Answer:
If Andres asks for a random selection of 12 cupcakes, the Probability of choosing:
a)exactly 6 red velvet?
The probability that 6 will be red velvet = 6/12 x 14.3% = 7.2%
(b)exactly 3 each of 4 different kinds?
Since 3 x 4 = 12
The probability that the 12 will be 3 each from 4 different kinds
= 14.3%
(c)no lemon?
Probability of getting a lemon cupcake = 1/7 = 14.3%
Therefore, probability of not getting a lemon cupcake = 100% - 14.3% = 85.7%
(d)at least 1 German chocolate and at least one chocolate raspberry?
The probability of at least 2 being 1 German and 1 chocolate raspberry
= 2/12
= 16.67%
Step-by-step explanation:
a) Probability of each kind of Cupcake
Kind of Cupcakes Quantity Probability
chocolate raspberry 12 14.285%
strawberry shortcake 12 14.3%
red velvet 12 14.3%
funfetti 12 14.3%
lemon 12 14.3%
German chocolate 12 14.3%
chocolate caramel 12 14.3%
b) The probability of choosing a kind of cupcake is the chance that, for example, a strawberry cupcake is chosen instead of the other six kinds. It expresses the opportunity that an event has in happening out of many other events that could have happened.
I flip a fair coin 17 times. Answer the following questions:
a. What is the probability of getting 9 heads?
b. What is the probability of getting 2 heads?
c.. What is the probability of getting 1 tail?
d. What is the probability of getting 14 or more heads?
e. What is the probability of getting 17 tails?
Answer:
A) 0.1855
B) 0.0010376
C) 0.0001297
D) 0.006363
E) 0.000007629
Step-by-step explanation:
In calculation of a probability, we normally take the ratio of the number of ways to meet a certain condition (i.e. the numerator) divided by the number of ways to pick from a pool (i.e. the denominator).
So what are the number of ways the flip of a coin 17 times can come out?
A coin has a head and tail, so each toss will have two possible results. If we toss once, we have 2 possible results. If we toss, twice we have 2² = 4 possible results.
If we toss thrice, we have 2³ = 8 possible results, etc.
Thus, for 17 tosses, we will have 2^(17) = 131072 possible results.
A) To achieve the probability of getting 9 heads, we will use combination formula;
C(n, k) = n! / (k!(n - k)!)
In this case, n = 17 and k = 9
So,
P(9 heads) = 17! / (9!(17 - 9)!) = 24310
Thus,
P(9 heads in 17 tosses of a fair coin) = 24310/131072 = 0.1855
B) Similar to A above;
P(2 heads) = 17! / (2!(17 - 2)!) = 136
Thus,
P(2 heads in 17 tosses of a fair coin) = 136/131072 = 0.0010376
C) Similar to A above;
P(1 tail) = 17! / (1!(17 - 1)!) = 17
Thus,
P(1 tail in 17 tosses of a fair coin) = 17/131072 = 0.0001297
D) probability of getting 14 or more heads?
Since, there are 17 tosses, this will be;
P(14 or more heads in 17 tosses) = P(14 heads in 17 tosses) + P(15 heads in 17 tosses) + P(16 heads in 17 tosses) + P(17 heads in 17 tosses)
P(14 heads) = 17! / (14!(17 - 14)!) = 680
P(15 heads) = 17! / (15!(17 - 15)!) = 136
P(16 heads) = 17! / (16!(17 - 16)!) = 17
P(17 heads) = 17! / (1!(17 - 17)!) = 1
Thus;
P(14 heads in 17 tosses) = 680/131072 = 0.005188
P(15 heads in 17 tosses) = 136/131072 = 0.0010376
P(16 heads in 17 tosses) = 17/131072 = 0.0001297
P(1 head in 17 tosses) = 1/131072 = 0.00000763
P(14 or more heads in 17 tosses) = 0.005188 + 0.0010376 + 0.0001297 + 0.00000763 = 0.006363
E) Similar to A above;
P(17 tails) = 17! / (17!(17 - 17)!) = 1
Thus,
P(17 tails in 17 tosses of a fair coin) = 1/131072 = 0.000007629
URGENT!! Solve the triangle for all missing sides and angles. Part 2: Use the law of sines to find the length of side a. Part 3: Use any method to find the length of side c.
