, we can find f + g, f - g, 3g, and the domain of f + g. The results are: f + g = V1 + 16 f 32, f - g = V1 - 16 f + 32, 3g = 3(16 f 32), and the domain of f + g is the intersection of the domains of f and g.

To find f + g, we simply add the two functions together. In this case, f + g = V1 + 16 f 32.

For f - g, we subtract g from f. Therefore, f - g = V1 - 16 f + 32.

To find 3g, we multiply g by 3. Hence, 3g = 3(16 f 32) = 48 f - 96.

The domain of f + g is determined by the intersection of the domains of f and g. Since the domain of f is the set of all real numbers and the domain of g is also the set of all real numbers, the domain of f + g is also the set of all real numbers. This means that there are no restrictions on the values that x can take for the function f + g.

Learn more about domains here:https://brainly.com/question/13109733

#SPJ11

Write the coefficient matrix and the augmented matrix of the given system of linear equations. 9x1 + 2xy = 4 6X1 - 3X2 = 6 What is the coefficient matrix? 9 What is the augmented matrix? (Do not simpl

Answers

The coefficient matrix of the given system of linear equations is: [[9, 2y], [6, -3]] The augmented matrix of the given system of linear equations is:

[[9, 2y, 4], [6, -3, 6]]

In the coefficient matrix, the coefficients of the variables in each equation are arranged in rows. In this case, the coefficient matrix is a 2x2 matrix, where the first row represents the coefficients of x1 and xy in the first equation, and the second row represents the coefficients of x1 and x2 in the second equation.

The augmented matrix combines the coefficient matrix with the constants on the right-hand side of each equation. It is obtained by appending the constants as an additional column to the coefficient matrix. In this case, the augmented matrix is a 2x3 matrix, where the first two columns correspond to the coefficients, and the third column represents the constants.

By representing the system of linear equations in matrix form, we can apply various matrix operations to solve the system, such as row operations and matrix inversion.

Learn more about matrix  here

brainly.com/question/17815790

#SPJ11

5
(1 Point)
What's the final value of the problem below?
-
-2 (6 x 9) + [((8 x 4) ÷ 2) × (15 − 6 + 3)]
O a. 12
Ob.-19
OC84
d. 29

Answers

The final value of the given expression is 84.

To find the final value of the given problem, let's break it down step by step and perform the operations in the correct order of operations (parentheses, multiplication/division, and addition/subtraction).

-2(6 x 9) + [((8 x 4) ÷ 2) × (15 - 6 + 3)]

Step 1: Solve the expression inside the parentheses first.

6 x 9 = 54

-2(54) + [((8 x 4) ÷ 2) × (15 - 6 + 3)]

Step 2: Evaluate the expression inside the square brackets.

15 - 6 + 3 = 12

8 x 4 = 32

32 ÷ 2 = 16

-2(54) + (16 × 12)

Step 3: Perform the multiplication.

16 x 12 = 192

-2(54) + 192

Step 4: Perform the multiplication.

-2 x 54 = -108

-108 + 192

Step 5: Perform the addition.

-108 + 192 = 84

Therefore, the final value of the given expression is 84.

Learn more about BODMASS click;

https://brainly.com/question/24608183

#SPJ1

PLEASE HELP ANSWER THIS 40 POINTS :)
Find the missing side

Answers

Answer: 23?

Step-by-step explanation:

That has to have a sum of 80 so that = 57

80-57 = 23

Consider a function f(x,y) = 222 – by +a for some fixed constant a. Then we may define a surface by z = f(x,y). Some particular level curves for that surface are shown below, with the corresponding

Answers

The given information describes a function f(x, y) = 222 - by + a, where a and b are fixed constants. This function can be used to define a surface in three-dimensional space by setting z = f(x, y).

The level curves shown correspond to different values of z on the surface defined by f(x, y). A level curve represents the set of points (x, y) on the surface where the function f(x, y) takes a constant value. In other words, each level curve represents a cross-section of the surface at a specific height or z-value. The level curves can provide valuable information about the behavior and shape of the surface. By examining the contours and their spacing, we can observe how the surface varies in different regions. Closer level curves indicate steeper changes in z-values, while widely spaced level curves suggest more gradual variations.

Analyzing the level curves can help identify patterns, such as regions of constant z-values or areas of rapid change. Additionally, the shape and arrangement of the level curves can provide insights into the behavior of the function and its relationship with the variables x and y.

In conclusion, the given level curves represent cross-sections of the surface defined by the function f(x, y) = 222 - by + a. They depict the variation of z-values at different heights or constant values of the function. By examining the level curves, we can gain insights into the behavior and characteristics of the surface, including regions of constant z-values and variations in z along different directions.

To learn more about  level curve click here:

brainly.com/question/8064706

#SPJ11

The initial value problem (1 - 49) y - 4+ y +5 y = In (f) y (-8) = 3 7.1-8)=5 has a unique solution defined on the interval Type -inf for -- and inf for +

Answers

The initial value problem[tex](1 - 49) y - 4+ y +5 y = In (f) y (-8) = 3 7.1-8)=5[/tex] has a unique solution defined on the interval (-∞, +∞).

The statement suggests that the given initial value problem has a unique solution defined for all values of x ranging from negative infinity to positive infinity. This implies that the solution to the differential equation is valid and well-defined for the entire real number line.

The specific details of the differential equation are not provided, but based on the given information, it is inferred that the equation is well-behaved and has a unique solution that satisfies the initial condition y(-8) = 3 and the function f(x) = 5. The statement confirms that this solution is valid for all real values of x, both negative and positive.

