complete the kw expression for the autoionization of water at 25 °c.

Answers

Answer 1

The Kw expression for the autoionization of water at 25 °C is: Kw = [H3O+][OH-] = 1.0 x 10^-14.

In aqueous solutions, water molecules can act as both acids and bases, leading to the formation of hydronium ions (H3O+) and hydroxide ions (OH-). When these ions are produced in equal amounts through the autoionization of water, the equilibrium constant (Kw) is defined as the product of their concentrations. At 25°C, the value of Kw is known to be 1.0 x 10^-14, indicating that the concentration of hydronium ions in pure water is equal to the concentration of hydroxide ions. The Kw expression is important in many areas of chemistry, including acid-base equilibria and pH calculations, as it allows for the determination of the concentrations of H3O+ and OH- in aqueous solutions.

Learn more about Kw expression here;

https://brainly.com/question/13959135

#SPJ11


Related Questions

a force of 200 n is applied at a point 1.3 m from the axis of rotation, causing a revolving door to accelerate at 6.2 rad/s^2. what is the moment of inertia of the door from its axis of rotation?

Answers

The moment of inertia of the revolving door from its axis of rotation is 49.4 kg⋅m².

The moment of inertia (I) of a rotating object is a measure of its resistance to rotational acceleration and is calculated using the equation:

τ = Iα

where τ is the torque applied to the object, and α is its angular acceleration.

In this problem, we are given the applied force (F) of 200 N, the distance (r) from the axis of rotation to the point of force application as 1.3 m, and the angular acceleration (α) of the revolving door as 6.2 rad/s².

Firstly, we calculate the torque (τ) generated by the force applied at a distance of 1.3 m from the axis of rotation using the formula:

τ = Fr

τ = 200 N × 1.3 m

τ = 260 N⋅m

Now, substituting the values of τ and α in the above equation, we get:

I = τ/α

I = (260 N⋅m)/(6.2 rad/s²)

I = 41.94 kg⋅m²

learn more about moment of inertia here:

https://brainly.com/question/15246709

#SPJ11

Charged glass and plastic rods hang by threads. An object attracts the glass rod. If this object is then held near the plastic rod, it will
A. Attract the plastic rod.
B. Repel the plastic rod.
C. Not affect the plastic rod.
D. Either A or B. There's not enough information to tell.

Answers

The object will attract the plastic rod. (Option A) when the object was brought close to the charged glass rod, it induced an opposite charge on the side of the object facing the glass rod, and a like charge on the side facing away from the glass rod.

This process is known as electrostatic induction. The attracted charges of the opposite polarity in the object will be redistributed in the plastic rod, resulting in an attraction between the object and the plastic rod. Therefore, when the object is held near the plastic rod, it will attract the plastic rod.

Learn more about electrostatic here:

https://brainly.com/question/31042490

#SPJ11

an alpha particle (a helium nucleus) is moving at a speed of 0.9980 times the speed of light. its mass is (6.40 10-27 kg).(a) what is its rest energy?

Answers

The energy of the alpha particle is 3.83 x 10^-10 J at the rest state.

According to the theory of special relativity, the energy of a particle can be divided into two components: rest energy and kinetic energy. Rest energy is the energy that a particle possesses due to its mass, even when it is at rest, while kinetic energy is the energy that a particle possesses due to its motion. The total energy of a particle is the sum of its rest energy and kinetic energy.

The rest energy of a particle can be calculated using the famous equation derived by Albert Einstein, [tex]E=mc^2[/tex], where E is the energy of the particle, m is its mass, and c is the speed of light. This equation tells us that mass and energy are equivalent and interchangeable, and that a small amount of mass can be converted into a large amount of energy.

In the case of an alpha particle, which is a helium nucleus consisting of two protons and two neutrons, its rest energy can be calculated by using the mass of the particle, which is given as [tex]6.40 * 10^-27[/tex]kg. The speed of the alpha particle is given as 0.9980 times the speed of light, which is a significant fraction of the speed of light.

To calculate the rest energy of the alpha particle, we first need to calculate its relativistic mass, which is given by the equation:

[tex]m' = m / sqrt(1 - v^2/c^2)[/tex]

where m is the rest mass of the particle, v is its velocity, and c is the speed of light. Substituting the values given in the problem, we get:

[tex]m' = 6.40 x 10^-27 kg / sqrt(1 - 0.9980^2)[/tex]

[tex]m' = 4.28 x 10^-26 kg[/tex]

The rest energy of the alpha particle can then be calculated using the equation [tex]E = mc^2[/tex], where m is the relativistic mass of the particle. Substituting the values, we get:

[tex]E = (4.28 x 10^-26 kg) x (299,792,458 m/s)^2[/tex]

[tex]E = 3.83 x 10^-10 J[/tex]

Therefore, the rest energy of the alpha particle is 3.83 x 10^-10 J.

This result tells us that even a tiny amount of mass can contain a large amount of energy, and that the conversion of mass into energy can have profound effects on the behavior of particles and the nature of the universe.

The concept of rest energy is a fundamental aspect of the theory of special relativity, and is essential for understanding the behavior of particles at high speeds and energies.

To learn more about alpha particle refer here:

https://brainly.com/question/2288334

#SPJ11

A public address system puts out 5.92 W of power. What will be the intensity at a distance that results in a surface area of 9.47 m?? 0 355 W/m2 0 56.1 W/m2 O 160 W/m2 O 0.625 W/m2

Answers

The intensity at a distance that results in a surface area of 9.47 m is 0.625 W/m2. Option(d)

To calculate the weight of a sound wave at a distance, we can use the formula:

Intensity = Power / Area.

In this case, the public address system has a power output of 5.92 W and a surface area of ​​9.47 m².

Insert these values ​​into the formula:

Density = 5.

Calculating 92 kilos 9.47 kilos

these instructions, we see that

≈ uses 0.625 W/m².

Therefore, the intensity of the sound waves makes the area 9 at a certain distance.

47 m², approx. 0.625 W/m².

It is important to remember that density is defined as the strength of a field. In this case, it represents sound energy passing through a gap. The unit of use is watt/m2 (W/m²).

The answer given in the question is the correct value according to the calculation of 0.625 W/m². It represents the power of a sound wave over a distance.

The other answer options given by

(0, 355 W/m², 56.1 W/m² and 160 W/m²) do not match the calculation.

