Consider a Feistel cipher with r rounds and n=128 (half the block length); ℓ=256(the key bit size). Then M={0,1} 24
(the plaintext space), C={0,1} 276
(the ciphertext space), and K={0,1} 2%
(the key space). A key scheduling algorithm determines subkeys k 1

,k 2

from a key K∈K={0,1} 206
. Each subkey k i ​
determines a function f i

:{0,1} 12×
→{0,1} 12×
. Eneryptio. takes r rounds: - Plaintext is m=(m 0

,m 1

) with m 0

,m 1

∈{0,1} 12κ
, - Round 1: (m 0

,m 1

)→(m 1

,m 2

) with m 2

=m 0

⊕f 1

(m 1

). - Round 2: (m 1

,m 2

)→(m 2

,m 3

) with m 3

=m 1

⊕f 2

(m 2

). - Round r: (m r−1

,m r

)→(m r

,m r+1

) with m r+1

=m r−1

⊕f r

(m r

). - The ciphertext is c=(m r

,m r+1

). For the Feistel cipher described above: Exercise 2 (Security of Feistel ciphers 1. Consider the above Feistel cipher with r=2 rounds. Is this Feistel cipher secure against an exhaustive key search attack, in the known-plaintext attack model? What does the complexity of such an attack depend on? Explain. 2. Consider the above Feistel cipher with r=2 rounds. Imagine a key scheduling algorithm that works as follows. Given K∈K={0,1} 2π
, set k 1

to be the leftmost 128 bits of K, and k 2

to be the rightmost 128 bits of K, then define f i

(x)=x∈
/
k i

. Show that this block cipher is totally insecure - that is, given a single plaintext-ciphertext pair (m,c), the secret key K can be easily recovered. Hint: linearity is the problem here.

Answers

Answer 1

Answer:

Step-by-step explanation:654[tex]\sqrt[n]{x} \sqrt[n]{x}[/tex]


Related Questions

Harold Hill borrowed $16,700 to pay for his child's education at Riverside Community College. Harold must repay the loan at the end of 6 months in one payment with 321​% interest. a. How much interest must Harold pay? Note: Do not round intermediate calculation. Round your answer to the nearest cent. b. What is the moturity value? Note: Do not round intermediate calculation. Round your answer to the nearest cent.

Answers

a. To calculate the interest Harold must pay, we can use the formula for simple interest:[tex]\[ I = P \cdot r \cdot t \[/tex]] b. The maturity value is the total amount that Harold must repay, including the principal amount and the interest. To calculate the maturity value, we add the principal amount and the interest: \[ M = P + I \].

a. In this case, we have:

- P = $16,700

- r = 321% = 3.21 (expressed as a decimal)

- t = 6 months = 6/12 = 0.5 years

Substituting the given values into the formula, we have:

\[ I = 16,700 \cdot 3.21 \cdot 0.5 \]

Calculating this expression, we find:

\[ I = 26,897.85 \]

Rounding to the nearest cent, Harold must pay $26,897.85 in interest.

b. In this case, we have:

- P = $16,700

- I = $26,897.85 (rounded to the nearest cent)

Substituting the values into the formula, we have:

\[ M = 16,700 + 26,897.85 \]

Calculating this expression, we find:

\[ M = 43,597.85 \]

Rounding to the nearest cent, the maturity value is $43,597.85.

Learn more about maturity value here:

https://brainly.com/question/2132909

#SPJ11

Find the standard equation of the rcle that has a radius whose ndpoints are the points A(-2,-5) and (5,-5) with center of (5,-5)

Answers

The standard form of the circle equation is 4x² + 4y² - 40x + 40y + 51 = 0.

A circle is a geometric shape that has an infinite number of points on a two-dimensional plane. In geometry, a circle's standard form or equation is derived by completing the square of the general form of the equation of a circle.

Given the center of the circle is (5, -5) and the radius is the distance from the center to one of the endpoints:

(5, -5) to (5, -5) = 0, and (5, -5) to (-2, -5) = 7

(subtract -2 from 5),

since the radius is half the distance between the center and one of the endpoints.The radius is determined to be

r = 7/2.

To derive the standard form of the circle equation: (x - h)² + (y - k)² = r², where (h, k) is the center of the circle and r is the radius.

Substituting the values from the circle data into the standard equation yields:

(x - 5)² + (y + 5)²

= (7/2)²x² - 10x + 25 + y² + 10y + 25

= 49/4

Multiplying each term by 4 yields:

4x² - 40x + 100 + 4y² + 40y + 100 = 49

Thus, the standard form of the circle equation is 4x² + 4y² - 40x + 40y + 51 = 0.

To know more about standard form visit:

https://brainly.com/question/29000730

#SPJ11

evaluate ∫(9/25x^2−20x+68)dx.
Perform the substitution u= Use formula number ∫(9/25x^2−20x+68)dx= +c

Answers

The substitution rule of integration is used to evaluate the given integral.

The given integral is ∫(9/25x^2−20x+68)dx.

It can be solved as follows:

First, factor out the constant value 9/25.∫[9/25(x^2−(25/9)x)+68]dx

Use the substitution, u = x − (25/18).

Thus, the given integral can be rewritten as∫(9/25)(u^2−(25/18)u+(625/324)+68)du

= ∫(9/25)(u^2−(25/18)u+(625/324)+233/3)du

= (9/25)[(u^3/3)−(25/36)u^2+(625/324)u+(233/3)u] + C

= (9/25)[(x−25/18)^3/3−(25/36)(x−25/18)^2+(625/324)(x−25/18)+(233/3)x] + C

Therefore, ∫(9/25x^2−20x+68)dx

= (9/25)[(x−25/18)^3/3−(25/36)(x−25/18)^2+

(625/324)(x−25/18)+(233/3)x] + C

To know more about integral visit:

https://brainly.com/question/31433890

#SPJ11

For the function f(x)=8-3 x-2 x^{2} , find the slopes of the tangent lines at x=-1, x=0 , and x=1 . Answer \text { At } x=-1, m= \text { At } x=0, m= \text { At } x=1, m=

Answers

At x = -1, m = -5At x = 0, m = 8At x = 1, m = -5

Given function is, f(x) = 8 - 3x - 2x²

Derivative of f(x) will be, f'(x) = -3 - 4x

Slopes of the tangent lines can be calculated as below:

At x = -1, m = f'(-1) = -3 - 4(-1)

= -3 + 4 = 1At x = 0, m = f'(0)

= -3 - 4(0) = -3 = 3

At x = 1, m = f'(1) = -3 - 4(1)

= -3 - 4 = -7

Hence, the slopes of the tangent lines at x = -1, x = 0, and x = 1 are -5, 8, and -5 respectively.

