Confidence Interval (LO5) Q5: A sample of mean X 66, and standard deviation S 16, and size n = 11 is used to estimate a population parameter. Assuming that the population is normally distributed, construct a 95% confidence interval estimate for the population mean, μ. Use ta/2 = 2.228.

Answers

Answer 1

To construct a 95% confidence interval estimate for the population mean, μ, we can use the sample mean (X) of 66, standard deviation (S) of 16, and sample size (n) of 11. Since the population is assumed to be normally distributed, we can use the t-distribution and the critical value ta/2 = 2.228 for a two-tailed test.

Using the formula for the confidence interval:

CI = X ± (ta/2 * S / sqrt(n))

Substituting the given values, we get:

CI = 66 ± (2.228 * 16 / sqrt(11))

CI ≈ 66 ± 14.11

Hence, the 95% confidence interval estimate for the population mean, μ, is approximately (51.89, 80.11). This means that we are 95% confident that the true population mean falls within this interval. It represents the range within which we expect the population mean to lie based on the given sample data and assumptions.

To learn more about “sample mean” refer to the https://brainly.com/question/12892403

#SPJ11


Related Questions

Section Total Score Score 3. Carry out two iterations of the convergent Jacobi iterative method and Gauss-Seidel iterative method, starting with (O) = 0, for the following systems of equations 3x + x2 - xy = 3 x1+2x2 - 4x3 = -1 x1 +4x2 + x3 = 6

Answers

The actual values may differ slightly due to rounding errors or different initial guesses. Also note that the convergence of the iterative methods depends on the properties of the coefficient matrix, and may not always converge or converge to the correct solution.

The two iterations of the Jacobi and Gauss-Seidel iterative methods for the given system of equations:

Starting with x⁰ = [0, 0, 0]:

Jacobi method:

Iteration 1:

x₁¹ = (3 - x₂⁰ + x₃⁰) / 3

≈ 1.0

x₂¹ = (-1 - x₁⁰ + 4x₃⁰)) / 4

≈ -0.25

x₃¹ = (6 - x₁⁰ - 4x₂⁰) / 1

≈ 6.0

x¹ ≈ [1.0, -0.25, 6.0]

Iteration 2:

x₁² = (3 - x₂¹ + x₃¹) / 3

≈ 2.75

x₂² = (-1 - x₁¹ + 4x₃¹) / 4

≈ -1.44

x₃²) = (6 - x₁¹ - 4x₂¹) / 1

≈ 0.06

x² ≈ [2.75, -1.44, 0.06]

Gauss-Seidel method:

Iteration 1:

x1¹ = (3 - x2⁰ + x3⁰) / 3 ≈ 1.0

x2¹ = (-1 - x1¹ + 4x3⁰) / 4 ≈ -0.75

x3¹ = (6 - x1¹ - 4x2¹) / 1 ≈ 4.25

x¹ ≈ [1.0, -0.75, 4.25]

Iteration 2:

x1² = (3 - x2¹ + x3¹) / 3 ≈ 1.917

x2² = (-1 - x1² + 4x3¹) / 4 ≈ -0.845

x3² = (6 - x1²) - 4x2²)) / 1 ≈ 4.447

x² ≈ [1.917, -0.845, 4.447]

Thus, the actual values may differ slightly due to rounding errors or different initial guesses. Also note that the convergence of the iterative methods depends on the properties of the coefficient matrix, and may not always converge or converge to the correct solution.

Learn more about the matrix visit:

https://brainly.com/question/1279486

#SPJ4

Telephone calls arrive at an information desk at a rate of 25 per hour. What is the probability that the next call will arrive within 2 minutes? The probability that the next call will arrive within 2 minutes is ____.
(Round to four decimal places as needed.)

Answers

To calculate the probability of the next call arriving within 2 minutes, we need to convert the given arrival rate from hours to minutes. With a call arrival rate of 25 calls per hour, we can determine the average rate of calls per minute. Then, using the exponential distribution, we can calculate the probability of a call arriving within 2 minutes. The probability that the next call will arrive within 2 minutes is approximately 0.0083 or 0.83%.

the arrival rate of 25 calls per hour, we need to convert it to minutes. Since there are 60 minutes in an hour, the arrival rate would be 25/60 calls per minute, which simplifies to approximately 0.4167 calls per minute.

To calculate the probability that the next call will arrive within 2 minutes, we can use the exponential distribution formula: P(x ≤ t) = 1 - e^(-λt), where λ is the arrival rate and t is the time in minutes.

Plugging in the values, we have P(x ≤ 2) = 1 - e^(-0.4167 * 2). Using a calculator, this simplifies to approximately 0.0083 or 0.83%.

Therefore, the probability that the next call will arrive within 2 minutes is approximately 0.0083 or 0.83%.

learn more about probability here:brainly.com/question/31828911

#SPJ11

All vectors are in R Check the true statements below: A. For any scalar c, ||cv|| = c||v||. B. If x is orthogonal to every vector in a subspace W, then x is in W-. □c. If ||u||² + ||v||² = ||u + v||², then u and v are orthogonal. OD. For an m × ʼn matrix A, vectors in the null space of A are orthogonal to vectors in the row space of A. OE. u. vv.u= 0.

Answers

The following true statements can be concluded from the given information about the vectors. All vectors are in R Check the true statements below: A. For any scalar c, ||cv|| = c||v||. (True)B., The statement E is false.

If x is orthogonal to every vector in a subspace W, then x is in W-. (True)c. If ||u||² + ||v||² = ||u + v||², then u and v are orthogonal. (True)OD. For an m × ʼn matrix A, vectors in the null space of A are orthogonal to vectors in the row space of A. (False)OE. u. vv.u= 0. (False)Justification:

Given that all vectors are in R. Therefore, the first statement can be proved as follows:||cv|| = c||v||Since, c is a scalar value and v is a vector||cv|| = c||v|| is always true for any given vector v and scalar c.Therefore, the statement A is true.Since, x is orthogonal to every vector in a subspace W, then x is in W-.Therefore, the statement B is true.The statement C is true because of the Pythagorean theorem.

If ||u||² + ||v||² = ||u + v||², thenu² + v² = (u + v)²u² + v² = u² + 2uv + v²u² + v² - u² - 2uv - v² = 0-u.v = 0Therefore, u and v are orthogonal.Therefore, the statement C is true.The statement D is not necessarily true. Vectors in the null space of A need not be orthogonal to vectors in the row space of A.Therefore, the statement D is false.The statement E is not necessarily true. Vectors u and v need not be orthogonal to each other.Therefore, the statement E is false.

To know more about  orthogonal  visit:

https://brainly.com/question/28503609

#SPJ11

Find all solutions to the following system of linear equations: 4x4 1x₁ + 1x2 + 1x3 2x3 + 6x4 - 1x1 -2x1 4x4 2x2 + 0x3 + 4x4 - 2x1 + 2x₂ + 0x3 Note: 1x₁ means just x₁, and similarly for the ot

Answers

An approach for resolving systems of linear equations is the Gauss elimination method, commonly referred to as Gaussian elimination. It entails changing an equation system into an analogous system that is simple.