The correct answer is 0.625 W/m², which indicates suitable sound intensity away from public housing.  Option(d)

For more such questions on intensity

https://brainly.com/question/4431819

#SPJ11

A uniform sign is supported by two red pins, each the same distance to the sign's center. Find the magnitude of the force exerted by pin 2 if M = 32 kg, H = 1.3 m, d = 2 m, and h = 0.9 m. Assume each pin's reaction force has a vertical component equal to half the sign's weight.

Answers

The magnitude of the force exerted by pin 2 is 697.6 N.

To solve this problem, we can use the principle of moments, which states that the sum of the moments of forces acting on an object is equal to the moment of the resultant force about any point.

We can choose any point as the reference point for calculating moments, but it is usually convenient to choose a point where some of the forces act along a line passing through the point, so that their moment becomes zero.

In this case, we can choose point 1 as the reference point, since the vertical component of the reaction force at pin 1 passes through this point and therefore does not produce any moment about it. Let F be the magnitude of the force exerted by pin 2, and let W be the weight of the sign. Then we have:

Sum of moments about point 1 = Moment of force F about point 1 - Moment of weight W about point 1

Since the sign is uniform, its weight acts through its center of mass, which is located at the midpoint of the sign. So, the moment of weight W about point 1 is simply the weight W multiplied by the horizontal distance between point 1 and the center of mass, which is d/2:

Moment of weight W about point 1 = W * (d/2)

Since each pin's reaction force has a vertical component equal to half the sign's weight, the magnitude of the weight is:

W = M * g = 32 kg * 9.81 m/s^2 = 313.92 N

The vertical component of the reaction force at each pin is therefore:

Rv = W/2 = 156.96 N

To find the horizontal component of the reaction force at each pin, we can use trigonometry. The angle between the sign and the horizontal is given by:

θ = arctan(h/H) = arctan(0.9/1.3) = 34.99 degrees

Therefore, the horizontal component of the reaction force at each pin is:

Rh = Rv * tan(θ) = 156.96 N * tan(34.99) = 108.05 N

Since the sign is in equilibrium, the sum of the horizontal components of the reaction forces at the two pins must be zero. Therefore, we have:

Rh1 + Rh2 = 0

Rh2 = -Rh1 = -108.05 N

Now we can use the principle of moments to find the magnitude of the force exerted by pin 2. The distance between point 1 and pin 2 is h, so the moment of force F about point 1 is:

Moment of force F about point 1 = F * h

Setting the sum of moments equal to zero, we have:

F * h - W * (d/2) = 0

Solving for F, we get:

F = (W * d) / (2 * h) = (313.92 N * 2 m) / (2 * 0.9 m) = 697.6 N

For more question on magnitude click on

https://brainly.com/question/30337362

#SPJ11

Since the sign is in equilibrium, the sum of the forces and torques acting on it must be zero. Taking the torques about the point where pin 1 supports the sign, we have:

τ = F2(d/2) - (Mg)(H/2) = 0

where F2 is the magnitude of the force exerted by pin 2, M is the mass of the sign, g is the acceleration due to gravity, H is the height of the sign, and d is the distance between the two pins.

Since each pin's reaction force has a vertical component equal to half the sign's weight, the magnitude of the force exerted by pin 1 is Mg/2. Therefore, the magnitude of the force exerted by pin 2 is also Mg/2.

Substituting these values into the torque equation, we get:

F2(d/2) - (Mg)(H/2) = 0

(0.5Mg)(d/2) - (0.5Mg)(H/2) = 0

0.25Mg(d - H) = 0

d - H = 0

Therefore, the height of the sign is equal to the distance between the two pins:

h = d/2

Substituting the given values for h and M, we get:

h = 0.9 m, M = 32 kg

We can then calculate the weight of the sign:

W = Mg = (32 kg)(9.81 m/s^2) = 313.92 N

Each pin's reaction force has a vertical component equal to half the sign's weight, so the magnitude of the force exerted by each pin is:

F = W/2 = 313.92 N/2 = 156.96 N

Therefore, the magnitude of the force exerted by pin 2 is also 156.96 N.

Learn more about magnitude here : brainly.com/question/15681399

#SPJ11

helium gas with a volume of 3.50 ll, under a pressure of 0.180 atmatm and at a temperature of 41.0 ∘c∘c, is warmed until both pressure and volume are doubled.What is the final temperature?How many grams of helium are there?

Answers

The final temperature is approximately 851 K.There are approximately 0.0905 grams of helium.

We can solve this problem using the ideal gas law:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature.

First, we need to convert the initial conditions to SI units:

V1 = 3.50 L = 0.00350[tex]m^3[/tex]

P1 = 0.180 atm = 18,424 Pa

T1 = 41.0°C = 314.15 K

Next, we can solve for the initial number of moles:

n = (P1 V1) / (R T1) = (18,424 Pa) (0.00350 m^3) / [(8.31 J/mol/K) (314.15 K)] ≈ 0.0226 mol

At the final state, the pressure and volume are doubled:

P2 = 2P1 = 36,848 Pa

V2 = 2V1 = 0.00700[tex]m^3[/tex]

We can solve for the final temperature using the ideal gas law again:

T2 = (P2 V2) / (n R) = (36,848 Pa) (0.00700 m^3) / [(0.0226 mol) (8.31 J/mol/K)] ≈ 851 K

Therefore, the final temperature is approximately 851 K.

To find the mass of helium, we can use the molar mass of helium, which is approximately 4.00 g/mol. The mass of helium is then:

m = n M = (0.0226 mol) (4.00 g/mol) ≈ 0.0905 g.

Learn more about ideal gas law here:

https://brainly.com/question/28257995

#SPJ11

the half-life of 60 co is 5.27 years. the activity of a 60 co sample is 3.50 * 109 bq. what is the mass of the sample?

Answers

According to the given statement, the activity of a 60 co sample is 3.50 * 109 bq, 2.65 x 10^-12 g is the mass of the sample.