The derivative of a function provides us with the slope of the tangent at any point on the graph. To find the derivative of the given function, we need to differentiate it.

In this case, we have to apply the power rule and the constant multiple rule to find the derivative. Therefore, the derivative of the given function is f'(x) = -3 - 4x.

Now, we need to find the slopes of the tangent lines at x = -1, x = 0, and x = 1 by substituting the respective values of x in the derivative of the function.  

At x = -1, m = f'(-1) = -3 - 4(-1) = -3 + 4 = 1.

This means that the slope of the tangent line at x = -1 is 1.  At x = 0, m = f'(0) = -3 - 4(0) = -3 = 3.

This means that the slope of the tangent line at x = 0 is 3.  At x = 1, m = f'(1) = -3 - 4(1) = -3 - 4 = -7.

This means that the slope of the tangent line at x = 1 is -7.

To learn more about tangent lines

https://brainly.com/question/23416900

#SPJ11

During a sale a store offered 70% discount on a particular camera that was originally price at $450 what was the price of the camera after the discount

Answers

Answer:

$135

Step-by-step explanation:

Assuming that the 70% discount was applied on the original price of $450,

you multiply 0.7 (70%) to 450 and subtract that value from the original price. Basically, you are left with 30% of the original price.

Imagine taking the full price of the camera and subtracting 70% off that original price.

450 - (0.7)(450) = $135

The price of the camera after the 70% off discount is $135.

At the beginning of the year 1995, the population of Townsville was 3754. By the beginning of the year 2015, the population had reached 4584. Assume that the population is grr g exponentially, answer the following.
A) Estimate the population at the beginning of the year 2019. The population at the beginning of 2019 will be about
B) How long (from the beginning of 1995) will it take for the population to reach 9000? The population will reach 9000 about years after the beginning of 1995.
C) In what year will/did the population reach 9000?
The population will (or did) hit 9000 in the year.

Answers

A = 4762 (approx) . Therefore, the population will reach 9000 about 0.12*12 = 1.44 years after the beginning of 1995.the population will reach 9000 in 1995 + 1.44 = 1996.44 or around September 1996.

Given: At the beginning of the year 1995, the population of Townsville was 3754. By the beginning of the year 2015, the population had reached 4584.A) Estimate the population at the beginning of the year 2019.As the population is growing exponentially, we can use the formula:  

A = P(1 + r/n)ntWhere,

A = final amount

P = initial amount

r = annual interest rate

t = number of years

n = number of times interest is compounded per year

To find the population at the beginning of 2019,P = 4584 (given)

Let's find the annual growth rate first.

r = (4584/3754)^(1/20) - 1

r = 0.00724A

= 4584(1 + 0.00724/1)^(1*4)

A = 4762 (approx)

Therefore, the population at the beginning of 2019 will be about 4762.

B) How long (from the beginning of 1995) will it take for the population to reach 9000?We need to find the time taken to reach the population of 9000.

A = P(1 + r/n)nt9000

= 3754(1 + 0.00724/1)^t(20)

ln 9000/3754

= t ln (1.00724/1)(20)

ln 2.397 = 20t.

t = 0.12 years (approx)

Therefore, the population will reach 9000 about 0.12*12 = 1.44 years after the beginning of 1995.

C) In what year will/did the population reach 9000?

In the previous step, we have found that it takes approximately 1.44 years to reach a population of 9000 from the beginning of 1995.

So, the population will reach 9000 in 1995 + 1.44 = 1996.44 or around September 1996.

To know more about population visit;

brainly.com/question/15889243

#SPJ11

Use the following sample of numbers for the next 4 questions: a. What is the range? (1 point) b. What is the inter-quartile range? (2 points) c. What is the variance for the sample? (3 points) Show Your Work! d. What is the standard deviation for the sample? (1 point)
x
3
5
5
6
10

Answers

Range = 7, Interquartile range = 4, Variance = 6.9, and Standard deviation = approximately 2.63.

What is the range? The range is the difference between the largest and smallest value in a data set. The largest value in this sample is 10, while the smallest value is 3. The range is therefore 10 - 3 = 7. The range is 7.b. What is the inter-quartile range? The interquartile range is the range of the middle 50% of the data. It is calculated by subtracting the first quartile from the third quartile. To find the quartiles, we first need to order the data set: 3, 5, 5, 6, 10. Then, we find the median, which is 5. Then, we divide the remaining data set into two halves. The lower half is 3 and 5, while the upper half is 6 and 10. The median of the lower half is 4, and the median of the upper half is 8. The first quartile (Q1) is 4, and the third quartile (Q3) is 8. Therefore, the interquartile range is 8 - 4 = 4.

The interquartile range is 4.c. What is the variance for the sample? To find the variance for the sample, we first need to find the mean. The mean is calculated by adding up all of the numbers in the sample and then dividing by the number of values in the sample: (3 + 5 + 5 + 6 + 10)/5 = 29/5 = 5.8. Then, we find the difference between each value and the mean: -2.8, -0.8, -0.8, 0.2, 4.2.

We square each of these values: 7.84, 0.64, 0.64, 0.04, 17.64. We add up these squared values: 27.6. We divide this sum by the number of values in the sample minus one: 27.6/4 = 6.9. The variance for the sample is 6.9.d. What is the standard deviation for the sample? To find the standard deviation for the sample, we take the square root of the variance: sqrt (6.9) ≈ 2.63. The standard deviation for the sample is approximately 2.63.

Range = 7, Interquartile range = 4, Variance = 6.9, and Standard deviation = approximately 2.63.

To know more about Variance visit:

brainly.com/question/14116780

#SPJ11

Suppose A={b,c,d} and B={a,b}. Find: (i) PP(A)×P(B)

Answers

There are 8 sets in PP(A) and 4 sets in P(B), so there are 8 * 4 = 32 possible ordered pairs in PP(A) × P(B).

The notation PP(A) refers to the power set of A, which is the set of all possible subsets of A, including the empty set and the set A itself. Similarly, P(B) is the power set of B.

So, we have A = {b, c, d} and B = {a, b}, which gives us:

PP(A) = {{}, {b}, {c}, {d}, {b, c}, {b, d}, {c, d}, {b, c, d}}

P(B) = {{}, {a}, {b}, {a, b}}

To find PP(A) × P(B), we need to take every possible combination of a set from PP(A) and a set from P(B). We can use the Cartesian product for this, which is essentially taking all possible ordered pairs of elements from both sets.