Answer:
B = 55°
a ≈ 143
c ≈ 212
Step-by-step explanation:
From the triangle above we are given a triangle with two known angles and a known side. The sum of angles in a triangle is 180°. Since we are given two angles, the last angle can be gotten when you subtract the two known angles from 180°. Therefore,
angle B = 180° - 42° - 83°
angle B = 55°
To find side a we can use law of sine
a/sin A = b/sin B
a/sin 42° = 175/sin 55°
a/0.66913060635 = 175/0.81915204428
cross multiply
0.81915204428 a = 117.097856113
divide both sides by 0.81915204428
a = 117.097856113 /0.81915204428
a = 142.950087143
a ≈ 143
To find side c
b/sin B = c/sin C
175/sin 55 = c/sin 83°
cross multiply
c sin 55° = 175 sin 83°
divide both sides by sin 55°
c = (175 × 0.99254615164)/0.81915204428
c = 173.695576537 / 0.81915204428
c = 212.043146019
c ≈ 212
Frank had hip replacement surgery and was given a prescription with instructions to take a 200 milligram (mg) tablet three times a day for pain. How many milligrams (mg) will Frank take in 21 days
9514 1404 393
Answer:
12,600 mg
Step-by-step explanation:
The amount Frank will take in 21 days is ...
(200 mg/tab)(3 tab/day)(21 day) = 200·3·21 mg = 12,600 mg
What is the greatest common factor of 48 and 32?
Answer:
GCF - 16
Step-by-step explanation:
48 - 1, 2, 3, 4, 6, 8, 12, 16
32 - 1, 2, 4, 8, 16
Hope this helps! :)
Answer:
16
Step-by-step explanation:
48=3*16
32=2*16
the twelve inch square tiles are shipped in boxes of sixteen pieces per box. each of the boxes weighs twenty four pounds. approximately how many ounces does each tile weigh?
Answer:
1.411764706
Step-by-step explanation:
24/17=1.411764706
Dr. Hernandez is a conservation biologist studying the impacts a derelict pharmaceutical company is having on a native fish population in a nearby lake. The lake has been contaminated with bovine growth hormone and Dr. Hernandez wants to see if the fish reaching adulthood in the contaminated lake are larger than the fish in a pristine lake that is nearby. Dr. Hernandez has the weights of 30 fish from the contaminated lake and of 30 fish from the pristine lake.
Based on the experimental design of Dr. Hernandez's research and the kind of data collected, which statistical test should be used to determine whether the bovine growth hormone is increasing the growth of native fish?
A. Two-tailed two-sample t-test
B. One-tailed paired t-test
C. Two-tailed paired t-test
D. One-tailed two-sample t-test
E. One-Way ANOVA
F. Linear Regression with t-test for significance of slope
Answer:
C. Two-tailed paired t-test.
Step-by-step explanation:
Since Dr. Hernandez takes 30 samples from a contaminated lake and 30 fish from a pristine lake, he should use a two-tailed t-test.
Paired t-tests describe tests used to compare the means of two samples when each observation in one sample can be paired with an observation in the other sample. Dr. Hernandez can certainly pair the samples and observe the differences, so the answer is C. Two-tailed paired t-test.
Hope this helps!
(09.06 HC)
The function H(t) = -16t2 + 90t + 75 shows the height H(t), in feet, of a projectile after t seconds. A
second object moves in the air along a path represented by g(t) = 31 + 32.2t, where g(t) is the height, in
feet, of the object from the ground at time t seconds.