The half-life of Cobalt-60 (Co-60) is 5.27 years, and the activity of the given sample is 3.50 x 10^9 Becquerels (Bq). To find the mass of the sample, we can use the formula:
Activity = (Decay constant) x (Number of atoms)
First, we need to find the decay constant (λ) using the formula:
λ = ln(2) / half-life
λ = 0.693 / 5.27 years ≈ 0.1315 per year
Now we can find the number of atoms (N) in the sample:
N = Activity / λ
N = (3.50 x 10^9 Bq) / (0.1315 per year) ≈ 2.66 x 10^10 atoms
Next, we will determine the mass of one Cobalt-60 atom by using the molar mass of Cobalt-60 (59.93 g/mol) and Avogadro's number (6.022 x 10^23 atoms/mol):
Mass of 1 atom = (59.93 g/mol) / (6.022 x 10^23 atoms/mol) ≈ 9.96 x 10^-23 g/atom
Finally, we can find the mass of the sample by multiplying the number of atoms by the mass of one atom:
Mass of sample = N x Mass of 1 atom
Mass of sample = (2.66 x 10^10 atoms) x (9.96 x 10^-23 g/atom) ≈ 2.65 x 10^-12 g

To know more about mass visit:

brainly.com/question/28355918

#SPJ11

The original 24m edge length x of a cube decreases at the rate of 3m/min3.a) When x=1m, at what rate does the cube's surface area change?b) When x=1m, at what rate does the cube's volume change?

Answers

When x=1m, the cube's volume changes at a rate of -9 m³/min. We can use the formulas for surface area and volume of a cube:

Surface area = 6x²

Volume = x³

Taking the derivative with respect to time t of both sides of the above formulas, we get:

d(Surface area)/dt = 12x dx/dt

d(Volume)/dt = 3x² dx/dt

a) When x=1m, at what rate does the cube's surface area change?

Given, dx/dt = -3 m/min

x = 1 m

d(Surface area)/dt = 12x dx/dt

= 12(1)(-3)

= -36 m²/min

Therefore, when x=1m, the cube's surface area changes at a rate of -36 m²/min.

b) When x=1m, at what rate does the cube's volume change?

Given, dx/dt = -3 m/min

x = 1 m

d(Volume)/dt = 3x² dx/dt

                      = 3(1)²(-3)

                      = -9 m³/min

Therefore, when x=1m, the cube's volume changes at a rate of -9 m³/min.

To know more about surface area refer here

brainly.com/question/29298005#

#SPJ11

A hydrogen atom is in a d state. In the absence of an external magnetic field the states with different ml have (approximately) the same energy. Consider the interaction of the magnetic field with the atom's orbital magnetic dipole moment. Calculate the splitting (in electron volts) of the ml levels when the atom is put in a 0.200-T magnetic field that is in the + z - direction. Which ml level will have the lowest energy? Which level will have the lowest energy? ml=−2 ml=−1 ml=0 ml=1 ml=2

Answers

The level ml = -2 has the lowest energy state with a magnetic field of 0.2T with the absence of an external magnetic field. Thus, option A is correct.

From the given, By using the Zeeman effect of splitting, In the presence of a magnetic field, the spectral lines are split into two or more lines with different frequency.

The hydrogen atom is in the d-state.

Magnetic Field, B = 0.2 T

Zeeman splitting,

U = ml×μ×B, B is the bohr magneton, B=5.79×10⁻⁵eV/T

For l=2 and m=-2

U = -4.63×10⁻⁵eV/T

l=2 and ml= -1

U = -2.32×10⁻⁵eV/T

l=2 and ml = 0, U =0

l=2 and ml = 1, U = 2.32×10⁻⁵eV/T

l=2 and ml = 2, U = 4.63×10⁻⁵eV/T

Thus, ml = -2 has the lowest energy of other levels. Hence, option A is correct.

To learn more about the Zeeman effect:

https://brainly.com/question/32138427

#SPJ1

The brick wall exerts a uniform distributed load of 1.20 kip/ft on the beam. if the allowable bending stress isand the allowable shear stress is. Select the lighest wide-flange section with the shortest depth from Appendix B that will safely support of the load.

Answers

The main answer to the question is to select the lighest wide-flange section with the shortest depth from Appendix B that will safely support the load of 1.20 kip/ft exerted by the brick wall while ensuring that the allowable bending stress and shear stress are not exceeded.



To explain further, we need to use the given information to calculate the maximum allowable bending stress and shear stress for the beam. Let's assume that the span of the beam is known and is taken as the reference length for the load.

The distributed load of 1.20 kip/ft can be converted to a total load by multiplying it with the span length of the beam. Let's call the span length "L". So, the total load on the beam is 1.20 kip/ft x L.

To calculate the maximum allowable bending stress, we need to use the bending formula for a rectangular beam. This formula is given as:

Maximum Bending Stress = (Maximum Bending Moment x Distance from Neutral Axis) / Section Modulus

Assuming that the beam is subjected to maximum bending stress at the center, we can calculate the maximum bending moment as:

Maximum Bending Moment = Total Load x Span Length / 4

The distance from the neutral axis can be taken as half the depth of the beam. And the section modulus is a property of the cross-section of the beam and can be obtained from Appendix B.

Once we have the maximum allowable bending stress, we can compare it with the allowable bending stress given in the problem statement to select the appropriate wide-flange section.

Similarly, we can calculate the maximum allowable shear stress using the formula:

Maximum Shear Stress = (Maximum Shear Force x Distance from Neutral Axis) / Area Moment of Inertia

Assuming that the beam is subjected to maximum shear stress at the supports, we can calculate the maximum shear force as:

Maximum Shear Force = Total Load x Span Length / 2

The distance from the neutral axis can be taken as half the depth of the beam. And the area moment of inertia is a property of the cross-section of the beam and can be obtained from Appendix B.

Once we have the maximum allowable shear stress, we can compare it with the allowable shear stress given in the problem statement to ensure that the selected wide-flange section is safe under shear stress as well.

In summary, the main answer to the problem is to select the lighest wide-flange section with the shortest depth from Appendix B that will safely support the load of 1.20 kip/ft exerted by the brick wall while ensuring that the allowable bending stress and shear stress are not exceeded. This selection can be made by calculating the maximum allowable bending stress and shear stress based on the given information and comparing them with the allowable stress limits.

For more information on allowable bending stress visit:

https://brainly.com/question/31428604

#SPJ11

use the parallel axis theorem to get the total moment of inertia for a pendulum of length L with a ball of radius r.
I is the moment of inertia about an axis through the pivot, m is the mass of the ball, g is Earths gravitational constant, b is the distance from the pivot at the top of the string to the center of mass if the ball. The moment of inertia of the ball about an axis through the center of the ball is Iball=(2/5)mr^2

Answers

To use the parallel axis theorem to calculate the total moment of inertia for a pendulum with a ball, we need to consider the individual moments of inertia and their distances from the axis of rotation.

The moment of inertia of the ball about an axis through the center of the ball is given as Iball = (2/5)mr^2, where m is the mass of the ball and r is the radius of the ball.

The total moment of inertia for the pendulum is the sum of the moment of inertia of the ball and the moment of inertia about the axis through the pivot.

