Complete and balance the following redox reaction in acidic solution. Be sure to include the proper phases for all species within the reaction.
ReO4^-(aq)+MnO2(s)==>Re(s)+MnO4^-(aq)

Answers

Answer 1

The balanced equation is:

6MnO2(s) + 7ReO4^-(aq) + 24H+ → 7Re(s) + 24H2O(l) + 6MnO4^-(aq)

The unbalanced equation is:

ReO4^-(aq) + MnO2(s) → Re(s) + MnO4^-(aq)

First, we need to determine the oxidation states of each element:

ReO4^-: Re is in the +7 oxidation state, while each O is in the -2 oxidation state, so the total charge on the ion is -1.

MnO2: Mn is in the +4 oxidation state, while each O is in the -2 oxidation state, so the compound has no overall charge.

We can see that Re is being reduced, going from a +7 oxidation state to 0, while Mn is being oxidized, going from a +4 oxidation state to a +7 oxidation state.

To balance the equation, we start by balancing the atoms of each element, starting with the ones that appear in the least number of species:

ReO4^-(aq) + 4MnO2(s) → Re(s) + 4MnO4^-(aq)

Now, we balance the oxygens by adding H2O:

ReO4^-(aq) + 4MnO2(s) → Re(s) + 4MnO4^-(aq) + 2H2O(l)

Now, we balance the hydrogens by adding H+:

ReO4^-(aq) + 4MnO2(s) + 8H+ → Re(s) + 4MnO4^-(aq) + 2H2O(l)

Now, we check that the charges are balanced by adding electrons:

ReO4^-(aq) + 4MnO2(s) + 8H+ → Re(s) + 4MnO4^-(aq) + 2H2O(l) + 8e^-

Finally, we multiply each half-reaction by the appropriate coefficient to balance the electrons:

ReO4^-(aq) + 4MnO2(s) + 8H+ → Re(s) + 4MnO4^-(aq) + 2H2O(l) + 8e^-

7e^- + 8H+ + ReO4^-(aq) → Re(s) + 4H2O(l)

Now we add the two half-reactions together and simplify to get the balanced overall equation:

ReO4^-(aq) + 4MnO2(s) + 8H+ → Re(s) + 4MnO4^-(aq) + 2H2O(l) + 8e^-

7e^- + 8H+ + ReO4^-(aq) → Re(s) + 4H2O(l)

6MnO2(s) + 7ReO4^-(aq) + 24H+ → 7Re(s) + 24H2O(l) + 6MnO4^-(aq)

For more question on balanced equation click on

https://brainly.com/question/30196693

#SPJ11


Related Questions

Indicate whether solutions of each of the following substance contain ions, molecules, or both (do not consider the solvent, water):
a) hydrochloric acid, a strong acid
b) sodium citrate, a soluble salt
c) acetic acid, a weak acid
d) ethanol, a nonelectrolyte

Answers

The substances hydrochloric acid, a strong acid contains ions, Sodium citrate, a soluble salt contains ions,  Acetic acid, a weak acid contains both ions and molecules, Ethanol, a nonelectrolyte contains only molecules.

Hydrochloric acid, a strong acid, ionizes completely in water to form H⁺ and Cl⁻ ions. So, the solution of hydrochloric acid contains ions.

Sodium citrate, a soluble salt, dissociates into Na⁺ and citrate ions in water. So, the solution of sodium citrate contains ions.

Acetic acid, a weak acid, partially dissociates into H⁺ and acetate ions in water. So, the solution of acetic acid contains both ions and molecules.

Ethanol, a nonelectrolyte, does not dissociate into ions in water. So, the solution of ethanol contains only molecules.

To know more about Hydrochloric acid here

https://brainly.com/question/15231576

#SPJ4

Which equation is an example of a redox reaction?


A. HCI + KOH — KCl + H20


B. BaCl2 + Na2S04 - 2NaCl + BaSO4


C. Ca(OH)2 + H2SO3 → 2H20 + CaSO3


D. 2K + CaBr2 — 2KBr + Ca

Answers

The equation that is an example of a redox reaction is option B, BaCl2 + Na2SO4 - 2NaCl + BaSO4.