So, we have:

PP(A) × P(B) = {({},{}), ({},{a}), ({},{b}), ... , ({b,c,d}, {b}), ({b,c,d}, {a,b})}

In other words, PP(A) × P(B) is the set of all possible ordered pairs where the first element comes from PP(A) and the second element comes from P(B). In this case, there are 8 sets in PP(A) and 4 sets in P(B), so there are 8 * 4 = 32 possible ordered pairs in PP(A) × P(B).

Learn more about  sets from

https://brainly.com/question/13458417

#SPJ11

Assume we have two relations R(a,b) and S(b.c). All three attributes (a,b, and c ) are integer attributes. Assume that Relation R contains the following tuples: (1,2),(2,3), and (3,4). Assum that Relation S contains the following tuples (2,2),(2,3),(4,6),(3,9) and (7,1). a) (1 Points) Give an example of an attribute (or a combination of attributes) that cannot be a primar) key for relation S, why? b) (1 Points) How many tuples are in the result of the Cartesian Product between R and S ? c) (1 Points) How many tuples are in the result of Natural Join between R and S ? d) (2 Points) Show the output of the following query SELECT a FROM R,S WHERE R. b=S,b and S,c>2

Answers

The attribute (or combination of attributes) that cannot be a primary key for relation S is the attribute 'b' alone. This is because the values in attribute 'b' are not unique within relation S. In the given tuples of S, we can see that the value '2' appears twice in attribute 'b'.

A primary key should uniquely identify each tuple in a relation, but in this case, 'b' fails to satisfy that requirement due to duplicate values.

The Cartesian Product between relations R and S is obtained by combining each tuple from R with every tuple from S. Since R has 2 tuples and S has 5 tuples, the result of the Cartesian Product between R and S will have 2 × 5 = 10 tuples.

The Natural Join between relations R and S is performed by matching tuples based on the common attribute 'b'. In this case, both R and S have tuples with the value '2' in attribute 'b'. Therefore, when performing the Natural Join, these tuples will be matched, resulting in a single tuple. Since there are no other common values of 'b' between R and S, the result of the Natural Join will have only 1 tuple.

The given query, SELECT a FROM R, S WHERE R.b=S.b AND S.c>2, selects the attribute 'a' from the Cartesian Product of R and S, where the values in attribute 'b' are equal in both relations and the value in attribute 'c' is greater than 2 in relation S. By applying this query to the given relations, we can see that the only tuple that satisfies the conditions is (3, 4) from R and (4, 6) from S. Therefore, the output of the query would be the single value '3' for attribute 'a'.

To learn more about tuples refer:

https://brainly.com/question/32777157

#SPJ11

One die is rolled, List the outcomes comprising the following events: (make sure you use the correct notation with the set brices \{). put a comma between each outcome, and do not put a space between them:: (a) event the die comes up odd answer: (b) event the die comes up 4 or more answer. (c) event the die comes up even answer,

Answers

(a) The event that the die comes up odd can be represented as {1, 3, 5}.

In a standard die, there are six possible outcomes: 1, 2, 3, 4, 5, and 6. Out of these, the odd numbers are 1, 3, and 5. Thus, the outcomes comprising the event that the die comes up odd are {1, 3, 5}.

(b) The event that the die comes up 4 or more can be represented as {4, 5, 6}.

In a standard die, there are six possible outcomes: 1, 2, 3, 4, 5, and 6. Out of these, the numbers 4, 5, and 6 are considered to be 4 or more. Thus, the outcomes comprising the event that the die comes up 4 or more are {4, 5, 6}.

(c) The event that the die comes up even can be represented as {2, 4, 6}.

In a standard die, there are six possible outcomes: 1, 2, 3, 4, 5, and 6. Out of these, the even numbers are 2, 4, and 6. Thus, the outcomes comprising the event that the die comes up even are {2, 4, 6}.

The outcomes for the events mentioned are: (a) odd: {1, 3, 5}, (b) 4 or more: {4, 5, 6}, (c) even: {2, 4, 6}.

To know more about   event  visit

https://brainly.com/question/30169088

#SPJ11

Show L={w∣w is in {0,1,2} ∗
with n 0

(w)>n 1

(w) and n 0

(w)≥n 2

(w), where n 0

(w) is the number of 0 s in w,n 1

(w) is the number of 1 s in w, and n 2

(w) is the number of 2s in w} is not context free.

Answers

The language L = {w|w is in {0,1,2}* with n0(w) > n1(w) and n0(w) ≥ n2(w)} is not context-free, as proven using the pumping lemma for context-free languages, which shows that L cannot satisfy the conditions of the pumping lemma.

To show that L = {w|w is in {0,1,2} ∗ with n0(w) > n1(w) and n0(w) ≥ n2(w), where n0(w) is the number of 0s in w, n1(w) is the number of 1s in w, and n2(w) is the number of 2s in w} is not context-free, we use the pumping lemma for context-free languages.

Pumping Lemma for Context-Free Languages:

A context-free language L is said to satisfy the pumping lemma if there exists a positive integer p such that any string w in L, with |w| ≥ p, can be written as w = uvxyz, where u, v, x, y, and z are strings (not necessarily in L) satisfying the following conditions:

|vx| ≥ 1;

|vxy| ≤ p; and

uvⁿxyⁿz ∈ L for all n ≥ 0.

To prove that L is not context-free, we use a proof by contradiction. We assume that L is context-free, and then we show that it cannot satisfy the pumping lemma.

Choose a pumping length p

Suppose that L is context-free and let p be the pumping length guaranteed by the pumping lemma for L.

Choose a string w

Let w = 0p1p2p where p1 > 1 and p2 ≥ 1.

Divide w into five parts

w = uvxyz

where |vxy| ≤ p, |vx| ≥ 1

Show that the pumped string is not in LW = uv0xy0z

There are three cases to consider when pumping the string W:

Case 1: vx contains 1 only

In this case, the pumped string W will have more 1s than 0s and 2s, which means that it is not in L.

Case 2: vx contains 0 only

In this case, the pumped string W will have more 0s than 1s and 2s, which means that it is not in L.

Case 3: vx contains 2 only

In this case, the pumped string W will have more 2s than 0s and 1s, which means that it is not in L.

Thus, we have arrived at a contradiction since the pumped string W is not in L, which contradicts the assumption that L is context-free.

Therefore, L is not context-free.