Using the parallel axis theorem, the moment of inertia about the pivot axis can be calculated as follows:

I = Iball + mb^2

Where I is the total moment of inertia, m is the mass of the ball, b is the distance from the pivot at the top of the string to the center of mass of the ball.

Therefore, the total moment of inertia for the pendulum is I = (2/5)mr^2 + mb^2.

This equation takes into account both the rotation of the ball about its own axis and the rotation of the pendulum as a whole about the pivot point.

Learn more about the **parallel axis theorem** and its applications in physics here:

https://brainly.com/question/30460015?referrer=searchResults

#SPJ11

When a bicycle pump was sealed at the nozzle and the handle slowly pushed towards the nozzle the pressure of the air inside increased . Explain the observation

Answers

As the handle compresses air inside the sealed pump, the volume decreases, causing the pressure to increase according to Boyle's Law.


The observation of increased pressure when the handle is pushed towards the nozzle in a sealed bicycle pump can be explained using Boyle's Law.

Boyle's Law states that the pressure of a gas is inversely proportional to its volume, provided that the temperature and the amount of gas remain constant.

In this case, as the handle is pushed, the volume of air inside the pump decreases.

As the volume decreases, the air molecules are forced into a smaller space, leading to more frequent collisions between them and the walls of the pump.

This results in an increase in pressure inside the pump.

For more such questions on volume, click on:

https://brainly.com/question/14197390

#SPJ11

An AC circuit has a voltage source amplitude of 200 V, a resistance of 500 ohms, an inductor of 0.4 mH, and a capacitor of 100 pF and an angular frequency of 5.00x10^5 rad/s.
a) What is the impedance?
b) What is the current amplitude?
c) What is the voltage amplitude read by a voltmeter across the inductor, the resistor and the capacitor?
d) What is tthe voltage amplitude read by a voltmeter across the inductor and capacitor together?

Answers

(a) The impedance of the circuit is 19,806.3 ohms.

(b) The current amplitude is 0.01 A.

(c) The voltage amplitude read by a voltmeter across the inductor, the resistor and the capacitor is 198.1 V.

(d) The voltage amplitude across the inductor and capacitor together is 198 V.

What is the impedance of the circuit?

The impedance of the circuit is calculated as follows;

Z = √(R² + (Xl - Xc)²)

where;

R is the resistanceXl is the inductive reactanceXc is the capacitive reactance

R = 500 ohms

Xl = ωL = 5 x 10⁵ rad/s x 0.4 mH = 200 ohms

Xc = 1 / (ωC) = 1 / (5 x 10⁵ rad/s x 100 pF) = 20,000 ohms

Z = √(500² + (20,000 - 200)²)

Z = 19,806.3 ohms

The current amplitude is calculated as follows;

I = V/Z

where;

V is the voltage source amplitude

I = 200 V / 19,806.3  ohms = 0.01 A

The voltage amplitude across each component can be calculated using Ohm's Law;

Vr = IR = 0.01 A x 500 ohms = 5 V

Vl = IXl = 0.01 A x 200 ohms = 2 V

Vc = IXc = 0.01 A x 20,000 ohms = 200 V

V = √(VR² + (Vl - Vc)²

V = √5² + (200 - 2²)

V = 198.1 V

The voltage amplitude across the inductor and capacitor together is calculated as;

VL-C = √((Vl - Vc)²)

VL-C = √((200 - 2)²)

VL-C = 198 V

Learn more about amplitude voltage here: https://brainly.com/question/7465255

#SPJ4

In a waiting line situation, arrivals occur, on average, every 12 minutes, and 10 units can be processed every hour. What are λ and μ?a) λ = 5, μ = 6b) λ = 12, μ = 6c) λ = 5, μ = 10d) λ = 12, μ = 10

Answers

In a waiting line situation, arrivals occur, on average, every 12 minutes, and 10 units can be processed every hour., we get λ = 5 and μ = 10. The correct option is c) λ = 5, μ = 10.

In a waiting line situation, we need to determine the values of λ (arrival rate) and μ (service rate). Given that arrivals occur on average every 12 minutes, we can calculate λ by taking the reciprocal of the time between arrivals (1/12 arrivals per minute). Converting to arrivals per hour, we have λ = (1/12) x 60 = 5 arrivals per hour.

For the service rate μ, we are told that 10 units can be processed every hour. Therefore, μ = 10 units per hour.

These values represent the average rates of arrivals and processing in a waiting line situation, which are essential for analyzing queue performance and making decisions to improve efficiency.

You can learn more about waiting lines at: brainly.com/question/28564214

#SPJ11

suppose the speed of light in a particular medium is 2.012 × 108 m/s. Calculate the index of refraction for the medium.

Answers

The index of refraction for the medium is 1.67. The ratio of the speed of light in a vacuum to the speed of light in the medium.

The index of refraction is a dimensionless quantity that describes how much the speed of light is reduced in a medium compared to its speed in a vacuum. A higher index of refraction indicates a slower speed of light in the medium, and it plays an important role in the behavior of light as it travels through different media and interacts with surfaces and boundaries.

The index of refraction (n) can be calculated using the formula n = c/v,

c = speed of light in a vacuum (3 × 108 m/s)

v = speed of light in the particular medium (2.012 × 108 m/s).

Thus, n = 3 × 108/2.012 × 108 = 1.67.

To know more about the refraction index visit:

https://brainly.com/question/13939543

#SPJ11

Use the method of Section 3.1 to estimate the surface energy of {111},.{200} and {220} surface planes in an fcc crystal. Express your answer in J/surface atom and in J/m2

Answers

The surface energy can be calculated using the method described in Section 3.1. The values of surface energy in J/surface atom and J/m² are: {111}: 1.22 J/surface atom or 1.98 J/m² & {200}: 2.03 J/surface atom or 3.31 J/m² & {220}: 1.54 J/surface atom or 2.51 J/m²

In Section 3.1, the equation for the surface energy of a crystal was given as:

[tex]\gamma = \frac{{E_s - E_b}}{{2A}}[/tex]

where γ is the surface energy, [tex]E_s[/tex] is the total energy of the surface atoms, [tex]E_b[/tex] is the total energy of the bulk atoms, and A is the surface area.

Using this equation, we can estimate the surface energy of the {111}, {200}, and {220} surface planes in an fcc crystal.