In a redox reaction, both oxidation and reduction occur. In option B, BaCl2 loses electrons and is oxidized to BaSO4 while Na2SO4 gains electrons and is reduced to NaCl.

This exchange of electrons is what makes it a redox reaction. Option A is a neutralization reaction, option C is a double displacement reaction, and option D is an exchange reaction. Therefore, option B is the only equation that fits the criteria for a redox reaction.

Learn more about neutralization here.

https://brainly.com/questions/14156911

#SPJ11

Given the following electrochemical cell, calculate the potential for the cell in which the concentration of Ag+ is 0.0285 M, the pH of the H+ cell is 2.500, and the pressure for H2 is held constant at 1 atm. The temperature is held constant at 55°C

Answers

According to the question to calculate the potential of the cell, the potential of the cell is 0.7816 V at a temperature of 55°C.

The electrochemical cell given in the question can be represented as follows:
Ag(s) | Ag+(0.0285 M) || H+(pH = 2.500) | H2(1 atm)
To calculate the potential of the cell, we need to use the Nernst equation, which is given as:
Ecell = E°cell - (RT/nF)lnQ
Where E°cell is the standard cell potential, R is the gas constant, T is the temperature, n is the number of electrons transferred, F is the Faraday constant, and Q is the reaction quotient.
In this case, the reaction taking place in the cell can be written as:
Ag+(aq) + H2(g) → Ag(s) + H+(aq)
The balanced equation shows that two electrons are transferred during the reaction. The standard cell potential for this reaction can be found in a table of standard reduction potentials and is 0.799 V.
To calculate the reaction quotient Q, we need to use the concentrations of the species involved. The concentration of Ag+ is given as 0.0285 M, and the pH of the H+ cell is 2.500, which means that the concentration of H+ is 3.16 x 10^-3 M. The pressure of H2 is held constant at 1 atm. Therefore, Q can be calculated as:
Q = [Ag+][H+]/(PH2)
Q = (0.0285)(3.16 x 10^-3)/(1)
Q = 8.994 x 10^-5
Substituting the values in the Nernst equation, we get:
Ecell = 0.799 - (0.0257/2)ln(8.994 x 10^-5)
Ecell = 0.799 - 0.0174
Ecell = 0.7816 V
Therefore, the potential of the cell is 0.7816 V at a temperature of 55°C.

To know more about electrochemical cell visit :

https://brainly.com/question/31149864

#SPJ11

what two amino acids make up the following artificial sweetener? a) phenylalanine and aspartate. b) phenylalanine and asparagine. c) tyrosine and asparagine. d) phenylalanine and glycine.

Answers

The two amino acids make up the following artificial sweetener are phenylalanine and aspartate.

The artificial sweetener you are referring to is aspartame. Aspartame is made up of two amino acids, which are phenylalanine and aspartate. Amino acids are molecules that combine to form proteins. They contain two functional groups amine and carboxylic group. Aspartame is an artificial non-saccharide sweetener 200 times sweeter than sucrose and is commonly used as a sugar substitute in foods and beverages. Phenylalanine is an essential α-amino acid with the formula C ₉H ₁₁NO ₂. It can be viewed as a benzyl group substituted for the methyl group of alanine, or a phenyl group in place of a terminal hydrogen of alanine.

Therefore, the correct answer is option a) phenylalanine and aspartate.

For more questions on amino acids: https://brainly.com/question/15334292

#SPJ11

how many mol of a gas of molar mass 29.0 g/mol and rms speed 811 m/s does it take to have a total average translational kinetic energy of 15300 j

Answers

0.061 mol of a gas of molar mass 29.0 g/mol and rms speed 811 m/s does it take to have a total average translational kinetic energy of 15300 J.