We can build the augmented matrix for the system of linear equations and apply row operations to get the reduced row-echelon form in order to locate all solutions to the system of linear equations.

[ 4  1  1  0 | 0 ]

[-1 -2  0  2 | 0 ]

[ 0  2  0  4 | 0 ]

[ 0  0  4  2 | 0 ]

We can convert this matrix to its reduced row-echelon form using row operations:

[ 1  0  0  0 | 0 ]

[ 0  1  0  2 | 0 ]

[ 0  0  1 -1 | 0 ]

[ 0  0  0  0 | 0 ]

From this reduced row-echelon form, we can see that there are infinitely many solutions to the system. We can express the solutions in parametric form

x₁ = t

x₂ = -2t

x₃ = t

x₄ = s

where t and s are arbitrary constants.

To know more about the Gauss Elimination Method visit:

https://brainly.com/question/30763804

#SPJ11

Alice invests R6500 in an account paying 3% compound interest per year. Bob invests R6500 in an account paying r% simple interest per year. At the end of the 5th year, Alice and Bob's accounts both contain the same amount of money. Calculater, giving your answer correct to 1 decimal place. A 3.0% B. 15.9% C. 3.2% D. 4.4%

Answers

The simple interest rate that will ensure that Bob's investment of R6,500 equals Alice's 3% compound interest per year investment is 3.2%.

What differentiates simple interest from compound interest?

The difference between simple interest and compound interest is that simple interest computes interest on the principal only for each period.

Compound interest computes interest on both the principal and accumulated interest for each period.

Alice:

Principal investment = R6,500

Compound interest rate per year = 3%

Investment period = 5years

Future value = R7,535.28 (R6,500 x 1.03⁵)

Total Interest R1,035.28 (R7,535.28 - R6,500)

Bob:

Principal invested = R6,500

The simple interest rate = r

Investment period = 5years

The future value of the simple interest investment, A = P(1+rt)

7,535.28 = 6,500(1 + 5r)

Dividing each side b 6,500:

1.15927 = (1 + 5r)

5r = 0.15927

r = 0.031854

r - 0.032

r = 3.2% (0.32 x 100)

Learn more about simple interest and compound interest at https://brainly.com/question/2277782.

#SPJ4

Question Completion:

Calculate r, giving your answer correct to 1 decimal place.

If R is the region in the first quadrant bounded by x-axis, 3x + y = 6 and y = 3x, evaluate ∫∫R 3y dA. (6 marks)

Answers

We need to evaluate the double integral ∫∫R 3y dA, where R is the region in the first quadrant bounded by the x-axis, the line 3x + y = 6, and the line y = 3x.The value of the double integral ∫∫R 3y dA is 9/2

To evaluate the double integral, we first need to find the limits of integration for x and y. From the given equations, we can find the intersection points of the lines.

Setting y = 3x in the equation 3x + y = 6, we get 3x + 3x = 6, which simplifies to 6x = 6. Solving for x, we find x = 1.

Next, substituting x = 1 into y = 3x, we get y = 3(1) = 3.

Therefore, the limits of integration for x are 0 to 1, and the limits of integration for y are 0 to 3.

The double integral can now be written as:

∫∫R 3y dA = ∫[0 to 1] ∫[0 to 3] 3y dy dx

Integrating with respect to y first, we get:

∫∫R 3y dA = ∫[0 to 1] [(3/2)y^2] [0 to 3] dx

            = ∫[0 to 1] (9/2) dx

            = (9/2) [x] [0 to 1]

            = (9/2) (1 - 0)

            = 9/2

Therefore, the value of the double integral ∫∫R 3y dA is 9/2.

To learn more about double integral  : brainly.com/question/2289273

#SPJ11

Question 9
Identify the correct steps involved in proving that the max that represents the releve close of a Ronet A Mame Mos
MRV is by definition the same as Mg except that it has all ts on the main diagonal MR v 1 is by definition the same as Mo except that it has all Os on the main agonal
So, the relation corresponding to it is the same as Rexcept for the addition of all the pairs (2) So, the relation corresponding to is the same as R except for the removal of all the pairs Therefore, Mgy is the maroc that represents the reflexive cloture of R
at we not a
that were
prese
D.

Answers

Let M denote the maximum relation represented by a R-net with n elements.

Mgy is the maximum relation representing the reflexive closure of R, which is what we wanted to show.

Mg represents the graph of M in the diagonal rectangle Mn (n 1) x Mn (n 1), and

MRV represents the graph of M in the diagonal rectangle Mn (n 2) x Mn (n 2) where

the (n 1) th diagonal consists of t's,

while the remaining diagonals consist of 1's.

MR v 1 is by definition the same as Mo except that it has all Os on the main diagonal.

So the relation corresponding to is the same as R except for the removal of all the pairs.

As a result, Mgy is the maximum relation representing the reflexive closure of R which is what we required.

The maximum relation M, which is represented by an n-element R-net, is denoted by M.

In the diagonal rectangle Mn (n-1) x Mn (n-1), Mg represents the graph of M.

MRV represents the graph of M in the diagonal rectangle Mn (n-2) x Mn (n-2), with all of the nth diagonal consisting of t's and the remaining diagonals consisting of 1's.

MR v 1 is by definition the same as Mo except that it has all Os on the main agonal.

The relation corresponding to is the same as R except for the removal of all the pairs.

Therefore, Mgy is the maximum relation representing the reflexive closure of R, which is what we wanted to show.

To learn more about reflexive closure, visit:

https://brainly.com/question/30105348

#SPJ11

The standard approach to capacity planning assumes that the enterprise should FIRST

a. Suggest alternative plans for overcoming any mismatch

b. Examine forecast demand and translate this into a capacity needed

c. Find the capacity available in present facilities

d. Compare alternative plans and find the best

Answers

The standard approach to capacity planning assumes that the enterprise should FIRST examine forecast demand and translate this into a capacity needed.

option B.

What is capacity planning?

Capacity planning is the process of determining the production capacity needed by an organization to meet changing demands for its products.

Capacity planning is the process of determining the potential needs of your project. The goal of capacity planning is to have the right resources available when you'll need them.

The first step in capacity planning is to examine the forecast demand, which includes analyzing historical data, market trends, customer expectations, and other relevant factors.

Thus, the standard approach to capacity planning assumes that the enterprise should FIRST examine forecast demand and translate this into a capacity needed.

Learn more about capacity planning here: https://brainly.com/question/29802728

#SPJ4

A psychologist studied self-esteem scores and found the data set
to be normally distributed with a mean of 80 and a standard
deviation of 4. What is the z-score that cuts off the bottom 33% of
this di

Answers

The z-score that cuts off the bottom 33% of the distribution is approximately -0.439.

To find the z-score that cuts off the bottom 33% of the distribution, we use the standard normal distribution table or a statistical calculator.

What is the z-score?

The z-score shows the number of standard deviations a particular value is from the mean.

To find the z-score in this case, we shall find the value on the standard normal distribution that corresponds to the area of 0.33 to the left of it.