Part A: Create a table using integers 2 through 5 for the 2 functions. Between what 2 seconds is the
solution to H(t) = g(t) located? How do you know? (6 points)
Part B: Explain what the solution from Part A means in the context of the problem.(4 points)
Answer: h(t) = g(t) between 4 and 5 seconds
Step-by-step explanation:
h(t) = -16t² + 90t + 75
g(t) = 31 + 32.2t
[tex]\begin{array}{c|c|c|c|c}\qquad&\underline{\quad t=2\quad }&\underline{\quad t=3\quad}&\underline{\quad t=4\quad }&\underline{\quad t=5\quad }\\h(t)&191&201&179&125\\g(t)&95.4&127.6&159.8&192\end{array}\right][/tex]
Notice that g(t) is increasing from t=2 to t=5, while h(t) is increasing from t=2 to t=3 and then decreasing.
At t=4, h(t) > g(t)
At t = 5, g(t) > h(t)
therefore, the two lines must intersect at a point between t=4 and t=5.
You can graph this to verify the answer.
What is coefficient of the term of degree of degree 5 in the polynomial below 3x^6+5-x^2+4x^5-9 which one is the right answer A. 3 B. 4 C. 6 D. 5
Answer:
B. 4
Step-by-step explanation:
We are looking for the coefficient of the term x⁵. When we see it in the polynomial as 4x⁵, our coefficient and answer would then be 4.
Arrange in ascending order. 8/13, 2/9,28/29
Step-by-step explanation:
he operation of sorting fractions in ascending order: 18/46, 28/41, 29/38, 29/44, 32/30 ... terms equivalents: 18/46=(2×3^2)/(2×23)=((2×3^2)÷2)/((2×23)÷2)=9/23; 28/41 already reduced to ... by the largest exponents: LCM (9, 28, 29)=2^2×3^2× 7×29=7308 Calculate LCM, the least ... /10 </13 </19
solve for n n/5+0.6=2
Answer:
N=7
Step-by-step explanation:
It is correct on Khan
The shape on the left is transformed to the shape on the right. Figure A B C D is rotated to form figure A prime B prime C prime D prime. Which of the following statements describes the transformation? A B C D right-arrow A prime B prime C prime D prime A prime B prime C prime D prime right-arrow A B C D A B C D right-arrow D prime A prime C prime B prime D prime B prime C prime A prime right-arrow C A D B
Answer:
A
Step-by-step explanation:
I did the test and it is the only one that makes sense
Answer:
a
Step-by-step explanation:
whats 1/2 + 2/4 - 5/8?
Answer:
3/8
Step-by-step explanation:
Step 1: Find common denominators
1/2 = 4/8
2/4 = 4/8
Step 2: Evaluate
4/8 + 4/8 - 5/8
8/8 - 5/8
3/8
Alternatively, you can just plug this into a calc to evaluate and get your answer.
Answer:
3/8
Step-by-step explanation:
Look at the denominator:
2, 4, 8. The LCM (Lowest Common Multiple) is 8.
So this equation becomes
4/8+4/8-5/8=3/8
Solve the inequality a−32<1 and write the solution in interval notation, using improper fractions if necessary.
Answer:
( -∞ , 33 )
Step-by-step explanation:
To solve the inequation a-32 < 1, we need to sum on both sides 32, as:
a - 32 + 32 < 1 + 32
a < 33
It means that the solutions are all the number that are smaller than 33 or in interval notation it would be:
( -∞ , 33 )
Where 33 is not included in the interval.
Change 17 out of 25 to a percentage
Answer:
Hello!
_____________________
Your answer would be ( 68% ).
Step-by-step explanation: To find percentage, we need to find an equivalent number with denominator 100. Multiply both numerator & denominator by 100
[tex]\frac{17}{25} . \frac{100}{100}[/tex]
[tex]= ( \frac{17 . 100}{25} ) . \frac{1}{100} = \frac{68}{100}[/tex]
Therefore, the answer is 68%
If you are using a calculator, simply enter 17÷25×100 which will give you 68 as the answer.