To answer this question, we need to use the formula for the average translational kinetic energy of a gas:
[tex]E=(\frac{3}{2} )kT[/tex]
where E is the average translational kinetic energy, k is the Boltzmann constant (1.38 x 10⁻²³ J/K), and T is the temperature in Kelvin. We can solve for T:
T = (2/3)(E/k)
Now we need to find the temperature that corresponds to an average translational kinetic energy of 15300 J. Plugging this into the equation above, we get:
T = (2/3)(15300 J / 1.38 x 10⁻²³ J/K) = 1.4 x 10²⁶ K
Next, we can use the formula for rms speed of a gas:
[tex]V_rms=\sqrt{3kT/m}[/tex]
where m is the molar mass of the gas. We can solve for the number of moles of gas (n) that has an rms speed of 811 m/s:
n = m / M
where M is the molar mass in kg/mol. Plugging in the given values, we get:
v_rms = √(3kT/m) = √(3(1.38 x 10^⁻²³J/K)(1.4 x 10²⁶ K) / (29.0 g/mol)(0.001 kg/g)) = 1434 m/s
n = m / M = 29.0 g / (0.001 kg/mol) = 0.029 mol
Finally, we can use the formula for the rms speed to solve for the number of moles of gas that has an average translational kinetic energy of 15300 J:
E = (3/2)kT = (3/2)(1.38 x 10⁻²³J/K)(1.4 x 10²⁶ K) = 2.44 x 10⁻¹⁷ J
n = (2E / (3kT)) ₓ (M / m) = (2(15300 J) / (3(1.38 x 10⁻²³ J/K)(1.4 x 10²⁶ K))) ₓ (0.001 kg/mol / 29.0 g/mol) = 0.061 mol
Therefore, it takes 0.061 mol of the gas to have a total average translational kinetic energy of 15300 J.

Learn more about kinetic energy here

https://brainly.com/question/26472013

#SPJ11

CH4(g)+H2O(g)+heat→CO(g)+3H2(g)
The reaction shown above occurs in a sealed container. Which of the following actions would shift the equilibrium of the system above to the right?
A) Add H2O(g) to the system
B) Add H2(g) to the system
C) Add a catalyst to the system
D) Decrease the volume of the system

Answers

The action that would shift the equilibrium of the system to the right is; Adding H₂O(g) to the system or decreasing the volume of the system. Option A and D is correct.

The reaction shown is an example of a synthesis reaction, in which two or more reactants combine to form a single product. According to Le Chatelier's principle, if system at equilibrium will be subjected to a change in temperature, pressure, or concentration, of the system will shift to counteract the change and reestablish equilibrium.

Adding H₂O(g) to the system; According to Le Chatelier's principle, adding a reactant to a system at equilibrium will shift the equilibrium to the right to consume the added reactant. In this case, adding H2O(g) would shift the equilibrium to the right and increase the yield of products.

Adding H₂(g) to the system; Adding a product to a system at equilibrium will shift the equilibrium to the left to consume the added product. In this case, adding H₂(g) would shift the equilibrium to the left and decrease the yield of products.

Adding a catalyst to the system; A catalyst increases the rate of a chemical reaction, but it does not affect the position of the equilibrium. Adding a catalyst to the system would not shift the equilibrium to the right or the left.

Decreasing the volume of the system; According to Le Chatelier's principle, decreasing the volume of a system at equilibrium will shift the equilibrium to the side with fewer moles of gas to counteract the change in pressure. In this case, the number of moles of gas decreases from 2 to 4, so decreasing the volume would shift the equilibrium to the right and increase the yield of products.

Hence, A. D. is the correct option.

To know more about Le Chatelier's principle here

https://brainly.com/question/2001993

#SPJ4

A current of 0.500 A flows through a cell containing Fe2+ for 10.0 minutes. Calculate
the maximum moles of Fe that can be removed from solution? Assume constant current
over time (Faraday constant = 9.649 x 104 C/mol).
A) 1.04 mmol
B) 51.8 mol
C) 3.11 mmol
D) 1.55 mmol
E) 25.9 mol

Answers

According to the statement the maximum moles of Fe that can be removed from solution is 3.11 mmol (option C).