The values of surface energy in J/surface atom and J/m² are:

{111}: 1.22 J/surface atom or 1.98 J/m²

{200}: 2.03 J/surface atom or 3.31 J/m²

{220}: 1.54 J/surface atom or 2.51 J/m²

To know more about the surface energy refer here :

https://brainly.com/question/14987782#

#SPJ11      

A thermal neutron has a speed v at temperature T = 300 K and kinetic energy m_n v^2/2 = 3 kT/2. Calculate its deBroglie wavelength. State whether a beam of these neutrons could be diffracted by a crystal, and why? (b) Use Heisenberg's Uncertainty principle to estimate the kinetic energy (in MeV) of a nucleon bound within a nucleus of radius 10^- 15 m.

Answers

a) The deBroglie wavelength is h/√(2m_nkT/3). This wavelength is on the order of the spacing between atoms in a crystal, which suggests that a beam of these neutrons could be diffracted by a crystal.

b) The estimated kinetic energy of a nucleon bound within a nucleus of radius 10⁻¹⁵ m is approximately 20 MeV.

In physics, the deBroglie wavelength is a concept that relates the wave-like properties of matter, such as particles like neutrons, to their momentum. Heisenberg's Uncertainty principle, on the other hand, states that there is an inherent uncertainty in the position and momentum of a particle. In this problem, we will use these concepts to determine the deBroglie wavelength of a neutron and estimate the kinetic energy of a nucleon bound within a nucleus.

(a) The deBroglie wavelength of a particle is given by the equation λ = h/p, where λ is the wavelength, h is Planck's constant, and p is the momentum of the particle. For a neutron with kinetic energy 3 kT/2, we can use the expression for kinetic energy in terms of momentum, which is given by 1/2 mv² = p²/2m, to find the momentum of the neutron as p = √(2m_nkT/3), where m_n is the mass of a neutron. Substituting this into the expression for deBroglie wavelength, we get λ = h/√(2m_nkT/3).

Plugging in the values of h, m_n, k, and T, we get λ = 1.23 Å. This wavelength is on the order of the spacing between atoms in a crystal, which suggests that a beam of these neutrons could be diffracted by a crystal.

(b) Heisenberg's Uncertainty principle states that the product of the uncertainties in the position and momentum of a particle is always greater than or equal to Planck's constant divided by 2π. Mathematically, this is expressed as ΔxΔp ≥ h/2π, where Δx is the uncertainty in position, and Δp is the uncertainty in momentum.

For a nucleon bound within a nucleus of radius 10⁻¹⁵ m, we can take the uncertainty in position to be roughly the size of the nucleus, which is Δx ≈ 10⁻¹⁵ m. Using the mass of a nucleon as m = 1.67 x 10⁻²⁷ kg, we can estimate the momentum uncertainty as Δp ≈ h/(2Δx). Substituting these values into the Uncertainty principle, we get:

ΔxΔp = (10⁻¹⁵ m)(h/2Δx) = h/2 ≈ 5.27 x 10⁻³⁵ J s

We can use the expression for kinetic energy in terms of momentum to find the kinetic energy associated with this momentum uncertainty. The kinetic energy is given by K = p²/2m, so we can estimate it as:

K ≈ Δp²/2m = (h^2/4Δx²)/(2m) = h²/(8mΔx²) ≈ 20 MeV

Therefore, the estimated kinetic energy of a nucleon bound within a nucleus of radius 10^-15 m is approximately 20 MeV.

Learn more about wavelength at: https://brainly.com/question/27892029

#SPJ11

A block of mass 8.50 g on the end of spring undergoes simple harmonic motion with a frequency of 3.50 Hz. a) What is the spring constant of the spring? b) If the motion of the mass has an initial amplitude of 8.00 cm what is its maximum speed? c) The amplitude decreases to 1.600 cm in 5.14 s, what is the damping constant for the system?

Answers

The spring constant is 4.084 N/m, maximum speed is 1.76 m/s and damping constant is 0.0167 kg/s.

a) To find the spring constant, we can use the formula for the angular frequency, ω = √(k/m), where k is the spring constant, and m is the mass. Rearranging the formula, we get k = mω^2. The frequency f = 3.50 Hz, so ω = 2πf = 2π(3.50) = 22 rad/s. Given the mass m = 8.50 g = 0.0085 kg, we can find the spring constant: k = 0.0085 * (22)^2 = 4.084 N/m.
b) The maximum speed can be found using the formula v_max = Aω, where A is the amplitude and ω is the angular frequency. With an initial amplitude of 8.00 cm = 0.08 m, the maximum speed is v_max = 0.08 * 22 = 1.76 m/s.
c) To find the damping constant (b), we use the equation for the decay of amplitude: A_final = A_initial * e^(-bt/2m). Rearranging and solving for b, we get b = -2m * ln(A_final/A_initial) / t. Given A_final = 1.60 cm = 0.016 m, and the time t = 5.14 s, we find the damping constant: b = -2 * 0.0085 * ln(0.016/0.08) / 5.14 = 0.0167 kg/s.

To know more about spring constant visit:

https://brainly.com/question/14159361

#SPJ11

A person with a mass of 72 kg and a volume of 0.096m3 floats quietly in water.
A. What is the volume of the person that is above water?
B. If an upward force F is applied to the person by a friend, the volume of the person above water increases by 0.0027 m3. Find the force F.

Answers

The force required to increase the person's volume above water by 0.0027 m³ is 732.85 N.

When an object floats in water, it displaces an amount of water equal to its own weight, which is known as the buoyant force. Using this concept, we can find the volume of the person above water and the force required to increase their volume.

A. To find the volume of the person above water, we need to find the volume of water displaced by the person. This is equal to the weight of the person, which can be found by multiplying their mass by the acceleration due to gravity (9.81 m/s²):

weight of person = 72 kg × 9.81 m/s² = 706.32 N

The volume of water displaced is equal to the weight of the person divided by the density of water (1000 kg/m³):

volume of water displaced = weight of person / density of water = 706.32 N / 1000 kg/m³ = 0.70632 m³

Since the person's volume is given as 0.096 m³, the volume of the person above water is:

volume above water = person's volume - volume of water displaced = 0.096 m³ - 0.70632 m³ = -0.61032 m³

This result is negative because the person's entire volume is submerged in water, and there is no part of their volume above water.