Hope this helped you!
The solution after change into percentage is, 68%
We have to change 17 out of 25 to a percentage.
Since, A number or ratio that can be expressed as a fraction of 100 or a relative value indicating hundredth part of any quantity is called percentage.
We can change it as,
⇒ 17/25
⇒ (17/25) × 100%
⇒ 1700/25
⇒ 68%
Therefore, The solution after change into percentage is, 68%
Learn more about the percent visit:
https://brainly.com/question/24877689
#SPJ6
Which equation, when solved, gives 8 for the value of x?
A: 5/2x+7/2x=3/4x+14
B: 5/4x-9=3/2x-12
C: 5/4x-2=3/2x-4
D: 5/2x-7=3/4x+14
Answer:
Step-by-step explanation:
C. 5x/4-2=3x/2-4
5x/4 -2=6x/4-4
+4 +4
5x/4+2=6x/4
-5x/4
2=x/4
*4
x=8
Answer:
your answer is C
Step-by-step explanation:
The figure shows a person estimating the height of a tree by looking at the
top of the tree with a mirror. Assuming that both the person and the tree form
right angles with the ground, which of the following proportions can be used
to estimate the height of the tree
Answer:
[tex]\frac{6}{5} =\frac{x}{12}[/tex]
Step-by-step explanation:
Write a proportion in the form:
Height/side= height/side
The side lengths are 5 and 12.
The height (of the 5 side) is 6.
The proportion can be written as:
[tex]\frac{6}{5} =\frac{x}{12}[/tex]
Write your answer using only positive exponents
Answer:
Step-by-step explanation:
Hello
[tex](-4b^5c^{-6})^3\\\\=(-1)^34^3b^{15}v^{-18}\\=-64b^{15}c^{-18}\\\\=\dfrac{-64b^{15}}{c^{18}}\\[/tex]
hope this helps
The simplified form of the given exponential expression is -64b¹⁵/c¹⁸.
What is the exponent?Exponent is defined as the method of expressing large numbers in terms of powers. That means, exponent refers to how many times a number multiplied by itself.
The given exponential expression is (-4b⁵c⁻⁶)³.
Here, the given expression can be written as -4³(b⁵)³(c⁻⁶)³
= -64b¹⁵c⁻¹⁸
= -64b¹⁵/c¹⁸
Therefore, the simplified form of the given exponential expression is -64b¹⁵/c¹⁸.
To learn more about an exponents visit:
https://brainly.com/question/15993626.
#SPJ2
Consider the following equations. f(x) = − 4/ x3, y = 0, x = −2, x = −1. Sketch the region bounded by the graphs of the equations and find the area of the region.
Answer:
1.5 unit^2
Step-by-step explanation:
Solution:-
- A graphing utility was used to plot the following equations:
[tex]f ( x ) = - \frac{4}{x^3}\\\\y = 0 , x = -1 , x = -2[/tex]
- The plot is given in the document attached.
- We are to determine the area bounded by the above function f ( x ) subjected boundary equations ( y = 0 , x = -1 , x = - 2 ).
- We will utilize the double integral formulations to determine the area bounded by f ( x ) and boundary equations.
We will first perform integration in the y-direction ( dy ) which has a lower bounded of ( a = y = 0 ) and an upper bound of the function ( b = f ( x ) ) itself. Next we will proceed by integrating with respect to ( dx ) with lower limit defined by the boundary equation ( c = x = -2 ) and upper bound ( d = x = - 1 ).
The double integration formulation can be written as:
[tex]A= \int\limits_c^d \int\limits_a^b {} \, dy.dx \\\\A = \int\limits_c^d { - \frac{4}{x^3} } . dx\\\\A = \frac{2}{x^2} |\limits_-_2^-^1\\\\A = \frac{2}{1} - \frac{2}{4} \\\\A = \frac{3}{2} unit^2[/tex]
Answer: 1.5 unit^2 is the amount of area bounded by the given curve f ( x ) and the boundary equations.