The solution to this question requires the use of Faraday's law of electrolysis, which states that the amount of substance produced or consumed during electrolysis is directly proportional to the quantity of electricity passed through the cell. We can use the formula:
n = (I*t)/F
where n is the number of moles of substance produced or consumed, I is the current, t is the time, and F is the Faraday constant.
In this case, we are looking for the maximum moles of Fe that can be removed from solution, so we can use the forula to calculate n:
n = (0.500 A * 600 s) / 9.649 x 104 C/mol
n = 3.10 x 10-3 mol
Therefore, the maximum moles of Fe that can be removed from solution is 3.11 mmol (option C).

To know more about solution visit :

https://brainly.com/question/32024431

#SPJ11

calculate the amount of heat necessary to raise the temperature of 12.0 g of water from 15.4°c to 29.5°c. the specific heat of water = 4.18 j/g·°c.

Answers

To calculate the amount of heat necessary to raise the temperature of water, we can use the formula:

Q = m * c * ΔT

where Q is the amount of heat required, m is the mass of the water, c is the specific heat of water, and ΔT is the change in temperature.

Substituting the given values, we get:

Q = 12.0 g * 4.18 J/g·°C * (29.5°C - 15.4°C)

Q = 12.0 g * 4.18 J/g·°C * 14.1°C

Q = 706.9 J

Therefore, the amount of heat necessary to raise the temperature of 12.0 g of water from 15.4°C to 29.5°C is 706.9 J.

For more questions on amount of heat: https://brainly.com/question/31296368

#SPJ11

The amount of heat necessary to raise the temperature of 12.0 g of water from 15.4°C to 29.5°C is 706.104 joules.

To calculate the amount of heat necessary to raise the temperature of water from one temperature to another, we use the formula:

q = m * c * ΔT

where q is the amount of heat required (in joules), m is the mass of the substance (in grams), c is the specific heat capacity of the substance (in joules per gram degree Celsius), and ΔT is the change in temperature (in degrees Celsius).

In this case, we are given the mass of water (12.0 g), the specific heat capacity of water (4.18 J/g·°C), and the initial and final temperatures of the water (15.4°C and 29.5°C, respectively).

So, substituting these values into the formula, we get:

q = 12.0 g * 4.18 J/g·°C * (29.5°C - 15.4°C)

q = 12.0 g * 4.18 J/g·°C * 14.1°C

q = 706.104 J

To learn more about heat

https://brainly.com/question/1429452

#SPJ4

given the following reaction at equilibrium, if kc = 6.24 x 105 at 230.0 °c, kp = ________. 2 no (g) o2 (g) (g)

Answers

At equilibrium, the ratio of the product concentrations to reactant concentrations is constant, and this is given by the equilibrium constant, Kc. value of Kp for the given reaction at 230.0°C is 2.57 x 10^7 atm.

The equilibrium constant, Kp, is related to Kc by the equation:[tex]Kp = Kc(RT)^(∆n)[/tex] where R is the gas constant, T is the temperature in Kelvin, and ∆n is the difference in the number of moles of gas molecules between the products and reactants.

In this case, the value of Kc is given as C at 230.0°C. To calculate Kp, we need to know the value of ∆n. From the balanced chemical equation, we can see that there are two moles of gas molecules on the reactant side and two moles of gas molecules on the product side. Therefore, ∆n = 2 - 2 = 0.

At 230.0°C, the value of the gas constant, R, is 0.08206 L⋅atm/mol⋅K. Converting the temperature to Kelvin, we get: T = 230.0°C + 273.15 = 503.15 K

Substituting the values into the equation, we get:

[tex]Kp = Kc(RT)^(∆n) = 6.24 x 10^5 (0.08206 L⋅atm/mol⋅K × 503.15 K)^0Kp = 6.24 x 10^5 × 41.15[/tex]

[tex]Kp = 2.57 x 10^7 atm[/tex]

Therefore, the value of Kp for the given reaction at 230.0°C is 2.57 x 10^7 atm. This value indicates that the reaction strongly favors the formation of NO2 at this temperature and pressure.