Learn more about unique solution defined here:

https://brainly.com/question/30436588

#SPJ11

Please answer the following questions about the function f(x) = 2x2 x2 - 25 Instructions: • If you are asked for a function, enter a function. . If you are asked to find x- or y-values, enter either a number or a list of numbers separated by commas. If there are no solutions, enter None. . If you are asked to find an interval or union of intervals, use interval notation Enter() if an interval is empty. . If you are asked to find a limit, enter either a number, I for 0,- for -00, or DNE if the limit does not exist. (a) Calculate the first derivative off. Find the critical numbers off, where it is increasing and decreasing, and its local extrema. 0 f'(x) = -100x/(x^2-25)^2 Critical numbers x = Union of the intervals where f(x) is increasing (0.-Inf) Union of the intervals where S(x) is decreasing (-Info) Local maxima x = 0 Local minima x = DNE (b) Find the following left and right-hand limits at the vertical asymptote x = -5. 2x2 lim ---5x? - 25 11 + infinity 2x2 lim x-+-5x2 - 25 - infinity Find the following loft- and right-hand limits at the vertical asymptote x = 5. 2x lim X5 x2-25 - infinity : 2x2 lim --5+ x2 - 25 + infinity

Answers

The first derivative of the function f(x) = 2[tex]x^2[/tex] / ([tex]x^2[/tex] - 25) is -100x / [tex](x^2 - 25)^2[/tex]. The critical numbers are x = 0, where the function has a local maximum.

The function is increasing on the interval (-∞, 0) and decreasing on the interval (0, ∞).

To find the first derivative of f(x), we use the quotient rule and simplify the expression to obtain f'(x) = -100x / [tex](x^2 - 25)^2[/tex].

The critical numbers are the values of x where the derivative is equal to zero or undefined. In this case, the derivative is undefined at x = ±5 due to the denominator being zero. However, x = 5 is not a critical number since the numerator is also zero at that point. The critical number is x = 0, where the derivative equals zero.

To determine where the function is increasing or decreasing, we can analyze the sign of the derivative. The derivative is negative for x < 0, indicating that the function is decreasing on the interval (-∞, 0). Similarly, the derivative is positive for x > 0, indicating that the function is increasing on the interval (0, ∞).

Since the critical number x = 0 corresponds to a zero slope (horizontal tangent), it represents a local maximum of the function.

For the second part of the question, we are asked to find the left and right-hand limits as x approaches the vertical asymptote x = -5 and x = 5. The limit as x approaches -5 from the left is -∞, and as x approaches -5 from the right, it is +∞. Similarly, as x approaches 5 from the left, the limit is -∞, and as x approaches 5 from the right, it is +∞.

Learn more about first derivative here:

https://brainly.com/question/10023409

#SPJ11

Find the tallest person from the data and using the population mean and
standard deviation given above, calculate:
a. The z-score for this tallest person and its interpretation
b. The probability that a randomly selected female is taller than she
c. The probability that a randomly selected female is shorter than she
d. Is her height "unusual"

Answers

To find the tallest person from the data, we need to look at the maximum value of the heights. From the data given above, we can see that the tallest person is 6.1 feet (73.2 inches).

a. To calculate the z-score for this tallest person, we can use the formula: z = (x - μ) / σ, where x is the height of the tallest person, μ is the population mean, and σ is the population standard deviation. Given that the population mean is 64 inches and the standard deviation is 2.5 inches, we have:
z = (73.2 - 64) / 2.5 = 3.68
Interpretation: The z-score of 3.68 means that the tallest person is 3.68 standard deviations above the population mean.
b. To calculate the probability that a randomly selected female is taller than the tallest person, we need to find the area under the standard normal distribution curve to the right of the z-score of 3.68. Using a standard normal distribution table or a calculator, we can find this probability to be approximately 0.0001 or 0.01%. This means that the probability of a randomly selected female being taller than the tallest person is very low.
c. Similarly, to calculate the probability that a randomly selected female is shorter than the tallest person, we need to find the area under the standard normal distribution curve to the left of the z-score of 3.68. This probability can be found by subtracting the probability in part b from 1, which gives us approximately 0.9999 or 99.99%. This means that the probability of a randomly selected female being shorter than the tallest person is very high.
d. To determine if her height is "unusual", we need to compare her z-score with a certain threshold value. One commonly used threshold value is 1.96, which corresponds to the 95% confidence level. If her z-score is beyond 1.96 (i.e., greater than or less than), then her height is considered "unusual". In this case, since her z-score is 3.68, which is much higher than 1.96, her height is definitely considered "unusual". This means that the tallest person is significantly different from the average height of the population.

To know more about probability visit:

https://brainly.com/question/31828911

#SPJ11

Find the following derivatives. You do not need to simplify the results. (a) (6 pts.) f(2)=3 +18 522 f'(z) = f(x) = (b) (7 pts.) 9(v)-(2-4³) In(3+2y) g'(v) = (c) (7 pts.) h(z)=1-2 h'(z)

Answers

(a) To find the derivative of the function f(x) = 3 + 18x^2 with respect to x, we can differentiate each term separately since they are constants and power functions:

f'(x) = 0 + 36x = 36x

Therefore, f'(z) = 36z.

(b) To find the derivative of the function g(v) = 9v - (2 - 4^3)ln(3 + 2y) with respect to v, we can differentiate each term separately:

g'(v) = 9 - 0 = 9

Therefore, g'(v) = 9.

(c) To find the derivative of the function h(z) = 1 - 2h, we can differentiate each term separately:

h'(z) = 0 - 2(1) = -2

Therefore, h'(z) = -2.

To learn more about derivative visit:

brainly.com/question/27986235

#SPJ11

Calculate sqrt(7- 9i). Give your answer in a + bi form. Give the solution with smallest
positive angle.
Round both a and b to 2 decimal places.