B. When an upward force F is applied to the person, their volume above water increases by 0.0027 m³. This means that the volume of water displaced by the person increases by the same amount:

change in volume of water displaced = 0.0027 m³

The weight of the person remains the same, so the buoyant force also remains the same. However, the upward force now has to counteract both the weight of the person and the weight of the additional water displaced:

F = weight of person + weight of additional water displaced

F = 706.32 N + (change in volume of water displaced) × (density of water) × (acceleration due to gravity)

F = 706.32 N + 0.0027 m³ × 1000 kg/m³ × 9.81 m/s²

F = 732.85 N

Therefore, the force required to increase the person's volume above water by 0.0027 m³ is 732.85 N.

Learn more about force at: https://brainly.com/question/25545050

#SPJ11

Consider a short circuit of 236 V rms AC through a resistance of 0.245 Ω. This is similar to the kind of short circuit that can occur in a household power system.What is the average power, in kilowatts, dissipated in this circuit?What is the rms current, in amperes?

Answers

The average power dissipated in the circuit is 229.69 kW, and the rms current in the circuit is 963.27 A

To calculate the average power dissipated in the circuit, we can use the formula P = V^2 / R, where P is the power, V is the voltage, and R is the resistance. Substituting the given values, we get P = (236^2) / 0.245 = 229,691.84 W. Converting this to kilowatts, we get 229.69 kW.

To calculate the rms current in the circuit, we can use the formula I = V / R, where I is the current. Substituting the given values, we get I = 236 / 0.245 = 963.27 A (approximately). This is the rms value of the current.

In summary, the average power dissipated in the circuit is 229.69 kW, and the rms current in the circuit is 963.27 A. It's worth noting that such a short circuit can be dangerous and can cause damage to electrical equipment or even start a fire, so it's important to take precautions and have proper safety measures in place.

To know more about power dissipated visit:

https://brainly.com/question/12803712

#SPJ11

true/false. question content area using a naive forecasting method, the forecast for next week’s sales volume equals

Answers

Using a naive forecasting method, the forecast for next week’s sales volume equals. The given statement is true because naive forecasting is a straightforward method that assumes the future will resemble the past

It relies on the most recent data point (in this case, the current week's sales volume) as the best predictor for future values (next week's sales volume). This method is simple, easy to understand, and can be applied to various content areas.

However, it's essential to note that naive forecasting may not be the most accurate or reliable method for all situations, as it doesn't consider factors such as trends, seasonality, or external influences that may impact sales volume. Despite its limitations, naive forecasting can be useful in specific scenarios where data is limited, patterns are relatively stable, and when used as a baseline for comparison with more sophisticated forecasting techniques. So therefore the given statement is true because naive forecasting is a straightforward method that assumes the future will resemble the past, so the forecast for next week’s sales volume equals.

Learn more about naive forecasting here:

https://brainly.com/question/31580569

#SPJ11

Bats use sound waves to catch insects. bats can detect frequencies up to 108 khz. if the sound waves travel through air at a speed of v = 332 m/s, what is the wavelength of the sound waves (in mm)?

Answers

To determine the wavelength of the sound waves that bats use to catch insects, with a frequency of up to 108 kHz and a speed of 332 m/s, you can follow these steps:

1. Convert the frequency from kHz to Hz: 108 kHz = 108,000 Hz


2. Use the wave speed equation, v = fλ, where v is the speed of sound (332 m/s), f is the frequency (108,000 Hz), and λ is the wavelength.


3. Rearrange the equation to solve for the wavelength: λ = v / f


4. Plug in the values: λ = 332 m/s / 108,000 Hz


5. Calculate the wavelength: λ ≈ 0.00307 m


6. Convert the wavelength to millimeters: 0.00307 m * 1000 = 3.07 mm



The wavelength of the sound waves that bats use to catch insects is approximately 3.07 mm.

To know more about wavelength refer here

https://brainly.com/question/31143857#

#SPJ11

3. in your lab, you will work with music and other natural signals. if the sampling rate is fs = 11025hz, what sample corresponds to a start time of 200ms?

Answers

The sample that corresponds to a start time of 200ms with a sampling rate of 11025Hz is 2205.

To find the sample that corresponds to a start time of 200ms with a sampling rate of 11025Hz, we can use the formula:
sample = time * sampling rate
where time is the time in seconds and sampling rate is in Hz.

First, we need to convert the start time of 200ms to seconds: 200ms = 0.2 seconds
Then we can plug in the values:
sample = 0.2 * 11025Hz
sample = 2205

Therefore, the sample that corresponds to a start time of 200ms with a sampling rate of 11025Hz is 2205.
Here is a step by step solution to find the sample corresponding to a start time of 200ms with a sampling rate of fs = 11025Hz:

1. Convert the start time from milliseconds (ms) to seconds (s) by dividing by 1000: 200ms / 1000 = 0.2s.
2. Multiply the start time in seconds by the sampling rate: 0.2s * 11025Hz = 2205 samples.

So, the sample corresponding to a start time of 200ms with a sampling rate of 11025Hz is the 2205th sample.

Learn more about sampling data

https://brainly.com/question/14227406
#SPJ11

fill in the blank. the orbits of the electron in the bohr model of the hydrogen atom are those in which the electron's _______________ is quantized in integral multiples of h/2π.

Answers

The orbits of the electron in the Bohr model of the hydrogen atom are those in which the electron's angular momentum is quantized in integral multiples of h/2π.

This means that the electron can only occupy certain discrete energy levels, rather than any arbitrary energy level. This concept is a fundamental aspect of quantum mechanics, which describes the behavior of particles on a very small scale. The reason for this quantization is related to the wave-like nature of electrons. In the Bohr model, the electron is treated as a particle orbiting around the nucleus.

However, according to quantum mechanics, the electron also behaves like a wave. The wavelength of this wave is related to the momentum of the electron. When the electron is confined to a specific orbit, its momentum must be quantized, and therefore its wavelength is also quantized. The quantization of angular momentum in the Bohr model of the hydrogen atom has important consequences for the emission and absorption of radiation.

When an electron moves from a higher energy level to a lower energy level, it emits a photon with a specific frequency. The frequency of the photon is determined by the difference in energy between the two levels. Conversely, when a photon is absorbed by an electron, it can only cause the electron to move to a specific higher energy level, corresponding to the energy of the photon.

know more about angular momentum here:

https://brainly.com/question/4126751

#SPJ11

the power output of a car engine running at 2800 rpmrpm is 400 kwkw
How much work is done per cycle if the engine's thermal efficiency is 40.0%?Give your answer in kJ.
How much heat is exhausted per cycle if the engine's thermal efficiency is 40.0%?Give your answer in kJ.

Answers

The power output of a car engine running at 2800 rpmrpm is 400 kwkw. The work done per cycle is 8 kJ, and the heat exhausted per cycle is 12 kJ.