Different hotels in a certain area are randomly selected, and their ratings and prices were obtained online. Using technology, with x representing the ratings and y representing price, we find that the regression equation has a slope of 125 and a y-intercept of negative 400. Complete parts (a) and (b) below. a. What is the equation of the regression line? Select the correct choice below and fill in the answer boxes to complete your choice.
Answer:
Step-by-step explanation:
Hello!
A linear regression for the price of renting a room in a hotel and the rating said hotel received was calculated from a sample of n= 25 hotels.
The theoretical regression model is E(Y)= α + βXi
And the estimated regression equation is: ^Y= a + bXi
Where:
The estimator for the slope is b= 125
And the estimator of the Y-intercept is a= -400
So for this example the estimated regression line for the price of the hotel rooms given the ratings of the hotel is:
^Y= -400 + 125 Xi
^Y= represents the estimated average price of a hotel room
a= -400 is the estimated average price of a hotel room when the rating of the hotel is zero.
b= 125 is the modification of the estimated average price of a hotel room when the rating of the hotel increases one unit.
I hope this helps!
Comparing to an standard linear equation, it is found that the equation of the regression line is:
[tex]y = 125x - 400[/tex]
The equation of a line has the following format:
[tex]y = mx + b[/tex]
In which:
m is the slope.b is the y-intercept.In this problem:
The slope is of 125, hence [tex]m = 125[/tex].The y-intercept is of -400, hence [tex]b = -400[/tex]Hence, the equation of the regression line is:
[tex]y = 125x - 400[/tex]
A similar problem is given at https://brainly.com/question/16302622
Suppose a random variable X is best described by a uniform probability distribution with range 1 to 5. Find the value of that makes the following probability statements true.
a) P(X <-a)= 0.95
b) P(X
c) P(X
d) P(X ->a)= 0.89
e) P(X >a)= 0.31
Answer:
a) 4.8
b) 2.96
c) 4.4
d) 1.44
e) 3.76
Step-by-step explanation:
What we will do is solve point by point, knowing the following:
Fx (x) = P (X <= x) = (x - 1) / 4
a) P (X <-a) = 0.95
Fx (a) = 0.95
(a -1) / 4 = 0.95
a = 1 + 0.95 * 4
a = 4.8
b) P (X <a) = 0.49
Fx (a) = 0.49
(a -1) / 4 = 0.49
a = 1 + 0.49 * 4
a = 2.96
c) P (X <a) = 0.85
Fx (a) = 0.85
(a -1) / 4 = 0.55
a = 1 + 0.85 * 4
a = 4.4
d) P (X> a) = 0.89
P (X <a) = 1 - 0.89 = 0.11
Fx (a) = 0.11
(a -1) / 4 = 0.11
a = 1 + 0.11 * 4
a = 1.44
e) P (X> a) = 0.31
P (X <a) = 1 - 0.31 = 0.69
Fx (a) = 0.69
(a -1) / 4 = 0.69
a = 1 + 0.69 * 4
a = 3.76
Find the values of x and y in these equations. (x + yi) + (4 + 6i) = 7 − 2i (equation A) (x + yi) − (-8 + 11i) = 5 + 9i (equation B)
Answer:
Step-by-step explanation:
(x+yi)+4+6i=7-2i
x+yi=7-2i-4-6i
x+yi=3-8i
equating real and imaginary parts
x=3,y=-8
B.