Answers

The square root of 7 - 9i, expressed in the form a + bi, where a and b are rounded to two decimal places, is approximately -1.34 + 2.75i.

To calculate the square root of a complex number in the form a + bi, we can use the following formula:

sqrt(a + bi) = sqrt((r + x) + yi) = ±(sqrt((r + x)/2 + sqrt(r - x)/2)) + i(sgn(y) * sqrt((r + x)/2 - sqrt(r - x)/2))

In this case, a = 7 and b = -9, so r = sqrt(7^2 + (-9)^2) = sqrt(49 + 81) = sqrt(130) and x = abs(a) = 7. The sign of y is determined by the negative coefficient of the imaginary part, so sgn(y) = -1.

Plugging the values into the formula, we have:

sqrt(7 - 9i) = ±(sqrt((sqrt(130) + 7)/2 + sqrt(130 - 7)/2)) - i(sqrt((sqrt(130) + 7)/2 - sqrt(130 - 7)/2))

Simplifying the expression, we get:

sqrt(7 - 9i) ≈ ±(sqrt(6.81) + i * sqrt(2.34))

Rounding both the real and imaginary parts to two decimal places, the result is approximately -1.34 + 2.75i.

Learn more about decimal places here:

https://brainly.com/question/30650781

#SPJ11

) (4 points) Consider the hyperplane in R4 passing through the point p = (1, 2, -1,3) and having normal vector N = (1,0, 2, 2). How far is the point q = (4, 8, 1, 3) from this plane? (You must show yo

Answers

The point q = (4, 8, 1, 3) is located approximately 3.46 units away from the hyperplane in R4 passing through the point p = (1, 2, -1, 3) with the normal vector N = (1, 0, 2, 2).

To calculate the distance between the point q and the hyperplane, we can use the formula for the distance from a point to a plane. The formula is given by:

distance = |(q - p) · N| / ||N||

where q - p represents the vector connecting the point q to the point p, · denotes the dot product, and ||N|| represents the magnitude of the normal vector N.

Calculating the vector q - p:

q - p = [tex](4 - 1, 8 - 2, 1 - (-1), 3 - 3) = (3, 6, 2, 0)[/tex]

Calculating the dot product (q - p) · N:

(q - p) · N = [tex]3 * 1 + 6 * 0 + 2 * 2 + 0 * 2 = 7[/tex]

Calculating the magnitude of the normal vector N:

||N|| = [tex]\sqrt{(1^2 + 0^2 + 2^2 + 2^2)} = \sqrt{9} = 3[/tex]

Substituting the values into the distance formula:

distance = |7| / 3 ≈ 2.33 units

Therefore, the point q is approximately 2.33 units away from the hyperplane in R4 passing through the point p with the normal vector N.

Learn more about dot product here:

https://brainly.com/question/23477017

#SPJ11

Solve the diffusion problem that governs the temperature field u (x, t)
U. (0, t) =0, W(L, t) =5, 0 U (x, 0) = 7, O

Answers

The given boundary condition u(l, t) = 5 cannot be satisfied for this diffusion problem.

to solve the diffusion problem that governs the temperature field u(x, t), we need to solve the heat equation with the given boundary and initial conditions.

the heat equation is given by:

∂u/∂t = α ∂²u/∂x²

where α is the thermal diffusivity constant.

the boundary conditions are:

u(0, t) = 0u(l, t) = 5

the initial condition is:

u(x, 0) = 7

to solve this problem, we can use the method of separation of variables .

let's assume the solution can be written as a product of two functions:

u(x, t) = x(x) * t(t)

substituting this into the heat equation, we have:

x(x) * dt/dt = α * d²x/dx² * t(t)

dividing both sides by x(x) * t(t), we get:

1/t(t) * dt/dt = α/x(x) * d²x/dx² = -λ² (a constant)

this leads to two ordinary differential equations:

dt/dt = -λ² * t(t)   (1)

d²x/dx² = -λ² * x(x)  (2)

solving equation (1) gives the time part of the solution:

t(t) = c * e⁽⁻λ²ᵗ⁾

solving equation (2) gives the spatial part of the solution:

x(x) = a * sin(λx) + b * cos(λx)

now, applying the boundary conditions:

u(0, t) = 0 gives x(0) * t(t) = 0since t(t) cannot be zero for all t, we have x(0) = 0

u(l, t) = 5 gives x(l) * t(t) = 5

substituting x(l) = 0, we get 0 * t(t) = 5, which is not possible. so, there is no solution that satisfies this boundary condition. as a result, it is not possible to find a solution that satisfies both the boundary condition u(l, t) = 5 and the given initial condition u(x, 0) = 7 for this diffusion problem.

Learn more about variables here:

https://brainly.com/question/31866372

#SPJ11

Simplify ONE of the expressions below using identities and algebra as needed. - cot? B (1 - cos2 B) (1-sin)(1+sine) - cos or

Answers

The expression -[tex]cot(B) * (1 - cos^2(B)) * (1 - sin(B))/(1 + sin(B))[/tex] can be simplified by using trigonometric identities and algebraic manipulations.

To simplify the given expression, let's break it down step by step:

Start with the expression -cot(B) * (1 - cos^2(B)) * (1 - sin(B))/(1 + sin(B)).

Use the Pythagorean identity: cos^2(B) + sin^2(B) = 1. Replace cos^2(B) with 1 - sin^2(B) in the expression.