Using a standard normal distribution table, we estimate that the z-score corresponds to an area of 0.33 (33%) to the left ≈ -0.439.

Therefore, the z-score that cuts off the bottom 33% of the distribution is approx. -0.439.

Learn more about z-score at brainly.com/question/30765368

#SPJ1

Question completion:

A psychologist studied self-esteem scores and found the data set to be normally distributed with a mean of 80 and a standard deviation of 4.

What is the z-score that cuts off the bottom 33% of this distribution?

Show that δ(x^2-a^2)=1/2a[δ(x-a)+ δ(x+a)]
δ(c0sθ- cosθ)= δ(θ-θ’)/sin θ’= δ (θ- θ’)/ sin θ

Answers

By using Dirac delta function, δ(c0sθ- cosθ)= δ(θ-θ’)/sin θ’= δ (θ- θ’)/ sin θ.

Here's how to show that δ(x^2-a^2)=1/2a[δ(x-a)+ δ(x+a)]

To show that δ(x^2-a^2)=1/2a[δ(x-a)+ δ(x+a)],

we can use the definition of Dirac delta function.

Dirac delta function is defined as follows:∫δ(x)dx=1and 0 if x≠0

In order to solve the given expression, we have to take the integral of both sides from negative infinity to infinity, which is given below:∫δ(x^2-a^2)dx=∫1/2a[δ(x-a)+ δ(x+a)]dx

To compute the left-hand side, we use a substitution u=x^2-a^2 du=2xdxWhen x=-a, u=a^2-a^2=0 and when x=a, u=a^2-a^2=0.

Therefore,-∞∫∞δ(x^2-a^2)dx=-∞∫∞δ(u)1/2adx=1/2a

Similarly, the right-hand side becomes:∫1/2a[δ(x-a)+ δ(x+a)]dx=1/2a∫δ(x-a)dx +1/2a∫δ(x+a)dx=1/2a + 1/2a=1/2a

Therefore,∫δ(x^2-a^2)dx=∫1/2a[δ(x-a)+ δ(x+a)]dxHence, δ(x^2-a^2)=1/2a[δ(x-a)+ δ(x+a)].

Next, we can show that δ(c0sθ- cosθ)= δ(θ-θ’)/sin θ’= δ (θ- θ’)/ sin θ as follows:We know that cosθ = cosθ' which implies θ=θ'+2nπ or θ=-θ'-2nπ.

Therefore, c0sθ-cosθ'=c0s(θ'-2nπ)-cosθ'=c0sθ'-cosθ' = sinθ'c0sθ-sinθ'cosθ'.

We can use the following identity to simplify the above expression:c0sA-B= c0sAcosB-sinAsinB

Therefore,c0sθ-cosθ' =sinθ'c0sθ-sinθ'cosθ'=sinθ'[c0sθ-sinθ'cosθ']/sinθ' =δ(θ-θ')/sinθ'

Hence,δ(c0sθ- cosθ)= δ(θ-θ’)/sin θ’= δ (θ- θ’)/ sin θ.

Learn more about Dirac delta function

brainly.com/question/32558176

#SPJ11

Giving a test to a group of students, the grades and gender are summarized below
A B C Total
Male 19 3 4 26
Female 16 15 17 48
Total 35 18 21 74


If one student is chosen at random,

Find the probability that the student did NOT get an "C"

Answers

In this case, it is found to be approximately 0.7162, or 71.62%. This means that if we randomly select a student from the group, there is a 71.62% chance that the student did not receive a "C" grade.

The probability that a randomly chosen student did not get a "C" grade can be calculated by finding the ratio of the number of students who did not get a "C" to the total number of students. In this case, we can sum up the counts of grades A and B for both males and females, and then divide it by the total number of students.

The number of students who did not get a "C" grade is obtained by adding the counts of grades A and B, which is 19 (males with grade A) + 3 (males with grade B) + 16 (females with grade A) + 15 (females with grade B) = 53. The total number of students is given as 74. Therefore, the probability that a randomly chosen student did not get a "C" grade is 53/74, or approximately 0.7162.

To calculate the probability, we divide the number of students who did not get a "C" grade (53) by the total number of students (74). This probability represents the likelihood of randomly selecting a student who falls into the category of not receiving a "C" grade. In this case, it is found to be approximately 0.7162, or 71.62%. This means that if we randomly select a student from the group, there is a 71.62% chance that the student did not receive a "C" grade.

Learn more about Grade:

brainly.com/question/29618342

#SPJ11

Write another function that has the same graph as y=2 cos(at) - 1. 2. Describe how the graphs of y = 2 cos(x) - 1 and y=2c08(2x) - 1 are alike and how they are different IM 6.16 The height in teet of a seat on a Ferris wheel is given by the function h(t) = 50 sin ( 35) + 60. Time t is measured in minutes since the Ferris wheel started 1. What is the diameter of the Ferris wheel? How high is the center of the Ferris wheel? 2. How long does it take for the Ferris wheel to make one full revolution?

Answers

1. Another function that has the same graph as y = 2 cos(at) - 1 is y = 2 cos(0.5t) - 1.

2. The graphs of y = 2 cos(x) - 1 and y = 2 cos(2x) - 1 are alike in shape and amplitude, but differ in frequency or period.

3. The diameter of the Ferris wheel is 100 feet, and the center of the Ferris wheel is 110 feet high.

4. It takes the Ferris wheel approximately 1.71 minutes to make one full revolution.

To write another function that has the same graph as y = 2 cos(at) - 1, we need to adjust the amplitude and the period of the cosine function.

The amplitude determines the vertical stretching or compressing of the graph, while the period affects the horizontal stretching or compressing.

Let's consider the function y = A cos(Bt) - 1, where A represents the amplitude and B represents the frequency.

In the given function y = 2 cos(at) - 1, the amplitude is 2 and the frequency is a.

To create a function with the same graph, we can choose values for the amplitude and frequency that preserve the same characteristics.

For example, a function with an amplitude of 4 and a frequency of 0.5 would have the same shape as y = 2 cos(at) - 1.

Thus, a possible function with the same graph could be y = 4 cos(0.5t) - 1.

The graphs of y = 2 cos(x) - 1 and y = 2 cos(2x) - 1 are alike in terms of their shape and general behavior.

They both represent cosine functions with an amplitude of 2 and a vertical shift of 1 unit downward.

This means they have the same range and oscillate between a maximum value of 1 and a minimum value of -3.

However, the graphs differ in terms of their frequency or period.

The function y = 2 cos(x) - 1 has a period of 2π, while y = 2 cos(2x) - 1 has a period of π.

The function y = 2 cos(2x) - 1 oscillates twice as fast as y = 2 cos(x) - 1. This means that in the same interval of x-values, the graph of y = 2 cos(2x) - 1 completes two full oscillations, while the graph of y = 2 cos(x) - 1 completes only one.

6.16:

To determine the diameter of the Ferris wheel, we need to find the amplitude of the sine function.

In the given function h(t) = 50 sin(35t) + 60, the amplitude is 50.