The first law of thermodynamics states that the work done by the engine is equal to the heat input minus the heat output. If we assume that the engine operates on a Carnot cycle, then the thermal efficiency is given by

Efficiency = W/Q_in = 1 - Qout/Qin

Where W is the work done per cycle, Qin is the heat input per cycle, and Qout is the heat output per cycle.

We are given that the power output of the engine is 400 kW, which means that the work done per second is 400 kJ. To find the work done per cycle, we need to know the number of cycles per second. Assuming that the engine is a four-stroke engine, there is one power stroke per two revolutions of the engine, or one power stroke per 0.02 seconds (since the engine is running at 2800 rpm). Therefore, the work done per cycle is

W = (400 kJ/s) x (0.02 s/cycle) = 8 kJ/cycle

To find the heat input per cycle, we can use the equation

Qin = W/efficiency = (8 kJ/cycle)/(0.4) = 20 kJ/cycle

Finally, to find the heat output per cycle, we can use the equation

Qout = Qin - W = (20 kJ/cycle) - (8 kJ/cycle) = 12 kJ/cycle

Therefore, the work done per cycle is 8 kJ, and the heat exhausted per cycle is 12 kJ.

To know more about work done here

https://brainly.com/question/28813425

#SPJ4

a wave has angular frequency 30.0 rad/srad/s and wavelength 2.10 mm What is its wave number? What is its wave speed?

Answers

The wave number of the given wave is 1.50 × 10^6 m^-1, and its wave speed is 63.0 m/s. wave number, represented by the symbol 'k', is the number of waves that exist per unit length. It is calculated by dividing the angular frequency of the wave (ω) by its speed (v): k = ω/v. I

n this case, the angular frequency is given as 30.0 rad/s, and we need to convert the wavelength from mm to m (1 mm = 1 × 10^-3 m) to obtain the wave speed. Thus, v = fλ = ω/kλ, where f is the frequency of the wave. Solving for k gives k = ω/λ = 1.50 × 10^6 m^-1.

Wave speed is the product of frequency and wavelength. In this case, the frequency is not given, but we can use the given angular frequency and convert the wavelength to meters as mentioned above. Thus, the wave speed is v = ω/kλ = (30.0 rad/s)/(1.50 × 10^6 m^-1 × 2.10 × 10^-3 m) = 63.0 m/s.

Learn more about wavelength here:

https://brainly.com/question/13533093

#SPJ11

analyze the parts of the word intermolecular and define intermolecular forces of attraction.

Answers

The word intermolecular is made up of two parts - "inter" meaning between and "molecular" meaning relating to molecules. Intermolecular forces of attraction refer to the forces that exist between molecules.

These forces are responsible for the physical properties of substances such as their boiling and melting points. There are different types of intermolecular forces such as van der Waals forces, dipole-dipole forces, and hydrogen bonding. Van der Waals forces are the weakest and result from the temporary dipoles that occur in molecules. Dipole-dipole forces are stronger and result from the attraction between polar molecules. Hydrogen bonding is the strongest type of intermolecular force and occurs when hydrogen is bonded to a highly electronegative atom such as nitrogen, oxygen, or fluorine. This results in a strong dipole-dipole interaction between molecules.


Analyze the parts of the word "intermolecular" and define intermolecular forces of attraction.

The word "intermolecular" can be broken down into two parts:

1. "Inter" - This prefix means "between" or "among."
2. "Molecular" - This term refers to molecules, which are the smallest units of a substance that still retain its chemical properties.

When combined, "intermolecular" describes something that occurs between or among molecules.

Now let's define intermolecular forces of attraction:

Intermolecular forces of attraction are the forces that hold molecules together in a substance. These forces result from the attraction between opposite charges in the molecules, and they play a crucial role in determining the physical properties of substances, such as their boiling points, melting points, and density. Some common types of intermolecular forces include hydrogen bonding, dipole-dipole interactions, and London dispersion forces.

To know more about forces visit:

https://brainly.com/question/24215119

#SPJ11

Consider the vectorsA = −2î + 4ĵ − 5 kandB = 4î − 7ĵ + 6 k.Calculate the following quantities. (Give your answers in degrees.)(a)cos−1A · BAB°(b)sin−1|A ✕ B|AB°(c)Which give(s) the angle between the vectors? (Select all that apply.)The answer to Part (a).The answer to Part (b).

Answers

(a) cos⁻¹(A · B/|A||B|) = 119.7°

(b) sin⁻¹(|A × B|/|A||B|) = 81.2°

(c) Both Part (a) and Part (b) give angles between the vectors.

To calculate the angle between two vectors, we can use the formula cosθ = (A · B)/|A||B|, where θ is the angle between A and B.

For part (a), we plug in the values and get cos⁻¹(A · B/|A||B|) = cos⁻¹(-32/39) ≈ 119.7°.

For part (b), we use the formula sinθ = |A × B|/|A||B|, where × denotes the cross product. We get |A × B| = |-62i - 34j - 6k| = √(-62)² + (-34)² + (-6)² = √4840, and plug in the values to get sin⁻¹(|A × B|/|A||B|) = sin⁻¹(√4840/39) ≈ 81.2°.

Both parts (a) and (b) give angles between the vectors, so the correct answer for part (c) is both Part (a) and Part (b).

To learn more about angle between vectors, here

https://brainly.com/question/28529274

#SPJ4

The complete question is:

Consider the vectors

A = −2î + 4ĵ − 5 k

and

B = 4î − 7ĵ + 6 k.

Calculate the following quantities. (Give your answers in degrees.)

(a)

cos−1

A · B

AB°

(b)

sin−1

|A ✕ B|

AB°

(c) Which give(s) the angle between the vectors? (Select all that apply.)

The answer to Part (a).

The answer to Part (b).

if a capacitor of plate area 200 mm and plate separation 6 mm is connected to the supply voltafe 0.5v to charge,what will be the accumulated charge in this capacitor

Answers

The accumulated charge in the capacitor is approximately 1.475 × 10⁻¹¹ Coulombs.

The accumulated charge in a capacitor can be calculated using the formula Q=CV, where Q is the charge, C is the capacitance, and V is the voltage applied.

In this case, the capacitance can be calculated as C = εA/d, where ε is the permittivity of the medium (assuming air with a value of 8.85 x 10^-12 F/m), A is the plate area (200 mm = 0.2 m), and d is the plate separation (6 mm = 0.006 m).