x+yi=5+9i+(-8+11i)
x+yi=5+9i-8-11i
x+yi=-3-2i
equating real ,and imaginary parts
x=-3
y=-2
The value of x and y for equation A is
[tex]x=3, y=-8[/tex]
The value of x and y for equation B is
[tex]x=-3 , y=20[/tex]
Given :
[tex](x + yi) + (4 + 6i) = 7 - 2i[/tex]
find the value of x and y in the given equation
Lets open the parenthesis and combine like terms
Equate the real and imaginary part to solve for x and y
[tex]\left(x+4\right)+\left(y+6\right)i=7-2i\\x+4=7\\x=3\\\\y+6=-2\\y=-2-6\\y=-8[/tex]
The value of x=3 and y=-8
Now we do the same with second equation
[tex](x + yi) - (-8 + 11i) = 5 + 9i\\\\x+8+yi-11i=5+9i\\\left(x+8\right)+\left(y-11\right)i=5+9i\\x+8=5\\x=-3\\\\y-11=9\\y=9+11\\y=20[/tex]
The value of x and y is x=-3 and y=20
Learn more : brainly.com/question/18552411
Box A contains 5green and 7 red balls. Box B contains 3green, 3 red and 6 yellow balls. A box is sleeted at random and a ball is drawn at random from it. What is the probability that the drawn ball is green?
Answer:
5/48Step-by-step explanation:
Given
the sample space for box A
green balls = 5
red balls= 7
sample size= 5+7= 12
the sample space for box B
green balls = 3
red balls= 3
yellow balls= 6
sample size= 3+3+6= 12
The probability of drawing a green ball from box A= 5/12
The probability of drawing a green ball from box B= 3/12= 1/4
Therefore the probability of picking a green ball from either of the boxes at random is =[tex]=\frac{5}{12} *\frac{1}{4}[/tex][tex]=\frac{5}{48}[/tex]
Consider the following function. f(x) = 2x + 5. Place the steps for finding f-1 (x) in the correct order. A. x-2/5= y B. y = 2x + 5 C. y-5 = 2x D. X-5/2=y E. f-1(x) = x-5/2 F.x= 2y+ 5 G. x-5= 2y H. f-1(x) = x-2/5
Answer:
[tex]\boxed{\sf \ \ f^{-1}(x)=\dfrac{x-5}{2} \ \ }[/tex]
Step-by-step explanation:
hello,
the easiest way to understand what we have to do is the following in my opinion
we can write
[tex](fof^{-1})(x)=x\\<=>f(f^{-1}(x))=x\\<=>2f^{-1}(x)+5=x\\<=>2f^{-1}(x)+5-5=x-5 \ \ \ subtract \ \ 5\\<=> 2f^{-1}(x)=x-5 \\<=> f^{-1}(x)=\dfrac{x-5}{2} \ \ \ divide \ by \ 2\\[/tex]
so to follow the pattern of your question
y = 2x + 5
we need to find x as a function of y, so let's swap x and y
x = 2y + 5
then subtract 5
x - 5 = 2y
then divide by 2
[tex]\dfrac{x-5}{2}=y[/tex]
finally
[tex]f^{-1}(x)=\dfrac{x-5}{2} \\[/tex]
hope this helps
Answer:
1. y= 2x + 5
2. x = 2y + 5
3. x - 5 = 2y
4. (x-5)/2 =u
5. f^-1(x) = (x-5)/2
Step-by-step explanation:
:)
X^4-13x^2+36 =
a. (x - 2)2(x - 3)2
b. (x2 + 4)(x 2 + 9)
C. (x - 2)(x + 2)(x - 3)(x + 3)
d. (x2 - 4)(x 2 + 9)
Answer:
answer C
Step-by-step explanation:
hello,
[tex]x^4-13x^2+36=(x^2-4)(x^2-9)[/tex]
as the sum of the zeroes are 13 and their product 36
4 + 9 = 13
4 * 9 = 36
and then we can write
[tex](x^2-4)=(x-2)(x+2)\\(x^2-9)=(x-3)(x+3)[/tex]
so
[tex]x^4-13x^2+36=(x^2-4)(x^2-9) = (x-2)(x+2)(x-3)(x+3)[/tex]
hope this helps
compute the probability of drawing two spades from a deck of cards
Answer:
The probability of drawing two spades is 3/51. Hope this helps!!