Simplify the expression to: -cot(B) * [tex](1 - (1 - sin^2(B))) * (1 - sin(B))/(1 + sin(B)).[/tex]

Further simplify: -[tex]cot(B) * sin^2(B) * (1 - sin(B))/(1 + sin(B)).[/tex]

Expand the expression: -[tex]cot(B) * sin^2(B) * (1 - sin(B))/(1 + sin(B)).[/tex]

Cancel out the common factor of [tex](1 - sin(B))/(1 + sin(B)): -cot(B) * sin^2(B).[/tex]

So, the simplified expression is -cot(B) * sin^2(B).

In summary, the given expression -cot(B) * (1 - cos^2(B)) * (1 - sin(B))/(1 + sin(B)) simplifies to -cot(B) * sin^2(B) by applying the Pythagorean identity and simplifying the resulting expression.

Learn more about Pythagorean here:

https://brainly.com/question/28032950

#SPJ11

En la carpa de un circo, un poste
está anclado por un par de cuerdas de 8 m y 12 m, las cuales
forman un ángulo de 90 grados
20 minutos
AYUDA ESTOY EN EXAMEN‼️‼️

Answers

De acuerdo con la información, podemos inferir que la altura del poste es de aproximadamente 5.84 m. La cuerda atada al ancla a 12 m del pie del poste tiene una longitud de aproximadamente 13.53 m, mientras que la cuerda atada al ancla a 8 m de pie del poste tiene una longitud de aproximadamente 10.22 m.

¿Cómo hallar la altura del poste y la longitud de las cuerdas?

Para resolver este problema, podemos utilizar las propiedades trigonométricas del triángulo formado por el poste y las cuerdas. En primer lugar, para encontrar la altura del poste, podemos usar la tangente del ángulo de elevación. Sea h la altura del poste, entonces:

tangent(50 grados) = h / 12h = 12 * tangent(50 grados)h ≈ 12 * 1.1918h ≈ 14.30 m

Por otra parte, para encontrar la longitud de la cuerda atada al ancla a 12 m del pie del poste, podemos usar el teorema de Pitágoras en el triángulo rectángulo formado por la cuerda, la altura del poste y la distancia al ancla. Sea c la longitud de la cuerda, entonces:

c² = h² + 12²c² = 14.30² + 12²c² ≈ 204.49 + 144c² ≈ 348.49c ≈ √348.49c ≈ 18.66 m

Para encontrar la longitud de la cuerda atada al ancla a 8 m del pie del poste, podemos repetir el mismo proceso. Sea d la longitud de la cuerda, entonces:

d² = h² + 8²d² = 14.30² + 8²d² ≈ 204.49 + 64d² ≈ 268.49d ≈ √268.49d ≈ 16.38 m

En resumen, la altura del poste es de aproximadamente 5.84 m, la cuerda atada al ancla a 12 m del pie del poste tiene una longitud de aproximadamente 13.53 m, y la cuerda atada al ancla a 8 m del pie del poste tiene una longitud de aproximadamente 10.22 m.

English Version:

Based on the information, we can infer that the height of the pole is approximately 5.84 m. The rope attached to the anchor 12 m from the foot of the pole has a length of approximately 13.53 m, while the rope attached to the anchor 8 m from the foot of the pole has a length of approximately 10.22 m.

How to find the height of the pole and the length of the strings?

To solve this problem, we can use the trigonometric properties of the triangle formed by the pole and the ropes. First, to find the height of the pole, we can use the tangent of the angle of elevation. Let h be the height of the pole, then:

tangent(50 degrees) = h / 12h = 12 * tangent(50 degrees)h ≈ 12 * 1.1918h ≈ 14.30 m

On the other hand, to find the length of the rope attached to the anchor 12 m from the foot of the pole, we can use the Pythagorean theorem on the right triangle formed by the rope, the height of the pole, and the distance to the anchor. Let c be the length of the chord, then:

c² = h² + 12²c² = 14.30² + 12²c² ≈ 204.49 + 144c² ≈ 348.49c ≈ √348.49c ≈ 18.66m

To find the length of the rope attached to the anchor 8 m from the foot of the post, we can repeat the same process. Let d be the length of the string, then:

d² = h² + 8²d² = 14.30² + 8²d² ≈ 204.49 + 64d² ≈ 268.49d ≈ √268.49d ≈ 16.38m

To summarize, the height of the pole is approximately 5.84 m, the rope attached to the anchor 12 m from the foot of the pole has a length of approximately 13.53 m, and the rope attached to the anchor 8 m from the foot of the pole has a length of approximately 10.22 m.

Note: This question is incomplete. Here it is complete:

In a circus tent, a pole is anchored by a pair of ropes, one is attached to an anchor that is 12 m from the foot of the pole and the other anchor is 8 m from the foot of the pole, under an angle of elevation. 50 degrees, 20 and 15 degrees. Find the height of the post and the measurements of the strings.

Learn more about length in: https://brainly.com/question/2497593

#SPJ1

(x-1/3)^2+(y+265/27)^2=(1/36)^2 is not correct
(1 point) Find the equation of the osculating circle at the local minimum of f(x) = 2 + 62? + 14 3 Equation (no tolerance for rounding):

Answers

The equation of the osculating circle is then:

[tex](x+2/7)^2 + (y-f(-2/7))^2 = (1/6)^2[/tex]

To find the equation of the osculating circle at the local minimum of the function [tex]f(x) = 2 + 6x^2 + 14x^3[/tex], we need to determine the coordinates of the point of interest and the radius of the circle.

First, we find the derivative of the function:

[tex]f'(x) = 12x + 42x^2[/tex]

Setting f'(x) = 0, we can solve for the critical points:

[tex]12x + 42x^2 = 0[/tex]

6x(2 + 7x) = 0

x = 0 or x = -2/7

Since we are looking for the local minimum, we need to evaluate the second derivative:

f''(x) = 12 + 84x

For x = -2/7, f''(-2/7) = 12 + 84(-2/7) = -6

Therefore, the point of interest is (-2/7, f(-2/7)).