To know more about proof by contradiction, refer to the link below:

https://brainly.com/question/30779785#

#SPJ11

2. Find the partial differential equation by eliminating arbitrary functions from \[ u(x, y)=f(x+2 y)+g(x-2 y)-x y \]

Answers

The partial differential equation obtained by eliminating arbitrary functions from the expression u(x, y) = f(x + 2y) + g(x - 2y) - xy is:

\[ u_{xx} - 4u_{yy} = 0 \]

To eliminate the arbitrary functions f(x + 2y) and g(x - 2y) from the expression u(x, y), we need to differentiate u with respect to x and y multiple times and substitute the resulting expressions into the original equation.

Given:

u(x, y) = f(x + 2y) + g(x - 2y) - xy

Differentiating u with respect to x:

u_x = f'(x + 2y) + g'(x - 2y) - y

Taking the second partial derivative with respect to x:

u_{xx} = f''(x + 2y) + g''(x - 2y)

Differentiating u with respect to y:

u_y = 2f'(x + 2y) - 2g'(x - 2y) - x

Taking the second partial derivative with respect to y:

u_{yy} = 4f''(x + 2y) + 4g''(x - 2y)

Substituting these expressions into the original equation u(x, y) = f(x + 2y) + g(x - 2y) - xy, we get:

f''(x + 2y) + g''(x - 2y) - 4f''(x + 2y) - 4g''(x - 2y) = 0

Simplifying the equation:

-3f''(x + 2y) - 3g''(x - 2y) = 0

Dividing through by -3:

f''(x + 2y) + g''(x - 2y) = 0

This is the obtained partial differential equation by eliminating the arbitrary functions from the expression u(x, y) = f(x + 2y) + g(x - 2y) - xy.

The partial differential equation obtained by eliminating arbitrary functions from u(x, y) = f(x + 2y) + g(x - 2y) - xy is u_{xx} - 4u_{yy} = 0.

To know more about differential equation follow the link:

https://brainly.com/question/1164377

#SPJ11

Find the indicated probability.
A machine has
10
identical components which function independently. The probability that a component will fail is
0.16
. The machine will stop working if more than three components fail. Find the probability that the machine will be working.
0.987
0.939
0.061
0.041

Answers

In this problem, we are given that a machine has 10 identical components that function independently. The probability that a component will fail is 0.16. The machine will stop working if more than three components fail.

We need to find the probability that the machine will be working.Let the random variable X represent the number of components that fail. Since there are 10 components, X can take any integer value from 0 to 10. Since each component can either fail or not fail, X follows a binomial distribution with parameters n = 10 and p = 0.16.We can use the binomial probability formula to find the probability of the machine working: P(X ≤ 3) = ∑P(X = x) for x = 0, 1, 2, 3where P(X = x) = (nCx)px(1 – p)n – xWe can calculate this using the binomial probability table or a scientific calculator. Alternatively, we can use the complement of this probability to find the probability that the machine will be working. This is: P(X > 3) = 1 – P(X ≤ 3)

The probability that a component fails is given as 0.16. The probability that a component does not fail is 1 - 0.16 = 0.84. Therefore, the probability that x components fail and (10 - x) components work is given by:P(X = x) = (10Cx) (0.16)x (0.84)10 - xThe machine will stop working if more than three components fail. So, we need to find P(X ≤ 3) to find the probability that the machine will be working. This is:

P(X ≤ 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)P(X = 0) = (10C0) (0.16)0 (0.84)10 = 0.0844P(X = 1) = (10C1) (0.16)1 (0.84)9 = 0.2794P(X = 2) = (10C2) (0.16)2 (0.84)8 = 0.3604P(X = 3) = (10C3) (0.16)3 (0.84)7 = 0.2313

Therefore,

P(X ≤ 3) = 0.0844 + 0.2794 + 0.3604 + 0.2313 = 0.9555

The probability that the machine will be working is:

P(X > 3) = 1 – P(X ≤ 3) = 1 – 0.9555 = 0.0445

Therefore, the probability that the machine will be working is 0.0445 or 0.041 (approx).

The probability that the machine will be working is 0.0445 or 0.041 (approx). Therefore, the correct option is option D.

To learn more about binomial probability table visit:

brainly.com/question/30673644

#SPJ11

A company is planning to manufacture mountain bikes. The fixed monthly cost will be $300,000 and it will cost $300
to produce each bicycle.
A) Find the linear cost function.
B) Find the average cost function.

Answers

A) The linear cost function for manufacturing mountain bikes is given by Cost = $300,000 + ($300 × Number of Bicycles), where the fixed monthly cost is $300,000 and it costs $300 to produce each bicycle.

B) The average cost function represents the cost per bicycle produced and is calculated as Average Cost = ($300,000 + ($300 × Number of Bicycles)) / Number of Bicycles.

A) To find the linear cost function, we need to determine the relationship between the total cost and the number of bicycles produced. The fixed monthly cost of $300,000 remains constant regardless of the number of bicycles produced. Additionally, it costs $300 to produce each bicycle. Therefore, the linear cost function can be expressed as:

Cost = Fixed Cost + (Variable Cost per Bicycle × Number of Bicycles)

Cost = $300,000 + ($300 × Number of Bicycles)

B) The average cost function represents the cost per bicycle produced. To find the average cost function, we divide the total cost by the number of bicycles produced. The total cost is given by the linear cost function derived in part A.

Average Cost = Total Cost / Number of Bicycles

Average Cost = ($300,000 + ($300 × Number of Bicycles)) / Number of Bicycles

It's important to note that the average cost function may change depending on the specific context or assumptions made.

To learn more about linear cost function visit : https://brainly.com/question/15602982

#SPJ11

A bacteria culture contains 200 cells initially and grows at a rate proportional to its size. After half an hour the population has increased to 360 cells. (Show that you understand the solution process; you may leave your answer in terms of In(7), for example. A calculator is not required.) (a) Find the number of bacteria after t hours.
(b) When will the population reach 10,000?

Answers

(a) Substituting the value of k into N(t) = 200 * e^(kt), we can express the number of bacteria after t hours.

(b) To find when the population reaches 10,000, we set N(t) = 10,000 in the equation N(t) = 200 * e^(kt) and solve for t using the value of k obtained earlier.

The problem presents a bacteria culture with an initial population of 200 cells, growing at a rate proportional to its size. After half an hour, the population reaches 360 cells. The goal is to determine the number of bacteria after a given time (t) and find when the population will reach 10,000.

Let N(t) represent the number of bacteria at time t. Given that the growth is proportional to the current size, we can write the differential equation dN/dt = kN, where k is the proportionality constant. Solving this equation yields N(t) = N0 * e^(kt), where N0 is the initial population. Plugging in the given values, we have 360 = 200 * e^(0.5k), which simplifies to e^(0.5k) = 1.8. Taking the natural logarithm of both sides, we find 0.5k = ln(1.8). Thus, k = 2 * ln(1.8).