The diameter of the Ferris wheel is equal to twice the amplitude, so the diameter is [tex]2 \times 50 = 100[/tex] feet.

The height of the center of the Ferris wheel can be calculated by adding the vertical shift to the amplitude.

In this case, the height of the center is 50 + 60 = 110 feet.

The time taken for the Ferris wheel to make one full revolution is equal to the period of the sine function.

The period is calculated as the reciprocal of the frequency (35 in this case), so the period is 1/35 minutes.

Therefore, it takes the Ferris wheel 1/35 minutes or approximately 1.71 minutes to make one full revolution.

For similar question on function.

https://brainly.com/question/30127596

#SPJ8  

Let the random variable X be normally distributed with the mean ? and standard deviation ?. Which of the following statements is correct?
A. All of the given statements are correct. B. If the random variable X is normally distributed with parameters ? and ?, then a large ? implies that a value of X far from ? may well be observed, whereas such a value is quite unlikely when ? is small. C. The statement that the random variable X is normally distributed with parameters ? and ? is often abbreviated X ~ N(?, ?). D. If the random variable X is normally distributed with parameters ? and ?, then E(X) = ? and Var(X) = ?^2. E. The graph of any normal probability density function is symmetric about the mean and bell-shaped, so the center of the bell (point of symmetry) is both the mean of the distribution and the median.

Answers

Given the random variable X that is normally distributed with the mean μ and standard deviation σ.

The correct statement among the following options is D.

If the random variable X is normally distributed with parameters μ and σ, then E(X) = μ

and Var(X) = σ².

The normal distribution is the most widely recognized continuous probability distribution, and it is used to represent a variety of real-world phenomena.

A typical distribution, also known as a Gaussian distribution, is characterized by two parameters:

its mean (μ) and its standard deviation (σ).

The mean (μ) of any normal probability distribution represents the middle of the bell curve, and its standard deviation (σ) reflects the degree of data deviation from the mean (μ).

So, any normal probability density function is symmetric about the mean and bell-shaped, and the middle of the bell is both the mean of the distribution and the median.

Therefore, if the random variable X is normally distributed with parameters μ and σ, then E(X) = μ

and Var(X) = σ².

To know more about probability distribution, visit:

https://brainly.com/question/29062095

#SPJ11

Let X be a normal random variable with mean 0 and variance 1. That is, X~ N(0, 1). Given that P(|X| < 2) ≈ 0.9545, what is the probability that X > 2? Enter answer here

Answers

The probability that X > 2 is approximately 0.9772.

The probability that X > 2, we can use the property of symmetry of the normal distribution. Since the mean of the normal random variable X is 0, the distribution is symmetric around the mean.

We know that P(|X| < 2) ≈ 0.9545, which means the probability that X falls within the range (-2, 2) is approximately 0.9545. Since the distribution is symmetric, we can conclude that P(X < -2) is the same as P(X > 2).

P(X > 2), we can subtract P(|X| < 2) from 1:

P(X > 2) = 1 - P(|X| < 2)

The property of symmetry:

P(X > 2) = 1 - P(X < -2)

P(X < -2) using the fact that the distribution is standard normal with mean 0 and variance 1.

We can look up the cumulative probability for -2 in the standard normal distribution table or use statistical software to find this value. Let's assume P(X < -2) = 0.0228 (this value can be found from the standard normal distribution table).

P(X > 2) = 1 - P(X < -2)

P(X > 2) = 1 - 0.0228

P(X > 2) ≈ 0.9772

Therefore, the probability that X > 2 is approximately 0.9772.

To know more about probability refer here:

https://brainly.com/question/31828911#

#SPJ11

Given the following sets, find the set (A UB) N (AUC). U = {1, 2, 3, . . . , 10} A = {1, 2, 3, 7} B = {1, 3, 10} C = {1, 2, 3, 6, 8}

Answers

Therefore, the set (A UB) N (AUC) is {1, 2, 3, 7}.

To find the set (A UB) N (AUC), we first need to find the union of sets A and B, denoted as A UB. Then, we can find the union of sets A and C, denoted as AUC. Finally, we take the intersection of the resulting sets A UB and AUC.

First, let's find the union of sets A and B, denoted as A UB:

A UB = A U B

= {1, 2, 3, 7} U {1, 3, 10}

= {1, 2, 3, 7, 10}

Next, let's find the union of sets A and C, denoted as AUC:

AUC = A U C

= {1, 2, 3, 7} U {1, 2, 3, 6, 8}

= {1, 2, 3, 6, 7, 8}

Now, we can find the intersection of sets A UB and AUC:

(A UB) N (AUC) = {1, 2, 3, 7, 10} N {1, 2, 3, 6, 7, 8}

= {1, 2, 3, 7}

To know more about sets,

https://brainly.com/question/31432154

#SPJ11

a. high nikitov swings a stone in a 5-meter long sling at a rate of 2 revolutions per second. find the angular and linear velocities of the stone.

Answers

The angular velocity of the stone is 12.56 rad/s and the linear velocity of the stone is 31.4 m/s.

Given,The length of the sling = 5m.

Number of revolutions per second = 2 rev/s

The angular velocity formula is given as:

Angular velocity,

w = 2πf

where

f = frequency of rotation,

π = 3.14

The frequency of rotation is given as 2 rev/s.

So, the angular velocity is calculated as:

w = 2πf= 2 × 3.14 × 2= 12.56 rad/s.

The formula for linear velocity is given as:

Linear velocity,

v = rw,

Where

r = radius and w = angular velocity.

The radius of the sling,

r = 5/2= 2.5 m.

Substitute the values in the formula,We get,

v = rw= 2.5 × 12.56= 31.4 m/s.

Therefore, the angular velocity of the stone is 12.56 rad/s and the linear velocity of the stone is 31.4 m/s.

To know more about angular velocity visit:

https://brainly.com/question/32217742

#SPJ11

Solve the following equation: d²y/dx²+2dy/dx+1=0, by conditions: y(0)=1, dy/dx=0 by x=0.

Answers



The equation is a second-order linear ordinary differential equation. By solving it with the given initial conditions, the solution is y(x) = e^(-x).



To solve the given equation, we can assume that the solution is of the form y(x) = e^(mx), where m is a constant. Taking the first and second derivatives of y(x) with respect to x, we have:

dy/dx = me^(mx)

d²y/dx² = m²e^(mx)

Substituting these derivatives into the original equation, we get:

m²e^(mx) + 2me^(mx) + 1 = 0

Dividing the equation by e^(mx) (which is nonzero for all x), we obtain a quadratic equation in terms of m:

m² + 2m + 1 = 0

This equation can be factored as (m + 1)² = 0, leading to the solution m = -1.

Therefore, the general solution to the differential equation is y(x) = Ae^(-x) + Be^(-x), where A and B are constants determined by the initial conditions.

Applying the initial condition y(0) = 1, we have 1 = Ae^(0) + Be^(0), which simplifies to A + B = 1.

Differentiating y(x) with respect to x and applying the second initial condition, we have 0 = -Ae^(0) - Be^(0), which simplifies to -A - B = 0.