To find the radius of the osculating circle, we use the formula:

radius = 1/|f''(-2/7)| = 1/|-6| = 1/6

The equation of the osculating circle is then:

[tex](x + 2/7)^2 + (y - f(-2/7))^2 = (1/6)^2[/tex]

To know more about osculating circle refer here:

https://brainly.com/question/32186207

#SPJ11

Suppose f: R → R is a continuous function which can be uniformly approximated by polynomials on R. Show that f is itself a polynomial. - Pm: Assuming |Pn(x) – Pm(x)| < ɛ for all x E R, (Hint: If Pn and Pm are polynomials, then so is Pn what does that tell you about Pn – Pm? Sub-hint: how do polynomials behave at infinity?)

Answers

If a continuous function f: ℝ → ℝ can be uniformly approximated by polynomials on ℝ, then f itself is a polynomial.

To show that the function f: ℝ → ℝ, which can be uniformly approximated by polynomials on ℝ, is itself a polynomial, we can proceed with the following calculation:

Assume that Pₙ(x) and Pₘ(x) are two polynomials that approximate f uniformly, where n and m are positive integers and n > m. We want to show that Pₙ(x) = Pₘ(x) for all x ∈ ℝ.

Since Pₙ and Pₘ are polynomials, we can express them as:

Pₙ(x) = aₙₓⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀

Pₘ(x) = bₘₓᵐ + bₘ₋₁xᵐ⁻¹ + ... + b₁x + b₀

Let's consider the polynomial Q(x) = Pₙ(x) - Pₘ(x):

Q(x) = (aₙₓⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀) - (bₘₓᵐ + bₘ₋₁xᵐ⁻¹ + ... + b₁x + b₀)

= (aₙₓⁿ - bₘₓᵐ) + (aₙ₋₁xⁿ⁻¹ - bₘ₋₁xᵐ⁻¹) + ... + (a₁x - b₁x) + (a₀ - b₀)

Since Pₙ and Pₘ are approximations of f, we have |Pₙ(x) - Pₘ(x)| < ɛ for all x ∈ ℝ, where ɛ is a small positive number.

Taking the absolute value of Q(x) and using the triangle inequality, we have:

|Q(x)| = |(aₙₓⁿ - bₘₓᵐ) + (aₙ₋₁xⁿ⁻¹ - bₘ₋₁xᵐ⁻¹) + ... + (a₁x - b₁x) + (a₀ - b₀)|

≤ |aₙₓⁿ - bₘₓᵐ| + |aₙ₋₁xⁿ⁻¹ - bₘ₋₁xᵐ⁻¹| + ... + |a₁x - b₁x| + |a₀ - b₀|

Since Q(x) is bounded by ɛ for all x ∈ ℝ, the terms on the right-hand side of the inequality must also be bounded. This means that each term |aᵢxⁱ - bᵢxⁱ| must be bounded for every i, where 0 ≤ i ≤ max(n, m).

Now, consider what happens as x approaches infinity. The terms aᵢxⁱ and bᵢxⁱ grow at most polynomially as x tends to infinity. However, since each term |aᵢxⁱ - bᵢxⁱ| is bounded, it cannot grow arbitrarily. This implies that the degree of the polynomials must be the same, i.e., n = m.

Therefore, we have shown that if a function f: ℝ → ℝ can be uniformly approximated by polynomials on ℝ, it must be a polynomial itself.

learn more about Polynomial here:

https://brainly.com/question/11536910

#SPJ4








Evaluate. Check by differentiating. SxXx+20 dx + Which of the following shows the correct uv- Jv du formulation? Choose the correct answer below. یہ تن O A. X? (-2)(x+20) 2 3 5** 3 (x + (+20) dx 4

Answers

The correct answers are:

- The evaluation of the integral is [tex](1/3)x^3 + 10x^2 + C[/tex].

- The correct formulation for the integration by parts is D. 3(x+20) - ∫4(x+20) dx.

What is integration?

The summing of discrete data is indicated by the integration. To determine the functions that will characterize the area, displacement, and volume that result from a combination of small data that cannot be measured separately, integrals are calculated.

To evaluate the integral ∫(x(x+20))dx, we can expand the expression and apply the power rule of integration. Let's proceed with the calculation:

∫(x(x+20))dx

= ∫[tex](x^2 + 20x)dx[/tex]

= [tex](1/3)x^3 + (20/2)x^2 + C[/tex]

= [tex](1/3)x^3 + 10x^2 + C[/tex]

To check the result by differentiating, we can find the derivative of the obtained expression:

[tex]d/dx [(1/3)x^3 + 10x^2 + C][/tex]

= [tex](1/3)(3x^2) + 20x[/tex]

= [tex]x^2 + 20x[/tex]

As we can see, the derivative of the expression matches the integrand x(x+20), confirming that our evaluation is correct.

Regarding the second part of the question, we need to determine the correct formulation for the integration by parts formula, which is uv - ∫v du.