(a) Substituting the value of k into N(t) = 200 * e^(kt), we can express the number of bacteria after t hours.

(b) To find when the population reaches 10,000, we set N(t) = 10,000 in the equation N(t) = 200 * e^(kt) and solve for t using the value of k obtained earlier.

For more information on bacteria culture visit: brainly.com/question/32307330

#SPJ11

f ∫110f(X)Dx=4 And ∫103f(X)Dx=7, Then ∫13f(X)Dx= (A) −3 (B) 0 (C) 3 (D) 10 (E) 11

Answers

The answer is (C) 3.

Given that ∫110f(X)dx = 4 and ∫103f(X)dx = 7, we need to find ∫13f(X)dx.

We can use the linearity property of integrals to solve this problem. According to this property, the integral of a sum of functions is equal to the sum of the integrals of the individual functions.

Let's break down the integral ∫13f(X)dx into two parts: ∫10f(X)dx + ∫03f(X)dx.

Since we know that ∫110f(X)dx = 4, we can rewrite ∫10f(X)dx as ∫110f(X)dx - ∫03f(X)dx.

Substituting the given values, we have ∫10f(X)dx = 4 - ∫103f(X)dx.

Now, we can calculate ∫13f(X)dx by adding the two integrals together:

∫13f(X)dx = (∫110f(X)dx - ∫03f(X)dx) + ∫03f(X)dx.

By simplifying the expression, we get ∫13f(X)dx = 4 - 7 + ∫03f(X)dx.

Simplifying further, ∫13f(X)dx = -3 + ∫03f(X)dx.

Since the value of ∫03f(X)dx is not given, we can't determine its exact value. However, we know that it contributes to the overall result with a value of -3. Therefore, the answer is (C) 3.

Learn more about functions here: brainly.com/question/30660139

#SPJ11

DUE TOMORROW!!! PLEASE HELP! THANKS!
mand Window ror in TaylorSeries (line 14) \( P E=a b s((s i n-b) / \sin ) * 100 \)

Answers

Answer:

Step-by-step explanation:

Help?

Find a vector function that represents the curve of intersection of the paraboloid z=x^2+y^2and the cylinder x^2+y^2=9

Answers

The vector function that represents the curve of intersection is:

r(θ) = (3cos(θ), 3sin(θ), 9)

How to find the vector?

To find a vector function that represents the curve of intersection between the paraboloid z = x² + y² and the cylinder x² + y² = 9, we can use cylindrical coordinates. Let's denote the cylindrical coordinates as (ρ, θ, z), where ρ represents the radial distance from the z-axis, θ represents the angle in the xy-plane, and z represents the height along the z-axis.

For the cylinder x² + y² = 9, we can express it in cylindrical coordinates as ρ² = 9. Therefore, ρ = 3.

For the paraboloid z = x² + y², we can express it in cylindrical coordinates as z = ρ².

Now, we can parameterize the curve of intersection by setting ρ = 3 and z = ρ². This gives us:

ρ = 3

θ = θ (we leave it as a parameter)

z = ρ² = 9

Thus, the vector function that represents the curve of intersection is:

r(θ) = (3cos(θ), 3sin(θ), 9)

Learn more about vector functions at:

https://brainly.com/question/27854247

#SPJ4

Find equations of all lines having slope −2 that are tangent to the curve y= x+118.Select the correct choice below and fill in the answer box(es) within your choice. A. There is only one line tangent to the curve with a slope of −2 and its equation is. B. There are two lines tangent to the curve with a slope of -2. The equation of the line with the larger y-intercept is and the equation of the line with the smaller y-intercept is

Answers

There are two lines tangent to the curve with a slope of -2. The equation of the line with the larger y-intercept is y = -2x + 121 and the equation of the line with the smaller y-intercept is y = -2x + 113. Option (b) is correct.

The given curve equation is: y = x + 118; slope of the line is -2. To find out the equations of all the lines that have a slope of -2 and are tangent to the curve, we will first find out the derivative of the given equation. It is given as; dy/dx = 1.We know that the slope of a tangent line to the curve is equal to the derivative of the equation of the curve at that point. Let m = -2 be the slope of the line which is tangent to the curve. Therefore, we get:dy/dx = -2

Here, we have: dy/dx = 1. Therefore, we get:x = -1.5Therefore, the tangent points are (-1.5, 116.5) and (-1.5, 119.5). Now, the equation of the line with a larger y-intercept will pass through the point (-1.5, 119.5), and the equation of the line with a smaller y-intercept will pass through the point (-1.5, 116.5). Let b1 and b2 be the y-intercepts of the lines with a larger and smaller y-intercepts. The two lines are:y = -2x + b1, y = -2x + b2Respectively, they are:y = 121, y = 113

Thus, the correct choice is: B. There are two lines tangent to the curve with a slope of -2. The equation of the line with the larger y-intercept is y = -2x + 121 and the equation of the line with the smaller y-intercept is y = -2x + 113.

To know more about tangent visit :

https://brainly.com/question/10053881

#SPJ11

Write the equation of the line which passes through the points (−5,6) and (−5,−4), in standard form, All coefficients and constants must be integers.

Answers

The equation of the line in standard form with all coefficients and constants as integers is: x + 5 = 0

To find the equation of the line passing through the points (-5, 6) and (-5, -4), we can see that both points have the same x-coordinate (-5), which means the line is vertical and parallel to the y-axis.

Since the line is vertical, the equation will have the form x = constant.

In this case, x = -5 because the line passes through the point (-5, 6) and (-5, -4).

Therefore, the equation of the line in standard form with all coefficients and constants as integers is: x + 5 = 0

Learn more about equation from

https://brainly.com/question/29174899

#SPJ11

Find each function value and limit. Use - oo or [infinity]o where appropriate.
f(x)= 9x²-18x^2/8x^5 +4 (A) (-6)
(B) f(-12)

Answers

The value at function when x is (-6) is approximately 0.070 and function when x is (-12) is approximately 0.000066 for the function f(x)= 9x²-18x^2/8x^5 +4 .

(a) To find the value of f(x) at x = -6, we substitute -6 into the function:

f(-6) = 9(-6)² - 18(-6)² / (8(-6)⁵ + 4).

Simplifying the numerator and denominator:

f(-6) = 9(36) - 18(36) / (8(-6)⁵ + 4)

     = 324 - 648 / (-4,608 + 4)

     = -324 / -4,604

     = 0.070.

Therefore, f(-6) = 0.070.