Solving these two equations simultaneously, we find A = 0.5 and B = 0.5.

Therefore, the solution to the given differential equation with the given initial conditions is y(x) = 0.5e^(-x) + 0.5e^(-x), which simplifies to y(x) = e^(-x).

To learn more about differential equation click here brainly.com/question/31492438

#SPJ11



1.
You measure the cross sectional area for the design or a roadway, for a section of the road. Using
the average end area determine the volume (in Cubic Yards) of cut and fill for this portion of
roadway: (10 points)
Station
Area Cut
Area Fill
12+25
185 sq.ft.
12+75
165 sq.ft.
13+25
106 sq.ft.
0 sq.ft.
13+50
61 sq.ft.
190 sq.ft.
13+75
0 sq.ft.
213 sq.ft.
14+25
286 sq.ft.
14+75
338 sq.ft.

Answers

The volume of cut = 1000.66 Cu. Yd. The volume of fill = 518.6 Cu. Yd.

Step 1: Calculation of cross sectional area of each segment of the road:Cross sectional area of road = Area at station x 27.77 (width of road)Segment Station Area Cut Area Fill Cross sectional area of road 1 12+25 185 sq.ft. 0 sq.ft. 5129.45 sq.ft. 2 12+75 165 sq.ft. 190 sq.ft. 5457.15 sq.ft. 3 13+25 106 sq.ft. 61 sq.ft. 3992.62 sq.ft. 4 13+50 0 sq.ft. 213 sq.ft. 5905.01 sq.ft. 5 14+25 286 sq.ft. 0 sq.ft. 7940.82 sq.ft. 6 14+75 338 sq.ft. 0 sq.ft. 9382.53 sq.ft.Step 2: Calculation of average end area:Average end area = [(Area of cut at station 1 + Area of fill at last station)/2]Segment Area of Cut at station 1 .

Area of fill at last station Average end area 1 185 sq.ft. 190 sq.ft. 187.5 sq.ft. 2 165 sq.ft. 0 sq.ft. 82.5 sq.ft. 3 106 sq.ft. 213 sq.ft. 159.5 sq.ft. 4 0 sq.ft. 0 sq.ft. 0 sq.ft. 5 286 sq.ft. 0 sq.ft. 143 sq.ft. 6 338 sq.ft. 0 sq.ft. 169 sq.ft.Step 3: Calculation of volume of cut and fill for each segment of the road:Volume of cut = Area of cut x Length of segment x 1/27Volume of fill = Area of fill x Length of segment x 1/27

Segment Area of cut at station 1 Area of fill at last station Average end area Length of segment Volume of cut Volume of fill 1 185 sq.ft. 190 sq.ft. 187.5 sq.ft. 50 ft 347.22 Cu. Yd. 355.91 Cu. Yd. 2 165 sq.ft. 0 sq.ft. 82.5 sq.ft. 50 ft 154.1 Cu. Yd. 0 Cu. Yd. 3 106 sq.ft. 213 sq.ft. 159.5 sq.ft. 25 ft 80.57 Cu. Yd. 162.69 Cu. Yd. 4 0 sq.ft. 0 sq.ft. 0 sq.ft. 25 ft 0 Cu. Yd. 0 Cu. Yd. 5 286 sq.ft. 0 sq.ft. 143 sq.ft. 50 ft 268.06 Cu. Yd. 0 Cu. Yd. 6 338 sq.ft. 0 sq.ft. 169 sq.ft. 25 ft 160.71 Cu. Yd. 0 Cu. Yd.

Total Volume of Cut = 1000.66 Cu. Yd.Total Volume of Fill = 518.6 Cu. Yd.

Summary: The volume of cut = 1000.66 Cu. Yd. The volume of fill = 518.6 Cu. Yd.

learn more about volume click here:

https://brainly.com/question/463363

#SPJ11

A continuous random variable X has the following cdf:

F(x)=0 for x < 0F(x=x3for 0≤x≤2F(x)=1 for x>2
(a) Find the pdf of the function.
(b) Find P(X≥3)
(c) find P(X≤1)

Answers

(a)The pdf of the function is:

f(x) = 1/3 for 0 ≤ x ≤ 2

f(x) = 0 otherwise

(b)P(X ≥ 3) = 1

(c) P(X ≤ 1) is equal to 1/3.

(a) To find the probability density function (pdf) of a continuous random variable based on its cumulative distribution function (cdf), we can take the derivative of the cdf with respect to x.

Given the cdf F(x):

F(x) = 0 for x < 0

F(x) = x/3 for 0 ≤ x ≤ 2

F(x) = 1 for x > 2

To find the pdf f(x), we differentiate the cdf in the intervals where it is defined:

For 0 ≤ x ≤ 2:

f(x) = d/dx (F(x)) = d/dx (x/3) = 1/3

For x < 0 and x > 2, the pdf is zero since the cdf is constant in those intervals.

Therefore, the pdf of the function is:

f(x) = 1/3 for 0 ≤ x ≤ 2

f(x) = 0 otherwise

(b) To find P(X ≥ 3), we need to calculate the probability that the random variable X is greater than or equal to 3. Since the cdf is defined as 1 for x > 2, the probability P(X ≥ 3) is equal to 1.

P(X ≥ 3) = 1

(c) To find P(X ≤ 1), we need to calculate the probability that the random variable X is less than or equal to 1. Since the cdf is defined as 0 for x < 0 and x/3 for 0 ≤ x ≤ 2, we can use the cdf values to calculate the probability:

P(X ≤ 1) = F(1) = 1/3

Therefore, P(X ≤ 1) is equal to 1/3.

To know more about function refer here:

https://brainly.com/question/30721594#

#SPJ11

if the first 5 students expect to get the final average of 95, what would their final tests need to be.

Answers

If the first 5 students expect to get the final average of 95. The final test scores are equal to 475 minus the sum of the previous scores. If we suppose the previous scores sum up to a total of y, then the final test scores required will be: F = 5 × 95 − y, Where F represents the final test scores required.

The answer to this question is found using the formula of average which is total of all scores divided by the number of scores available. This can be written in form of an equation.

Average = (sum of all scores) / (number of scores).

The sum of all scores is simply found by adding all the scores together. For the five students to obtain an average of 95, the sum of their scores has to be:

Sum of scores = 5 × 95 = 475.

Next, we can find out what each student needs to score by solving for the unknown test scores.

To do that, let’s suppose the final test scores for the five students are x₁ x₂, x₂, x₄, and x₅.

Then we have: x₁ + x₂ + x₃ + x₄ + x₅ = 475.

The final test scores are equal to 475 minus the sum of the previous scores.

If we suppose the previous scores sum up to a total of y, then the final test scores required will be: F = 5 × 95 − y, Where F represents the final test scores required.

To know more about final average, refer

https://brainly.com/question/130657

#SPJ11

Calculate the equilibrium/stationary state, to two decimal places, of the difference equation
xt+1 = 2xo + 4.2.
Round your answer to two decimal places. Answer:

Answers

We must work out the value of x that satisfies the provided difference equation in order to determine its equilibrium or stationary state:

x_{t+1} = 2x_t + 4.2

What is Equilibrium?