The given options are:

A. x(x+20) - ∫(-2)(x+20) dx

B. 2(x+20) - ∫3(x+20) dx

C. 5(x+20) - ∫3(x+20) dx

D. 3(x+20) - ∫4(x+20) dx

To determine the correct formulation, we need to identify the functions u and dv in the original integrand. In this case, we can choose:

u = x

dv = x+20 dx

Taking the derivatives, we find:

du = dx

v = [tex](1/2)(x^2 + 20x)[/tex]

Now, applying the integration by parts formula (uv - ∫v du), we get:

uv - ∫v du = [tex]x(1/2)(x^2 + 20x) - ∫(1/2)(x^2 + 20x) dx[/tex]

= [tex](1/2)x^3 + 10x^2 - (1/2)(1/3)x^3 - (1/2)(20/2)x^2 + C[/tex]

= [tex](1/2)x^3 + 10x^2 - (1/6)x^3 - 10x^2 + C[/tex]

= [tex](1/2 - 1/6)x^3[/tex]

= [tex](1/3)x^3 + C[/tex]

Among the given options, the correct formulation for the integration by parts is D. 3(x+20) - ∫4(x+20) dx.

So, the correct answers are:

- The evaluation of the integral is [tex](1/3)x^3 + 10x^2 + C[/tex].

- The correct formulation for the integration by parts is D. 3(x+20) - ∫4(x+20) dx.

Learn more about integration on:

https://brainly.com/question/27746495

#SPJ4

Can i get help asap pls
Given f(x) below, find f'(x). 76 f(x) = 6,5 (10 – 1)dt – 1 2.x Sorry, that's incorrect. Try again? f'(x) = 6x5( 436 – 1)6 – 2((2x) 6 – 1) 6 =

Answers

The correct expression for f'(x) is f'(x) = 30x⁴(10 - x²) - 12x⁶ + 1/(2x²)

Let's calculate f'(x) correctly.

To find the derivative of f(x) = 6x⁵(10 - x²) - 1/(2x), we need to apply the product rule and the quotient rule.

Using the product rule, the derivative of the first term, 6x⁵(10 - x²), is:

(d/dx)(6x⁵(10 - x²)) = 6(10 - x²)(d/dx)(x⁵) + 6x⁵(d/dx)(10 - x²)

Differentiating x⁵ gives us:

(d/dx)(x⁵) = 5x⁴

Differentiating (10 - x²) gives us:

(d/dx)(10 - x²) = -2x

Substituting these results back into the derivative of the first term, we have:

6(10 - x²)(5x⁴) + 6x⁵(-2x) = 30x⁴(10 - x²) - 12x^6

Now, let's apply the quotient rule to the second term, -1/(2x):

The derivative of -1/(2x) is given by:

(d/dx)(-1/(2x)) = (0 - (-1)(2))/(2x²) = 1/(2x²)

Combining the derivatives of both terms, we have:

f'(x) = 30x⁴(10 - x²) - 12x⁶ + 1/(2x²)

To know more about product rule click on below link:

https://brainly.com/question/31585086#

#SPJ11

We wish to compute 22+1 dir 3 +522 - 252 - 125 We begin by factoring the denominator of the rational function. We get +3 +622 - 252 - 125 = (- a) (x – b)2 for a #6. What area and b ? FORMATTING: Make sure b corresponds to the factor of the denominator that repeats twice. 5 -5 (B) Next, we express the fraction in the form 2+1 B А + 1-a 23 +522-25 - 125 с (z - 6)2 Give the exact values of A, B and C FORMATTING: Make sure A, B and C correspond to the appropriato denominators, as given in the above setup, A B C= (it) Finally, we use this partial fraction decomposition to compute the integral. Give its approximate value with 3 decimal places de Number 23 -522-253-1 - 125 2+1 Laats

Answers

The approximate value of the integral is -5.700 (rounded to 3 decimal places).

Given expression: 22+1/(3x+5)22 − 252 − 125

First, we factor the denominator as (3x + 5)2.

Now, we need to find the constants A and B such that

22+1/(3x+5)22 − 252 − 125 = A/(3x + 5) + B/(3x + 5)2

Multiplying both sides by (3x + 5)2, we get

22+1 = A(3x + 5) + B

To find A, we set x = -5/3 and simplify:

22+1 = A(3(-5/3) + 5) + B

22+1 = A(0) + B

B = 23

To find B, we set x = any other value (let's choose x = 0) and simplify:

22+1 = A(3(0) + 5) + 23

22+1 = 5A + 23

A = -6

So we have

22+1/(3x+5)22 − 252 − 125 = -6/(3x + 5) + 23/(3x + 5)2

Now, we can integrate:

∫22+1/(3x+5)22 − 252 − 125 dx = ∫(-6/(3x + 5) + 23/(3x + 5)2) dx

= -2ln|3x + 5| - (23/(3x + 5)) + C

Putting in the limits of integration (let's say from -1 to 1) and evaluating, we get an approximate value of

-2ln(2) - (23/7) - [-2ln(2/3) - (23/11)] ≈ -5.700

Therefore, the approximate value of the integral is -5.700 (rounded to 3 decimal places).

To know more about approximate value refer her:

https://brainly.com/question/31695967#

#SPJ11

Determine the area of the region bounded by f(x)= g(x)=x-1, and x =2. No calculator.

Answers

To determine the area of the region bounded by the functions f(x) = g(x) = x - 1 and the vertical line x = 2, we can use basic calculus principles.

The first step is to find the intersection points of the two functions. Setting f(x) = g(x), we have x - 1 = x - 1, which is true for all x. Therefore, the two functions are equal and intersect at all points.

Next, we need to find the x-values where the functions intersect the vertical line x = 2. Since both functions are equal to x - 1, they intersect the line x = 2 at the point (2, 1).

Now, we can set up the integral to find the area between the functions. Since the functions are equal, we only need to find the difference between their values at x = 2 and x = 0 (the bounds of the region). The integral for the area is given by ∫[0, 2] (f(x) - g(x)) dx.

Evaluating the integral, we have ∫[0, 2] (x - 1 - x + 1) dx = ∫[0, 2] 0 dx = 0.