(b) To find the value of f(-12), we substitute -12 into the function:

f(-12) = 9(-12)² - 18(-12)² / (8(-12)⁵ + 4).

Simplifying the numerator and denominator:

f(-12) = 9(144) - 18(144) / (8(-12)⁵ + 4)

      = 1,296 - 2,592 / (-19,660,928 + 4)

      = -1,296 / -19,660,924

      = 0.000066.

Therefore, f(-12) = 0.000066.

Learn more about function here : brainly.com/question/31549816

#SPJ11








If a seed is planted, it has a 80 % chance of growing into a healthy plant. If 10 seeds are planted, what is the probability that exactly 3 don't grow?

Answers

The probability that exactly 3 seeds don't grow out of the 10 planted seeds is 0.2013 or about 20.13%.

This problem can be modeled as a binomial distribution where the number of trials (n) is 10 and the probability of success (p) is 0.80.

We are interested in the probability that exactly 3 seeds don't grow, which means that 7 seeds do grow. This can be calculated using the binomial probability formula:

P(X = 7) = (10 choose 7) * (0.80)^7 * (1 - 0.80)^(10-7)

= 120 * 0.80^7 * 0.20^3

= 0.201326592

Therefore, the probability that exactly 3 seeds don't grow out of the 10 planted seeds is 0.2013 or about 20.13%.

Learn more about  probability   from

https://brainly.com/question/30390037

#SPJ11

Given a 32×8ROM chip with an enable input, show the external connections necessary to construct a 128×8ROM with four chips and a decoder.

Answers

The combination of the decoder and the 32×8ROM chips forms a 128×8ROM memory system.

To construct a 128×8ROM with four 32×8ROM chips and a decoder, the following external connections are necessary:

Step 1: Connect the enable inputs of all the four 32×8ROM chips to the output of the decoder.

Step 2: Connect the output pins of each chip to the output pins of the next consecutive chip. For instance, connect the output pins of the first chip to the input pins of the second chip, and so on.

Step 3: Ensure that the decoder has 2 select lines, which are used to select one of the four chips. Connect the two select lines of the decoder to the two highest-order address bits of the four 32×8ROM chips. This connection will enable the decoder to activate one of the four chips at a time.

Step 4: Connect the lowest-order address bits of the four 32×8ROM chips directly to the lowest-order address bits of the system, such that the address lines A0-A4 connect to each of the four chips. The highest-order address bits are connected to the decoder.Selecting a specific chip by the decoder enables the chip to access the required memory locations.

Thus, the combination of the decoder and the 32×8ROM chips forms a 128×8ROM memory system.

Know more about memory system:

https://brainly.com/question/28167719

#SPJ11

Which of the following statements are true and which are false? Justify your answers!
(a) Let the joint density function of two random variables X and Y be given by
fx.r (x, y), x≥ 0, y ≥ x.
Then X and Y are independent if fx,y can be factorised as fxr(x, y) = g(x)h (y)
where g is a function of x only and h is a function of y only.
(b) Assume that X and Y are two continuous random variables. If fxy (xy) = 0 for all values of x and y then X and Y are independent.
(c) Assume that X and Y are two continuous random variables. If fxr (xy) = fx (y) for all values of y then X and Y are independent.

Answers

The statement is true: fx.r(x, y) be the joint density function of X and Y.

For independent random variables X and Y, the following condition is satisfied:fx,y (x, y) = fx(x)fy(y)As fx.r(x, y) is given, let it be represented as a product of two independent functions of X and Y as follows:fx.r(x, y) = g(x)h(y)Therefore, X and Y are independent if fx.y(x, y) can be factored as fx(x)fy(y). (b) True or FalseAssume that X and Y are two continuous random variables. If fxy(xy) = 0 for all values of x and y then X and Y are independent.

FalseExplanation:
The statement is false. If fxy(xy) = 0 for all values of x and y, X and Y are not independent. Rather, this implies that the joint distribution of X and Y is null when X and Y are considered together, but X and Y can be correlated even if fxy(xy) = 0 for all values of x and y. (c) True or FalseAssume that X and Y are two continuous random variables. If fxr(xy) = fx(y) for all values of y then X and Y are independent. FalseExplanation:
The statement is false. If fxr(xy) = fx(y) for all values of y, then X and Y are not independent, but they may have a relation known as conditional independence. Therefore, X and Y are not independent in this case.

Learn more about density

https://brainly.com/question/15078630

#SPJ11

Let f(x)=(x−6)(x^2-5)Find all the values of x for which f ′(x)=0. Present your answer as a comma-separated list:

Answers

The values of x for which f'(x) = 0 are (6 + √51) / 3 and (6 - √51) / 3.

To find the values of x for which f'(x) = 0, we first need to find the derivative of f(x).

[tex]f(x) = (x - 6)(x^2 - 5)[/tex]

Using the product rule, we can find the derivative:

[tex]f'(x) = (x^2 - 5)(1) + (x - 6)(2x)[/tex]

Simplifying this expression, we get:

[tex]f'(x) = x^2 - 5 + 2x(x - 6)\\f'(x) = x^2 - 5 + 2x^2 - 12x\\f'(x) = 3x^2 - 12x - 5\\[/tex]

Now we set f'(x) equal to 0 and solve for x:

[tex]3x^2 - 12x - 5 = 0[/tex]

Unfortunately, this equation does not factor easily. We can use the quadratic formula to find the solutions:

x = (-(-12) ± √((-12)² - 4(3)(-5))) / (2(3))

x = (12 ± √(144 + 60)) / 6

x = (12 ± √204) / 6

x = (12 ± 2√51) / 6

x = (6 ± √51) / 3

So, the values of x for which f'(x) = 0 are x = (6 + √51) / 3 and x = (6 - √51) / 3.

To know more about values,

https://brainly.com/question/30064539

#SPJ11

(Unit roundoff error) Let ke N. Analytically, (1+2-k)-1=2-k. Numerically, however, it is not true for sufficiently large k due to roundoff errors. For instance,>> (1 + 2(-100)) - 1 ans=0 Using a while-loop, find the smallest natural number k such that (1+2 (-k))-1 evaluates to 0 in MATLAB. Then evaluate 2-k for the value of k found.

Answers

MATLAB will find that the smallest natural number \(k\) satisfying the condition is [tex]\(k = 53\) (or \(k = 53.0\))[/tex]and \(2^{-k}\) evaluates to a value close to zero due to the limitations of floating-point arithmetic and roundoff errors.