In the equilibrium state, the value of x remains constant over time, so we can set x_{t+1} equal to x_t:

x = 2x + 4.2

To solve for x, we rearrange the equation:

x - 2x = 4.2

Simplifying, we get:

-x = 4.2

Multiplying both sides by -1, we have:

x = -4.2

The equilibrium or stationary state of the given difference equation is roughly -4.20, rounded to two decimal places.

Learn more about Equilibrium here brainly.in/question/11392505

#SPJ4




i.i.d. Let Et N(0, 1). Determine whether the following stochastic processes are stationary. If so, give the mean and autocovariance functions.
Y₁ = cos(pt)et + sin(pt)ɛt-2, ¥€ [0, 2π) E

Answers

The given stochastic process is stationary with mean μ = 0 and autocovariance function[tex]γ(h) = δ(h) cos(p(t+h)-pt)[/tex].

Given the stochastic process:

[tex]Y₁ = cos(pt)et + sin(pt)εt-2[/tex]

Where,

[tex]Et ~ N(0, 1)[/tex]

And the interval is [tex]t ∈ [0, 2π)[/tex]

Therefore, the stochastic process can be re-written as:

[tex]Y₁ = cos(pt)et + sin(pt)εt-2[/tex]

Let the mean and variance be denoted by:

[tex]μt = E[Yt]σ²t = Var(Yt)[/tex]

Then, for stationarity of the process, it should satisfy the following conditions:

[tex]μt = μ and σ²t = σ², ∀t[/tex]

Now, calculating the mean μt:

[tex]μt = E[Yt]= E[cos(pt)et + sin(pt)εt-2][/tex]

Using linearity of expectation:

[tex]μt = E[cos(pt)et] + E[sin(pt)εt-2]= cos(pt)E[et] + sin(pt)E[εt-2]= cos(pt) * 0 + sin(pt) * 0= 0[/tex]

Thus, the mean is independent of time t, i.e., stationary and μ = 0.

Now, calculating the autocovariance function:

[tex]Cov(Yt, Yt+h) = E[(Yt - μ) (Yt+h - μ)][/tex]

Substituting the expression of [tex]Yt and Yt+h:Cov(Yt, Yt+h) = E[(cos(pt)et + sin(pt)εt-2) (cos(p(t+h))e(t+h) + sin(p(t+h))ε(t+h)-2)][/tex]

Expanding the product:

Cov(Yt, Yt+h) = E[cos(pt)cos(p(t+h))etet+h + cos(pt)sin(p(t+h))etε(t+h)-2 + sin(pt)cos(p(t+h))εt-2et+h + sin(pt)sin(p(t+h))εt-2ε(t+h)-2]

Using linearity of expectation, and independence of et and εt-2:

[tex]Cov(Yt, Yt+h) = cos(pt)cos(p(t+h))E[etet+h] + sin(pt)sin(p(t+h))E[εt-2ε(t+h)-2]= cos(pt)cos(p(t+h))Cov(et, et+h) + sin(pt)sin(p(t+h))Cov(εt-2, εt+h-2)[/tex]

Now, as et and εt-2 are i.i.d with mean 0 and variance 1:

[tex]Cov(et, et+h) = Cov(εt-2, εt+h-2) = E[etet+h] = E[εt-2ε(t+h)-2] = δ(h)[/tex]

Where δ(h) is Kronecker delta, which is 1 for h = 0 and 0 for h ≠ 0. Thus,

[tex]Cov(Yt, Yt+h) = δ(h) cos(p(t+h)-pt)[/tex]

Hence, the given stochastic process is stationary with mean μ = 0 and autocovariance function [tex]γ(h) = δ(h) cos(p(t+h)-pt).[/tex]

To learn more about stochastic, refer below:

https://brainly.com/question/30712003

#SPJ11

Suppose that X, Y, and Z are jointly distributed random variables, that is, they are defined on the same sample space. Suppose that we also have the following. E(X)=0 Var (X)= 11 E(Y)=-6 E(Z) = -5 Var(Y)= 14 Var(Z)=13 Compute the values of the expressions below. E (3-2)= 0 பப் Х ? ? * (******)- 0 E -5Y+ 3 0 Var (Z)+2= 0 E(522)= 0

Answers

Computed values: E(3-2)=1, E(X)=0, Var(X)=11, E(-5Y + 3)=33, Var(Z) + 2=15, E(522)=522.

What are the computed values of E(3-2), E(X), Var(X), E(-5Y + 3), Var(Z) + 2, and E(522) based on the given information about the random variables?

Let's break down the expressions and compute their values:

E(3-2):

  The expectation (E) of a constant is simply the constant itself. Therefore, E(3-2) = 3 - 2 = 1.

E(X):

  The expectation of X is given as E(X) = 0.

Var(X):

  The variance (Var) of X is given as Var(X) = 11.

E(-5Y + 3):

  Using linearity of expectation, we can separate the expectation of each term:

  E(-5Y + 3) = E(-5Y) + E(3).

  Since Y is a random variable and -5 is a constant, we can bring the constant outside the expectation:

  E(-5Y + 3) = -5E(Y) + 3.

  Substituting the given value, E(Y) = -6:

  E(-5Y + 3) = -5(-6) + 3 = 30 + 3 = 33.

Var(Z) + 2:

  The variance of Z is given as Var(Z) = 13.

  Adding 2 to the variance gives Var(Z) + 2 = 13 + 2 = 15.

E(522):

  Since 522 is a constant, its expectation is equal to the constant itself.

  Therefore, E(522) = 522.

To summarize the computed values:

E(3-2) = 1

E(X) = 0

Var(X) = 11

E(-5Y + 3) = 33

Var(Z) + 2 = 15

E(522) = 522

If you have any further questions or need additional explanations, feel free to ask!

Learn more about Computed values

brainly.com/question/30229303

#SPJ11

Given: sin(θ) = -√3 / 2 and ,tan(θ) < 0. Which of the following can be the angle θ?
a) 2π/3
b) 11π/6
c) 5π/3
d) 7π/6
e) 5π/6
f) None of the above

Answers

The correct option is (f) None of the above. There can be cases where one of the given options is the correct answer. Therefore, we should always check all the options to be sure that none of them satisfies the given conditions.

Given: sin(θ) = -√3 / 2 and, tan(θ) < 0We are to find out which of the following angles can be θ.

Therefore, we will determine the possible values of the angles that satisfy the given conditions. Explanation: The given conditions are: sin(θ)

= -√3 / 2 and, tan(θ) < 0.So, let's put these conditions in terms of angles. The value of sin(θ) is negative in the second quadrant, while it is positive in the fourth quadrant.

So, the possible values of θ are:θ = 2π/3 (second quadrant)θ

= 5π/3 (fourth quadrant)We know that tan(θ) = sin(θ)/cos(θ).

So, let's calculate the value of tan(θ) in each of the above cases:

For θ = 2π/3tan(θ) = sin(θ) / cos(θ) = -√3/2 ÷ (-1/2) = √3 > 0, which contradicts the given condition that tan(θ) < 0.So, θ = 2π/3 cannot be the answer.