Step-by-step explanation:
3a. Write an equation in slope-intercept form of a
line that passes through (2,1) and (6,-5).
Answer:
[tex]y =- 3/2x + 4[/tex]
Step-by-step explanation:
[tex](2,1) and (6,-5).\\x_1 = 2\\x_2 = 6\\y_1 =1\\y_2 =-5\\\frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1}\\ \\\frac{y-1}{x-2} = \frac{-5-1}{6-2}\\\\\frac{y-1}{x-2} = \frac{-6}{4} \\Cross-Multiply\\4(y-1) = -6(x-2)\\4y-4=-6x+12\\4y =-6x+12+4\\4y = -6x+16\\Divide- through-by ; 4\\\frac{4y = -6x+16}{4} \\\\y = -\frac{3}{2} x +4[/tex]
I NEED HELP ASAP,THANKS! :)
Roland’s Boat Tours sells deluxe and economy seats for each tour it conducts. In order to complete a tour, at least 1 economy seats must be sold and at least 6 deluxe seats must be sold. The maximum number of passengers allowed on each boat is 30 Roland’s Boat Tours makes $40 profit for each economy seat sold and $35 profit for each deluxe seat sold. What is the maximum profit from one tour? Show work.
Answer:
$1170
Step-by-step explanation:
Let x and y represent the numbers of economy and deluxe seats sold. The constraints are ...
x ≥ 1y ≥ 6x +y ≤ 30And the objective function we want to maximize is ...
p = 40x +35y
__
I find it convenient to graph the equations and locate the objective function line as far from the origin as possible. The graph is shown, along with the solution.
Here, it's even simpler than that. The profit per seat is the greatest for economy seats, so Roland's should sell as many of those as they can. The only limit is that 6 seats must be deluxe. The remaining 30-6=24 can be economy. So, the profit will be maximized for ...
24 economy seats and 6 deluxe seats
The corresponding profit will be ...
24(40) +6(35) = 1170
The maximum profit from one tour is $1170.
Please help! Need Geometry help!!!!!
Answer:
938 feet
Step-by-step explanation:
b/c every angle of a rectangle is 90° u can u Pythagorean theroem to solve the question
a*a+ b*b=c*c
900*900+264*264=c*c
c=√879,696
c=938feet
Answer:
938 feet
Step-by-step explanation:
Well to solve this we need to use the Pythagorean Theorem,
[tex]a^2 + b^2 = c^2[/tex].
So we have a and b which are 900 and 264,
and we need to find c or the walking distance.
So we plug in 900 and 264 for a and b.
[tex](900)^2 + (264)^2 = c^2[/tex]
So, 900*900 = 810,000
264 * 264 = 69696
810000 + 69696 = 879696
So now we have,
879696 = c^2
To get the c by itself we do,
[tex]\sqrt{879696} = \sqrt{c}[/tex]
= c = 937.921105424
c = 938 rounded to the nearest foot
Thus,
the solution is 938.
Hope this helps :)
Beginning three months from now, you want to be able to withdraw $2,300 each quarter from your back account to cover college expenses over the next four years. If the account pays .45 percent interest per quarter, how much do you need to have in your bank account today to meet your expense needs over the next four years?
Answer:
$36,450.46
Step-by-step explanation:
The amortization formula can be used to figure this. For quarterly payment A, the principal invested must be P for interest rate r and compounding n times per year for t years.
A = P(r/n)/(1 -(1 +r/n)^(-nt))
2300 = P(0.0045/4)/(1 -(1 +0.0045/4)^(-4·4))
2300 = P·0.06309934
P = 2300/0.06309934 = 36450.46
You need $36,450.46 in your account today so that you can withdraw $2300 quarterly for 4 years.
Please Help! Select the correct answer. Simon used these steps to solve an equation:
Answer:
A.
Step-by-step explanation:
From Step 3 to Step 4, Simon added -42 to both sides.
This is the addition property of equality: as long as you add the same thing to both sides, the equation remains equal.
A.