To find the smallest natural number \(k\) such that \((1 + 2(-k)) - 1\) evaluates to 0 in MATLAB, we can use a while-loop to iterate through increasing values of \(k\) until the condition is met.

Here's an example MATLAB code to achieve this:

```MATLAB

k = 1;

while [tex](1 + 2*(-k)) - 1 ~= 0[/tex]

   k = k + 1;

end

k   % Smallest value of k that satisfies the condition

[tex]2^-k  %[/tex]Evaluate 2^-k for the value of k found

```

Running this code will output the smallest value of \(k\) for which \((1 + 2(-k)) - 1\) evaluates to 0 and the corresponding value of \(2^{-k}\).

Note that in this case, MATLAB will find that the smallest natural number \(k\) satisfying the condition is \(k = 53\) (o[tex]r \(k = 53.0\))[/tex] and [tex]\(2^{-k}\)[/tex]evaluates to a value close to zero due to the limitations of floating-point arithmetic and roundoff errors.

Keep in mind that the exact value of [tex]\(k\)[/tex]and the corresponding value of [tex]\(2^{-k}\)[/tex] may depend on the specific machine's floating-point representation and MATLAB's implementation.

Learn more about MATLAB here:-

https://brainly.com/question/30781856

#SPJ11

The C₂ quadrature rule for the interval [1, 1] uses the points at which T-1(t) = ±1 as its nodes (here T-1 is the Chebyshev polynomial of degree n 1). The C3 rule is just Simpson's rule because T2(t) = 2t2 -1.
(a) (i) Find the nodes and weights for the Cs quadrature rule.
(ii) Determine the first nonzero coefficient S; for the C5 rule.
(iii) If the C5 rule and the five-point Newton-Cotes rule are applied on the same number of subintervals, what approximate relationship do you expect the two errors to satisfy?
(iv) Suppose that the C's rule has been applied on N subintervals, and that all of the function evaluations have been stored. How many new function evaluations are required to apply the C rule on the same set of subintervals? Justify your answer.

Answers

(i) The nodes for the Cₙ quadrature rule are the roots of the Chebyshev polynomial Tₙ(x), and the weights can be determined from the formula for Gaussian quadrature.

(ii) The first nonzero coefficient S₁ for the C₅ rule is π/5.

(iii) The C₅ rule is expected to have a smaller error than the five-point Newton-Cotes rule when applied on the same number of subintervals.

(iv) No new function evaluations are required to apply the Cₙ rule on the same set of subintervals; the stored nodes and weights can be reused.

(a) (i) To find the nodes and weights for the Cₙ quadrature rule, we need to determine the roots of the Chebyshev polynomial of degree n, denoted as Tₙ(x). The nodes are the values of x at which

Tₙ(x) = ±1. We solve

Tₙ(x) = ±1 to find the nodes.

(ii) The first nonzero coefficient S₁ for the C₅ rule can be determined by evaluating the weight corresponding to the central node (t = 0). Since T₂(t) = 2t² - 1, we can calculate the weight as

S₁ = π/5.

(iii) If the C₅ rule and the five-point Newton-Cotes rule are applied on the same number of subintervals, we can expect the approximate relationship between the two errors to be that the error of the C₅ rule is smaller than the error of the five-point Newton-Cotes rule. This is because the C₅ rule utilizes the roots of the Chebyshev polynomial, which are optimized for approximating integrals over the interval [-1, 1].

(iv) When applying the Cₙ rule on N subintervals, the nodes and weights are precomputed and stored. To apply the same rule on the same set of subintervals, no new function evaluations are required. The stored nodes and weights can be reused for the calculations, resulting in computational efficiency.

To know more about Numerical Analysis , visit:

https://brainly.com/question/33177541

#SPJ11

A population has a mean of 63.3 and a standard deviation of 16.0. A sample of 35 will be taken. Find the probability that the sample mean will be between 66.6 and 68.4 a) Calculate the z scores. Give the smaller number first. (Round your answers to 2 decimals with the following format: −0.00 and -0.00) and b) Find the probability that the sample mean will be between 66.6 and 68.4.

Answers

So, the z-scores are approximately 1.34 and 2.08.

Therefore, the probability that the sample mean will be between 66.6 and 68.4 is approximately 0.4115, or 41.15% (rounded to two decimal places).

To calculate the probability that the sample mean falls between 66.6 and 68.4, we need to find the z-scores corresponding to these values and then use the z-table or a statistical calculator.

a) Calculate the z-scores:

The formula for calculating the z-score is:

z = (x - μ) / (σ / √n)

For the lower value, x = 66.6, μ = 63.3, σ = 16.0, and n = 35:

z1 = (66.6 - 63.3) / (16.0 / √35) ≈ 1.34

For the upper value, x = 68.4, μ = 63.3, σ = 16.0, and n = 35:

z2 = (68.4 - 63.3) / (16.0 / √35) ≈ 2.08

b) Find the probability:

To find the probability between these two z-scores, we need to find the area under the standard normal distribution curve.

Using a z-table or a statistical calculator, we can find the probabilities corresponding to these z-scores:

P(1.34 ≤ z ≤ 2.08) ≈ 0.4115

Learn more about probability  here

https://brainly.com/question/32117953

#SPJ11

A construction company employs three sales engineers. Engineers 1,2 , and 3 estimate the costs of 30%,20%, and 50%, respectively, of all jobs bid by the company. For i=1,2,3, define E l

to be the event that a job is estimated by engineer i. The following probabilities describe the rates at which the engineers make serious errors in estimating costs: P( error E 1

)=01, P( crror E 2

)=.03. and P(error(E 3

)=,02 a. If a particular bid results in a serious error in estimating job cost, what is the probability that the error was made by engineer 1 ? b. If a particular bid results in a serious error in estimating job cost, what is the probability that the error was made by engineer 2 ? c. If a particular bid results in a serious error in estimating job cost, what is the probability that the error was made by engineer 3 ? d. Based on the probabilities, parts a-c, which engineer is most likely responsible for making the serious crror?

Answers

If a particular bid results in a serious error in estimating job cost, the probability that the error was made by engineer 1 is 0.042. If a particular bid results in a serious error in estimating job cost, the probability that the error was made by engineer 2 is 0.059.

Let F denote the event of making a serious error. By the Bayes’ theorem, we know that the probability of event F, given that event E1 has occurred, is equal to the product of P (E1 | F) and P (F), divided by the sum of the products of the conditional probabilities and the marginal probabilities of all events which lead to the occurrence of F.

We know that P(F) + P (E1 | F') P(F')].

From the problem,

we have P (F | E1) = 0.1 and P (E1 | F') = 1 – P (E1|F) = 0.9.