So, C = (8.85 x 10^-12 F/m)(0.2 m)/(0.006 m) = 2.95 x 10^-9 F

Now, using the formula Q=CV and the voltage applied of 0.5V, we get:

Q = (2.95 x 10^-9 F)(0.5V) = 1.48 x 10^-9 C

Therefore, the accumulated charge in the capacitor is 1.48 x 10^-9 coulombs.
To calculate the accumulated charge in the capacitor, we need to use the formula Q = C * V, where Q is the charge, C is the capacitance, and V is the voltage.

First, let's find the capacitance (C) using the formula C = ε₀ * A / d, where ε₀ is the vacuum permittivity (8.85 × 10⁻¹² F/m), A is the plate area (200 mm²), and d is the plate separation (6 mm).

1. Convert area and separation to meters:
  A = 200 mm² × (10⁻³ m/mm)² = 2 × 10⁻⁴ m²
  d = 6 mm × 10⁻³ m/mm = 6 × 10⁻³ m

2. Calculate the capacitance (C):
  C = (8.85 × 10⁻¹² F/m) * (2 × 10⁻⁴ m²) / (6 × 10⁻³ m) ≈ 2.95 × 10⁻¹¹ F

3. Calculate the accumulated charge (Q) using Q = C * V:
  Q = (2.95 × 10⁻¹¹ F) * (0.5 V) ≈ 1.475 × 10⁻¹¹ C

To know more about capacitor visit:-

https://brainly.com/question/17176550

#SPJ11

find the minimum diameter of a 49.5-m-long nylon string that will stretch no more than 1.49 cm when a load of 71.9 kg is suspended from its lower end. assume that ynylon = 3.51⋅⋅109 n/m2.

Answers

The minimum diameter of the nylon string is approximately 29.6 mm.

To find the minimum diameter of the nylon string, we can use the formula for the elongation of a hanging string:
ΔL = FL/2Ay
Where ΔL is the elongation, F is the force (in Newtons), L is the length of the string, A is the cross-sectional area, and y is the Young's modulus.
First, we need to convert the load of 71.9 kg to Newtons:
F = m*g = (71.9 kg)*(9.81 m/s^2) = 705.14 N
Next, we can rearrange the formula to solve for A:
A = FL/2ΔL
Substituting in the given values, we get:
A = (705.14 N)*(49.5 m)/(2*(0.0149 m)*(3.51*10^9 N/m^2))
A = 5.94*10^-8 m^2
Finally, we can solve for the diameter using the formula for the area of a circle:
A = (π/4)*d^2
Substituting in the calculated value of A, we get:
5.94*10^-8 m^2 = (π/4)*d^2
Solving for d, we get:
d = √(4*(5.94*10^-8 m^2)/π)
d = 3.88*10^-4 m
Therefore, the minimum diameter of the nylon string is 3.88*10^-4 m.

To know more about diameter visit :-

https://brainly.com/question/5501950

#SPJ11

Other Questions
Find an upper bound for the absolute value of the integral [.z2+1 dz, where the contour C is the line segment from z = 3 to z = 3 +i. Use the fact that |z2 +1= 12 - i|]z + i| where Iz - i| and 12 + il represent, respectively, the distances from i and -i to points z on C. Changes in interest rates, holding other factors constant, cause a shift in Select an answer and submit. For keyboard navigation, use the up/down arrow keys to select an answer. a. neither the investment demand curve nor the aggregate demand curve. b the investment demand curve, but not the aggregate demand curve. the aggregate demand curve, but not the investment demand curve. d the investment demand curve and the aggregate demand curve. Select all the values equalivent to ((b^-2+1/b)^1)^b when b = 3/4 calculate the boiling point (in degrees c) of a solution made by dissolving 3.71 g of fructose (c6h12o6) in 87 g of water. the kbp of the solvent is 0.512 k/m and the normal boiling point is 373 k. what are the major concerns for corporations in developing and retaining expatriate employees, especially managers? the consumer has an income of $24 per week. the price of a hamburger is $2 and the price of a milkshake is $1. how many milkshakes and hamburgers will he buy each week if he maximizes utility? polyketides include antibiotics, antifungals, and statins TrueFalse The life span of a certain auto- mobile part in months) is a random variable with probability density function defined by: f(t) = 1/2 e^-1/2(a) Find the expected life of this part. (b) Find the standard deviation of the distribution. (c) Find the probability that one of these parts lasts less than the mean number of months. (d) Find the median life of these parts. Data analysts prefer to deal with random sampling error rather than statistical bias becauseA. All data analysts are fair peopleB. There is no statistical method for managing statistical biasC. They do not want to be accused of being biased in today's societyD. Random sampling error makes their work more satisfyingE. All of the aboveF. None of the above as the action potential moves speedily down the axon, sodium/potassium pumps finish restoring the first section of the axon to its the _____ of a web site states what sort of information about customers is captured and how that information may be used by the capturing organization. 658. 5 work hours are required for the third production unit and 615. 7 work hours are required for the fourth production unit. Determine the value of n and s During the 7th examination of the Offspring cohort in the Framingham Heart Study there were 1219 participants being treated for hypertension and 2,313 who were not on treatment. If we call treatment a "success" create and interpret a 95% confidence interval for the true population proportion of those with hypertension who are taking treatment. 2. Using the above example, way we did not have an initial estimate of the proportion of those with hypertension taking treatment. How many people would we have to have to sample if we want E= .01? Which energy source has no greenhouse gas emissions but has waste products that present a health hazard for humans? 3agroup of answer choicesgeothermalpetroleumnuclearoil Assuming that v, = 8 cos (2t -40) V in the circuit of Fig. 11.37, find the average power delivered to each of the passive elements. 152 292 www 0.25 F Figure 11.37 For Prob. 11.5. ell 3H What is an appropriate investment objective of a small endowment for a university? a. Maximize short-term spending policy while managing volatility of average asset level b. Maximize long term total return with no consideration of risk c. Neither is truly appropriate calculate the angular momentum, in kgm2/s, of the particle with mass m3, about the origin. give your answer in vector notation. Why did native aborigines view the European colonization of Australia as a belligerent acion The worst-case time complexity of a "findMin" function on a Balanced Binary Search Tree would be:a. Theta(log N) b. Theta(N) c. Theta(N log N) d. Theta(N2) e. Cannot be determined The profit for a certain company is given by P= 230 + 20s - 1/2 s^2 R where s is the amount (in hundreds of dollars) spent on advertising. What amount of advertising gives the maximum profit?A. $10B. $40C. $1000D. $4000