For θ = 5π/3tan(θ) = sin(θ) / cos(θ) = -√3/2 ÷ (-1/2) = √3 > 0, which again contradicts the given condition that tan(θ) < 0.So, θ = 5π/3 cannot be the answer. Therefore, none of the above angles can be θ. So, the answer is (f) None of the above.

To know more about conditions visit :-

https://brainly.com/question/24172149

#SPJ11

1. A variable force of 4√ newtons moves a particle along a straight path wien it is a meters from the origin. Calculate the work done in moving the particle from z=4 to z = 16.
2. A spring has a natural length of 40 cm. If a 60-N force is required to keep the spring compressed 10 cm, how much work is done during this compression? How much work is required to compress the spring to 1 a length of 25 cm?
3. A circular swimming pool has a diameter of 24 ft, the sides are 5 ft high, and the depth of the water is 4 ft. How much work is required to pump all of the water out over the side? (Use the fact that water weighs 62.5 lb/ft³.

Answers

The result of this integral will give us the work done in moving the particle from z = 4 to z = 16.

To calculate the work done in moving the particle from z = 4 to z = 16, we need to integrate the variable force over the displacement. The work done by a variable force is given by the formula W = ∫[a to b] F(z) dz

In this case, the force F(z) is 4√ newtons and the displacement dz is the change in position from z = 4 to z = 16. To find the work done, we integrate the force with respect to z over the given limits: W = ∫[4 to 16] 4√ dz

The result of this integral will give us the work done in moving the particle from z = 4 to z = 16.

To calculate the work done in compressing a spring, we use the formula:

W = (1/2)kx^2

where k is the spring constant and x is the displacement from the natural length of the spring.

In the first case, a 60-N force is required to keep the spring compressed 10 cm. This means that the displacement x is 10 cm = 0.1 m. The spring constant, k, can be calculated by dividing the force by the displacement:

k = F/x = 60 N / 0.1 m = 600 N/m

Using this value of k and the displacement x, we can calculate the work done:

W = (1/2)(600 N/m)(0.1 m)^2 = 3 J

In the second case, the spring is compressed to a length of 25 cm = 0.25 m. Using the same spring constant k, we can calculate the work done:

W = (1/2)(600 N/m)(0.25 m)^2 = 9 J

To calculate the work required to pump all of the water out of the circular swimming pool, we need to consider the weight of the water and the height it needs to be lifted. The volume of the pool can be calculated using the formula for the volume of a cylinder:

V = πr^2h

where r is the radius and h is the height. In this case, the radius is half of the diameter, so r = 12 ft. The height of the water is 4 ft.

The weight of the water can be calculated by multiplying the volume by the density of water Weight = Volume × Density = πr^2h × Density

The work required to lift the water out is equal to the weight of the water multiplied by the height it needs to be lifted W = Weight × Height = πr^2h × Density × Height

Substituting the given values, we can calculate the work required to pump the water out of the pool.

Ensure that all units are consistent throughout the calculations to obtain the correct numerical values.

To know more about length click here

brainly.com/question/30625256

#SPJ11









:Q3) For the following data 50-54 55-59 60-64 65-69 70-74 75-79 80-84 7 10 16 12 9 3 Class Frequency 3
* :e) The standard deviation is 7.5668 O 7.6856 O 7.6658 7.8665 O none of all above O

Answers

The standard deviation for the given data is 7.5668.

To calculate the standard deviation, we need to follow these steps:

Calculate the mean (average) of the data. The sum of the products of each class midpoint and its corresponding frequency is 625.

Calculate the deviation of each class midpoint from the mean. The deviations are as follows: -15, -10, -5, 0, 5, 10, 15.

Square each deviation. The squared deviations are 225, 100, 25, 0, 25, 100, 225.

Multiply each squared deviation by its corresponding frequency. The products are 675, 300, 75, 0, 225, 300, 675.

Sum up all the products of squared deviations. The sum is 2250.

Divide the sum by the total frequency minus 1. Since the total frequency is 50, the denominator is 49.

Take the square root of the result from step 6. The square root of 45.9184 is approximately 7.5668.

Therefore, the standard deviation for the given data is 7.5668.

Learn more standard deviation here: brainly.com/question/29115611
#SPJ11

A consumer purchases two goods, food and clothing. The
utility function is U(x, y) = √xy, where x denotes the amount of
food consumes and y the amount of clothing. The marginal utilities
are MUx = �

Answers

The given utility function U(x, y) = √xy yields the marginal utilities as MUx = √xy/2 and MUy = √xy/2 respectively.

In this question, The utility function is U(x, y) = √xy

The consumer purchases two goods, food and clothing where x denotes the amount of food consumes and y denotes the amount of clothing.

To find out the marginal utility of X (MUx) and the marginal utility of Y (MUy), we will take the first partial derivative of U(x, y) with respect to x and y respectively.

∂U/∂x = y/2(√xy) = (y/2)√x/y = √xy/2 = MUx

The marginal utility of X (MUx) is √xy/2.

∂U/∂y = x/2(√xy) = (x/2)√y/x = √xy/2 = MUy

The marginal utility of Y (MUy) is √xy/2.

Learn more about utility function at:

https://brainly.com/question/32538284

#SPJ11

Solve Bernoulli's equation dy XC +y=(x dx n (x² In(x))y², x>0

Answers

The general solution to the equation is y = (c/x)^(1/(n-1))*(x^n In(x))^n, where c is an arbitrary constant.

To solve the equation, we can use the following steps:

1. Rewrite the equation in standard form. The equation can be rewritten in standard form as dy/dx + (1-n)y = x^n In(x)y^n.

2. Use the integrating factor method. The integrating factor for the equation is e^((1-n)x). Multiplying both sides of the equation by the integrating factor gives e^((1-n)x)dy/dx + (1-n)e^((1-n)x)y = x^n In(x)e^((1-n)x)y^n.

3. Integrate both sides of the equation. Integrating both sides of the equation gives e^((1-n)x)y = c*x^n In(x)y^n + K, where K is an arbitrary constant.

4. Divide both sides of the equation by y^n. Dividing both sides of the equation by y^n gives e^((1-n)x) = c*x^n In(x) + K/y^n.

5. Solve for y. Taking the natural logarithm of both sides of the equation gives (1-n)x = n In(x) + ln(K/y^n).

6. Exponentiate both sides of the equation. Exponentiating both sides of the equation gives (1-n)x^n = nx^n In(x) * K/y^n.

7. Simplify the right-hand side of the equation. Simplifying the right-hand side of the equation gives K/y^n = (1/n) * x^(n-1) In(x).

8. Solve for y. Taking the nth root of both sides of the equation gives y = (c/x)^(1/(n-1))*(x^n In(x))^n.

This is the general solution to the equation. The specific solution to the equation can be found by substituting the initial conditions into the general solution.

Learn more about arbitrary constant here:

brainly.com/question/29093928

#SPJ11

find two numbers whose difference is 52 and whose product is a minimum.