Also (0.1) (0.3) + (0.03) (0.2) + (0.02) (0.5) = 0.032.

Hence P (F | E1) = (0.1) (0.3) / [(0.1) (0.3) + (0.9) (0.7) (0.02)] = 0.042.

(0.1) (0.3) + (0.03) (0.2) + (0.02) (0.5) = 0.032.

Hence P (F | E2) = (0.03) (0.2) / [(0.9) (0.7) (0.02) + (0.03) (0.2)] = 0.059.

Hence P (F | E3) = (0.02) (0.5) / [(0.9) (0.7) (0.02) + (0.03) (0.2) + (0.02) (0.5)] = 0.139.

Since P(F|E3) > P(F|E1) > P(F|E2), it follows that Engineer 3 is most likely responsible for making the serious error.

If a particular bid results in a serious error in estimating job cost, the probability that the error was made by engineer 1 is 0.042.

If a particular bid results in a serious error in estimating job cost, the probability that the error was made by engineer 2 is 0.059.

If a particular bid results in a serious error in estimating job cost, the probability that the error was made by engineer 3 is 0.139.

Based on the probabilities, parts a-c, Engineer 3 is most likely responsible for making the serious error.

To know more about probability visit:

brainly.com/question/31828911

#SPJ11

Write the equation of the line, with the given properties, in slope -intercept form. Slope =-5, through (-7,4)
Expert Answer

Answers

Answer:

4 = -5(-7) + b

4 = 35 + b

b = -31

y = -5x - 31

Other Questions
Use the References to access important values if needed for this question. 1. How many GRAMS of sulfur are present in 2.30 moles of sulfur dioxide, SO2 ? grams 2. How many MOLES of oxygen are present in 3.62 grams of sulfur dioxide? moles ______ listening requires that one put aside all distractions and focus on ones conversational partner in an effort to be supportive, caring, and warm. Write a function def countVowel (word) that returns a count of all vowels in the string word. Vowels are the letters a,e,i,0, and u and their uppercase variations. Ex: If word is: Wonderful then the return value from the function is: 3 Ex: If word is: Eventually Ex: If word is: Eventually then the return value from the function is: You only need to write the function. Unit tests will access your function. 0/10 main.py 1 #Write function below| neil young enjoyed success as a member of buffalo springfield. Please help me to salve this linear programming problem through MATLABTo maximize z = 35000x1 + 20000x2Constraints:3000x1 + 1250x2 =10 Find the equation to the statement: The pressure (p) at the bottom of a swimming pool varies directly as the depth (d). which of the following items is prepared at the end of the accounting period immediately before the financial statements are prepared? Jeremy is not happy about the life insurance policy that he purchased. He wants to file a complaint. Jeremy has learnt about an independent complaint resolution organization that will provide him with assistance if he cannot resolve his complaint to his satisfaction with the insurer. Which one of the following organizations should Jeremy contact? Select one: a. Advocis b. Assuris c. Ombudservice for life and Health Insurance d. Canadian Council of Insurance Regulators This Lab sheet is worth 10 points for complete queries. Only fully completed and documented solutions will receive maximum points. The queries are due per the timeline in Moodle. The queries in this homework assignment will use the Northwind database. Create an SQL query to solve the problem. Don't forget to include all of the following. 1. The database used "USE" 2. Comment with the assignment name, query number, your name and date. 3. The SQL code, in a readable, programmatic format. 4. Add a brief comment for each of the main segments, what the operation will accomplish 5. The output of the messages tab, to include the full "Completion time" or "Total Execution Time" line. 6. First 5 lines of the "Results" output. Points will be deducted if missing, more than 5 , or using the TOP command. 7. Indude your answer to the questions within the titie comment and upload the solution as usual. Follow the instructions in the Lab Lecture, complete the following queries. Query 1-Inner join Create a query that will display the Customent, Company Name, OrderiD, OrderDate. From the Customers and Orders tables. Once the query is created, answer the following question. Question - What will the results set represent? Query 2 - Outer Join Changing the inner join from query 1 to a left join, (Customers LEFT JOiN Orders) Create a query that will display the CustomeriD, Company Name, OrderiD, OrderDate. Once the query is created, answer the following question. Question - Looking thru the results set, you can see some "NUUL" entries. What does the "NUL" entries represent? Discuss the communication strategy employed by Tim Cook . Do notfocus on whether or not you agree with the actions taken by Appleand the U.S. government. Instead, focus on how Cook communicatedAppl Calculate the quantity of heat energy in kilojoules required to melt 20.0 g of ice to liquid water at exactly 0C.Hm(H2O)=3.35105 J/kg. A. 6.70103 J B. 6.70106 J C. 1.675104 J D. 3.35102 J E. none of A to D Please code in HTMLYou must create a personal website that features information about you. Your website will give a thorough account of you based on your status, preferences, educational background, interests, and other factors. With a focus on design, your website will employ photos (and maybe embedded video and audio).You require to:1. A picture of yourself that when clicked opens up an email client that by default has your email address in it and a subject heading.2. Professional Page that includes a mirror of your curriculum vitae (Should not be an embedded document but created using HTML!!)a) Your professional page should also include your professional vision statement and your mission statement for your career. [A vision defines where you want to be in the future. A mission defines where you are going now, describing your raison dtre. Mission equals the action; vision is the ultimate result of the action.]3. Personal Page showcasing your traits and emotions. Likes, dislikes, hobbies etc. are used to show the world your character.a) Provide a personal quote from a person you look up to the most. This person can be anyone, celebrity, sports icon, family member, friend, etc.4. Should include at least one bookmark and one external hyperlink Find the general solution of y' = y/x + tan(y/x) If 29.9 grams of Di phosphorus pentoxide and 11.4 grams of watercombine to form phosphoric acid, how many grams of phosphoric acidmust form? 4: Write the equation of the plane a) passing through points P=(2,1,0),Q=(1,1,1) and R=(0,3,5) b) orthogonal to line l(t)=(2t+1,3t+2,4t) and containing the point P=(3,1,1) Rufu the Dog run 1/2 mile in a minute. What i the avarage peed of the dog per hour? be ure to how your work to stay self-motivated, you'll want to match your career choice and college major with your parents' recommendations and desired income level. a) true b) false Find (f-g)(4) when f(x)=-3x2+2andg(x)=x-4. The density of a material in CGS system of units is 4 g/cm. In a system of units in which a unit of length is 10 cm and unit of mass is is 100 g then the value of density material is ? What is the wavelength of an electron moving at a velocity of 0.86^{*} {c} where {c} is the speed of light? x meters