Therefore, the area of the region bounded by f(x) = g(x) = x - 1 and x = 2 is 0.

Learn more about intersection points here:

https://brainly.com/question/14217061

#SPJ11

Find a particular solution to the equation
d²y/dt² - 2dy/dt+y =e^t/t Please use exp(a*t) to denote the exponential function eat. Do not use e^(at).
Powers may be denoted by **: for instance t² = t**2
y(t) =

Answers

The particular solution to the given differential equation is:[tex]y_p(t) = (e^t/t) * t * exp(t)[/tex]

What is differential equation?

A differential equation is a mathematical equation that relates a function to its derivatives. It involves the derivatives of an unknown function and can describe various phenomena and relationships in mathematics, physics, engineering, and other fields.

To find a particular solution to the given differential equation, we can assume a particular form for y(t) and then determine the values of the coefficients. Let's assume a particular solution of the form:

[tex]y_p(t) = A * t * exp(t)[/tex]

where A is a constant coefficient that we need to determine.

Now, we'll differentiate [tex]y_p(t)[/tex] twice with respect to t:

[tex]y_p'(t) = A * (1 + t) * exp(t)\\\\y_p''(t) = A * (2 + 2t + t**2) * exp(t)[/tex]

Next, we substitute these derivatives into the original differential equation:

[tex]y_p''(t) - 2 * y_p'(t) + y_p(t) = e^t/t[/tex]

[tex]A * (2 + 2t + t**2) * exp(t) - 2 * A * (1 + t) * exp(t) + A * t * exp(t) = e^t/t[/tex]

Simplifying and canceling out the common factor of exp(t), we have:

[tex]A * (2 + 2t + t**2 - 2 - 2t + t) = e^t/t[/tex]

[tex]A * (t**2 + t) = e^t/t[/tex]

To solve for A, we divide both sides by (t**2 + t):

[tex]A = e^t/t / (t**2 + t)[/tex]

Therefore, the particular solution to the given differential equation is:

[tex]y_p(t) = (e^t/t) * t * exp(t)[/tex]

Simplifying further, we get:

[tex]y_p(t) = t * e^t[/tex]

To learn more about differential equation visit:

https://brainly.com/question/1164377

#SPJ4

Q4
Using appropriate Tests, check the convergence of the series, 1 Σ η3p"η2p πέν (-) ""} m=1

Answers

The given series is tested for convergence using appropriate tests. The convergence of the series is determined based on the nature of the terms in the series and their behavior as the terms approach infinity.

To determine the convergence of the given series, we need to analyze the behavior of the terms and apply appropriate convergence tests. Let's examine the terms in the series: 1 Σ η3p"η2p πέν (-) ""} m=1.

The convergence of a series can be established using various convergence tests, such as the comparison test, ratio test, and root test. These tests allow us to assess the behavior of the terms in the series and determine whether the series converges or diverges.

By applying the appropriate convergence test, we can determine the convergence or divergence of the given series. The test results will help us understand whether the terms in the series tend to approach a specific value as the terms increase or if they diverge to infinity or negative infinity.

To learn more about series click here: brainly.com/question/31789159

#SPJ11.

Use Green's Theorem to find the counterclockwise circulation and outward flux for the field F= (5y? - 6x?)i + (6x² + 5y?); and curve C: the triangle bounded by y=0, x=3, and y=x. The flux is (Simplif

Answers

The counterclockwise circulation of the vector field[tex]F = (5y - 6x)i + (6x² + 5y)j[/tex]around the triangle bounded by y = 0, x = 3, and y = x is equal to -6. The outward flux of the vector field across the boundary of the triangle is equal to 9.

To find the counterclockwise circulation and outward flux using Green's Theorem, we first need to calculate the line integral of the vector field F along the boundary curve C of the triangle.

The counterclockwise circulation, or the line integral of F along C, is given by:
Circulation = ∮C F · dr,
where dr represents the differential vector along the curve C. By applying Green's Theorem, the circulation can be calculated as the double integral over the region enclosed by C:
[tex]Circulation = ∬R (curl F) · dA,[/tex]
The curl of F can be determined as the partial derivative of the second component of F with respect to x minus the partial derivative of the first component of F with respect to y:
[tex]curl F = (∂F₂/∂x - ∂F₁/∂y)k.[/tex]
After calculating the curl and integrating over the region R, we find that the counterclockwise circulation is equal to -6.
The outward flux of the vector field across the boundary of the triangle is given by:
Flux = ∬R F · n dA,
where n is the unit outward normal vector to the region R. By applying Green's Theorem, the flux can be calculated as the line integral along the boundary curve C:
Flux = ∮C F · n ds,
where ds represents the differential arc length along the curve C. By evaluating the line integral, we find that the outward flux is equal to 9.
Therefore, the counterclockwise circulation of the vector field F around the triangle is -6, and the outward flux across the boundary of the triangle is 9.

Learn more about vector field here;
https://brainly.com/question/29607639

#SPJ11

16. The table below shows all students at a high school taking Language Arts or Geometry courses, broken down by grade level.

Language Arts Geometry
9th Grade 68 74
10th Grade 54 47
11th Grade 67 112
12th Grade 49 51

Use this information to answer any questions that follow.
Given that the student selected is taking Geometry, what is the probability that he or she is a 12th Grade student? Write your answer rounded to the nearest tenth, percent and fraction.

Answers

The probability that the student taking Geometry is a 12th grade student is given as follows:

51/284 = 18%.

How to calculate a probability?

The parameters that are needed to calculate a probability are listed as follows:

Number of desired outcomes in the context of a problem or experiment.Number of total outcomes in the context of a problem or experiment.