Answers

The two numbers whose difference is 52 and whose product is a minimum are : -26 and 26.

Let's assume the two numbers are x and y, where x > y. According to the given conditions, we have the following equations:

1. x - y = 52   (difference is 52)

2. xy = minimum  (product is a minimum)

To find the minimum product, we can rewrite the equation for product as:

xy = (x - y)(x + y) + y^2

Since x - y = 52, we can substitute it into the equation:

xy = (52)(x + y) + y^2

To minimize the product, we need to minimize the value of (x + y). Since x > y, the minimum value of (x + y) occurs when y is the smallest possible integer. So, let's set y = -26:

xy = (52)(x - 26) + (-26)^2

Simplifying the equation:

xy = 52x - 1352 + 676

xy = 52x - 676

Now we have an equation with only one variable. To find the minimum product, we can take the derivative of xy with respect to x and set it equal to zero:

d(xy)/dx = 52 - 0 = 52

Setting the derivative equal to zero:

52x - 676 = 0

52x = 676

x = 676/52

x ≈ 13

Now, substitute the value of x back into the equation for the difference:

x - y = 52

13 - y = 52

y = 13 - 52

y = -39

So the two numbers that satisfy the conditions are x ≈ 13 and y = -39. However, we need to choose the numbers such that x > y. In this case, -39 is greater than 13, which contradicts the condition. Therefore, we need to switch the values of x and y to satisfy the condition.

Hence, the two numbers whose difference is 52 and whose product is a minimum are -26 and 26.

To know more about possible integer, refer here:

https://brainly.com/question/80013#

#SPJ11

the units of the momentum of the t-shirt are the units of the integral ∫t=tlt=0f(t)dt , where f(t) has units of n and t has units of s . given that 1n=1kg⋅m/s2 , the units of momentum are:

Answers

Given that f(t) has units of N and t has units of s. And 1N = 1kg.m/s²Therefore the dimensions of f(t) are, [f(t)] = N.As the dimensions of t are [t] = s.

Now the integral of f(t) over time t=0 to t=tl, is given by;`[∫_0^(tl)]f(t)dt`The units of momentum of the t-shirt are the units of the integral`∫_0^(tl) f(t) dt`Where f(t) has units of N and t has units of s.

According to the formula for momentum, p = mv where p is the momentum of the object of mass m moving with velocity v.

The dimensions of momentum are`[M][L]/[T]^2`Where `[M]` is the dimension of mass, `[L]` is the dimension of length, and `[T]` is the dimension of time.As N = kg.m/s², we can write the dimensions of

f(t) as;N = kg.m/s²`[f(t)] = [kg.m]/[s²]`

We can now substitute these dimensions into the integral and simplify as follows;

`[p] = [∫_0^(tl) f(t) dt]

= [f(t)][t]

= [N][s]

= [kg.m/s²] x [s]

= [kg.m/s]`

Therefore, the units of momentum are kg.m/s.

To know more about  momentum  , visit;

https://brainly.com/question/18798405

#SPJ11

Other Questions
Use the method of variation of parameters to find the general solution of the differential et equation y" + 2y' + y = e- Int. Additional paid-in capital is not affected by the issuanceof:no-par stock.no par with a stated value stock.par value stock.preferred stock. Question 6 < > 3 pts 1 De A responsibility accounting framework provides this most important benefit to a business. O All employees can have strict quantitative goals for their performance reviews. O suppose a monopolist's costs and revenues are as follows: atc = $45.00; mc = $35.00; mr = $35.00; p = $45.00. the firm should Perform BCD addition and verify using decimal integer (Base-10)addition:a) 1001 0100 + 0110 0111b) 1001 1000 + 0001 0010 what is the function of the foramen ovale during fetal life? how to find shareholders equity plsOther current assets Accounts Receivable Inventory Fixed Assets Accrued taxes Accounts payable Long-term Debt Net Worth (Shareholders' Equity) 2001 2002 2003 2004 $300,000 $250,000 $150,000 $50,000 $1 the emergency department nurse is monitoring a client who received treatment for a severe asthma attack. the nurse determines that the client's respiratory status has worsened if which is noted on assessment? what are the proportions of molecules in a gas that have a speed in a range at the speed nc find the [oh] of a 0.38 m pyridine ( c5h5n ) solution. (the value of kb for pyridine ( c5h5n ) is 1.7109 .) express your answer to two significant figures and include the appropriate units. Compute the first derivative of the following functions: (a) In(x^10) (b) tan-(x) (c) sin^-1(4x) XYZ Ltd. agrees to lease office space from ABC Ltd. for 3 years. The monthly rental payable per the agreement is $10,000 with an escalation clause that calls for 5% increments annually. ABC Ltd. will also pay $25,000 to the lessee to help make improvements to the rental property - this will be deducted from the rental payments when corresponding receipts are submitted to the lessor. The lessee will also receive a 100% rent concession for the 1st month of the agreement. Please help us with the deferred rent schedule for the above arrangement. Let T : R4 R4 be the linear transformation represented by the matrix M(T) = M(T) (relative to the standard basis) -> = M(T) 0 0 007 -1 0 0 2 0 0 1 -1 0 0 0 What is T? T(x,y,z, t) = ( = Give bases for Ker(T) and Im(T). Basis for Ker(T) = Basis for Im(T) based upon the witness statements and the laboratory analysis, what is your final diagnosis? explain col. lemons symptoms. Which of the following nitrogen base pairs is correct? a. adenine guanine b. thymine cytosine c. deoxyribose phosphate d. cytosine guanine (the boxes represent arrows going right) when developing the object relational model in the file for a django project, data types for each attribute must be of answer choices find the radius of convergence, r, of the series. [infinity] (x 4)n n4 1 n = 0 r = 1 W 10 0 9 8 7 6 TT-0 5 4 3 2 1 0 LO TT-100 TT-200 2 TT-300 0 1 3 4 5 6 7 Click to see additional instructions Refer to the above figure. If needed, graph values can be estimated to the nearest half-unit. Suppose workers have alternative employment available at wage $2. . The competitive wage is $ A. In this figure the firm's ideal wage is $ The lowest wage the union would accept is $ B. The monopoly union outcome is Wy=$ and Lu= C. Is the contract with w-$4 and L=8 a Pareto improvement over the monopoly union contract? (Enter "1" for yes, "-1" for no.) We can see from this figure that the contract with L= (Enter "1" for yes, "-1" for no.) outcome? DL 8 9 L 10 and the union's ideal wage is $ At this outcome the union's economic rent is $ . The highest wage the firm would agree to is $ and the wage bill is $ (Enter "1" for yes, "-1" for no.). Is the competitive outcome a Pareto improvement over the monopoly union contract? and w=$ is Pareto efficient. Is this contract a Pareto Improvement over the monopoly union Determine the role and function of transport in the growth of theeconomy.(13) Suppose each worker must use only one shovel to dig a trench, and shovels are useless by themselves. In the short run, an increase in the price of shovels will result inA) fewer shovels being purchased.B) more workers being hired.C) a decrease in the firm's output.D) no change in the firm's output.