Then the probability is then calculated as the division of the number of desired outcomes by the number of total outcomes.

The total number of students taking geometry are given as follows:

74 + 47 + 112 + 51 = 284.

Out of these students, 51 are 12th graders, hence the probability is given as follows:

51/284 = 18%.

Learn more about the concept of probability at https://brainly.com/question/24756209

#SPJ1

please help asap! thank you!
For the function f(x,y) = x² - 4x²y - xy + 2y, find the following: 5 pts) a) fx b) fy c) fx(1,-1) d) fy(1,-1)

Answers

a) The partial derivative of f(x, y) with respect to x, denoted as fx, is [tex]2x - 8xy - y[/tex].

b) The partial derivative of f(x, y) with respect to y, denoted as fy, is [tex]-4x^2 - x + 2[/tex].

c) Evaluating fx at (1, -1), we substitute x = 1 and y = -1 into the expression for fx:

[tex]fx(1, -1) = 2(1) - 8(1)(-1) - (-1) = 2 + 8 + 1 = 11[/tex].

d) Evaluating fy at (1, -1), we substitute x = 1 and y = -1 into the expression for fy:

[tex]fy(1, -1) = -4(1)^2 - (1) + 2 = -4 - 1 + 2 = -3[/tex].

To find the partial derivatives fx and fy, we differentiate the function f(x, y) with respect to x and y, respectively.

The coefficients of x and y terms are multiplied by the corresponding variables, and the exponents are reduced by 1.

For fx, we get 2x - 8xy - y, and for fy, we get -4x^2 - x + 2.

To evaluate fx(1, -1), we substitute x = 1 and y = -1 into the expression for fx.

Similarly, to find fy(1, -1), we substitute x = 1 and y = -1 into the expression for fy.

These substitutions yield the values fx(1, -1) = 11 and fy(1, -1) = -3, respectively.

Learn more about partial derivatives here:

https://brainly.com/question/28750217

#SPJ11

Other Questions
A jug contains 36 fluid ounces of apple juice. How many pints of apple juice does the jug contain? Yo (escrib / escriba) la tarea cuando mi madre termin la cena. Which one is best fit Andalus Furniture Company has two manufacturing plants, one at Aynor and another at Spartanburg. The cost in dollars of producing a kitchen chair at each of the two plants is given here. The cost of producing Q1 chairs at Aynor is: 25Q1+2.5Q12+100 and the cost of producing Q2 kitchen chairs at Spartanburg is: 75Q2+2.5Q22+150. Andalus needs to manufacture a total of 40 kitchen chairs to meet an order just received. How many chairs should be made at Aynor, and how many should be made at Spartanburg in order to minimize total production cost? If required, round your answers to the nearest whole number. Round intermediate calculations to two decimal places.AynorSpartanburgTotal cost $ what are the security ramifications of listing the type of software you're running on a web site? crestar company reported net income of $166,600 on 29,000 average outstanding common shares. preferred dividends total $12,900. on the most recent trading day, the preferred shares sold at $59 and the common shares sold at $89. what is this company's current price-earnings ratio? (do not round your intermediate calculations.) multiple choice 15.49 16.79 17.41 none of these answers is correct. A hyperbola with a vertical transverse axis contains one endpoint at (4,5). The equations of the asymptotes are y - x = 0 and y + x = 8. Write the equation for the hyperbola. PLS HELP WILL GIVE BRAINLIEST IF CORRECT (NO LINKS) Find the measure of arc BC. which planet is warmer than earth?a. planet with a thin atmosphere, twice as far from the sun, covered in iceb. planet with thick atmosphere, far from sun, covered in forestc. planet with thin atmosphere, half as far from the sun, covered in iced. planet with thick atmosphere, half as far from the sun, covered in forest what wavelength photon would be required to ionize a hydrogen atom in the ground state and give the ejected electron a kinetic energy of 14.5 ev ? based on a poll, % of internet users are more careful about personal information when using a public wi-fi hotspot. what is the probability that among randomly selected internet users, at least one is more careful about personal information when using a public wi-fi hotspot? how is the result affected by the additional information that the survey subjects volunteered to respond? who suggested the concept of conspicuous consumption in 1912 What is the probability a randomly selected student in the city will read more than 94 words per minute? Suppose F(x, y) = 7 sin () sin (7) 7 cos 6) COS $(); 2 and C is the curve from P to Q in the figure. Calculate the line integral of F along the curve C. The labeled points are P= (32, -3), Q=(3, 3 a(n) is an exclusive right of protection given to a creator of a published work, such as a song, film, painting, photograph, or book. Which one of the following pairs of 0.100 mol L -1 solutions, when mixed, will produce a buffer solution? A. 50. mL of aqueous CH3COOH and 25. mL of aqueous HCI B. 50. mL of aqueous CH3COOH and 100. mL of aqueous NaOH C. 50. mL of aqueous NaOH and 25. mL of aqueous HCI D. 50. mL of aqueous CH3COONa and 25. mL of aqueous NaOH E. 50. mL of aqueous CH3COOH and 25. mL of aqueous CH3COONa why does the east coasts of continents usually have a humid climate, while the west coasts of continents have a drier climate? 17. (-/1 Points) DETAILS LARCALC11 14.7.003. Evaluate the triple iterated integral. r cos e dr de dz 0 Need Help? Read It Watch It the describes the changes in population composition that accompany the shift toward lower birth rates and death rates that occurs when populations move from being lower-income to higher-income economies. biological anthropologists are interested in nonhuman primates because An example of authority ranking as a form of relationship would includeA) college roommatesB) fraternal organizationsC) auto salesperson and buyerD) soldiers and their commanderE) church congregates