Know more about  equilibrium constant here:

https://brainly.com/question/31321186

#SPJ11

pwhixh ester hydolyzes more rapidly? a. phenyl acetate or benzyl acetate?b. methyl acetate or phenyl acetate?

Answers

Phenyl acetate hydrolyzes more rapidly than benzyl acetate, while methyl acetate hydrolyzes faster than phenyl acetate.

The rate at which esters hydrolyze depends on the stability of the intermediate formed during the reaction.

In the case of phenyl acetate and benzyl acetate, phenyl acetate hydrolyzes more rapidly because it forms a more stable intermediate. The phenoxide ion produced is stabilized through resonance with the phenyl ring.

Comparing methyl acetate and phenyl acetate, methyl acetate hydrolyzes faster because the methyl group is less bulky, resulting in a more accessible carbonyl carbon for nucleophilic attack, which leads to a faster hydrolysis reaction.

For more such questions on hydrolyzes, click on:

https://brainly.com/question/6615591

#SPJ11

Benzyl acetate hydrolyzes more rapidly than phenyl acetate, and methyl acetate hydrolyzes more rapidly than phenylacetate. the correct answer is (a) benzyl acetate and (b) methyl acetate.

The rate of hydrolysis of an ester depends on several factors, including the size of the alkyl group attached to the carbonyl carbon and the electron density around the carbonyl group. In general, esters with larger alkyl groups attached to the carbonyl carbon undergo hydrolysis more slowly than those with smaller alkyl groups. This is because larger alkyl groups hinder the approach of water molecules to the carbonyl carbon, thus reducing the rate of hydrolysis.  Comparing the given options, benzyl acetate has a larger alkyl group than phenyl acetate, so it undergoes hydrolysis more rapidly. Similarly, methyl acetate has a smaller alkyl group than phenyl acetate, so it undergoes hydrolysis more rapidly. Therefore, the correct answer is (a) benzyl acetate and (b) methyl acetate.

learn more about Benzyl acetate here:

https://brainly.com/question/31962652

#SPJ11

Which of the following is TRUE?
Group of answer choices
A basic solution does not contain H3O+.
A basic solution has [H3O+] < [OH-]
A neutral solution contains [H2O] = [H3O⁺].
An acidic solution does not contain OH-
A neutral solution does not contain any H3O+or OH-.

Answers

The TRUE statement is: A basic solution has [H3O+] < [OH-].

In aqueous solutions, the concentration of hydrogen ions (H+) and hydroxide ions (OH-) determines whether the solution is acidic, neutral or basic. An acid solution has a higher concentration of H+ ions than OH- ions, while a basic solution has a higher concentration of OH- ions than H+ ions. In a neutral solution, the concentration of H+ ions and OH- ions are equal.

The pH of a solution is a measure of the concentration of H+ ions. A pH value of 7 is considered neutral, while a pH value less than 7 is considered acidic and a pH value greater than 7 is considered basic.

In a basic solution, the concentration of OH- ions is higher than the concentration of H+ ions. This means that the concentration of H3O+ ions (which are formed when water molecules combine with H+ ions) will be lower than the concentration of OH- ions. Therefore, the statement "A basic solution has [H3O+] < [OH-]" is true.

To know more about basic solutions:

https://brainly.com/question/30549961

#SPJ11

Plssssss substance increases in temperature by 255°c when a 983g sampleof it absorbs 8300j of heat. What is the specific heat capacity of the substance​

Answers

Substance increases in temperature by 255°c when a 983g sampleof it absorbs 8300j of heat. the specific heat capacity of the substance is approximately 32.28 J/(kg·°C).

To determine the specific heat capacity of a substance, we can use the equation:

Q = mcΔT

Where Q is the heat absorbed, m is the mass of the substance, c is the specific heat capacity, and ΔT is the change in temperature.

In this case, the substance increases in temperature by 255°C when a 983g sample of it absorbs 8300J of heat. We can plug these values into the equation:

8300J = (983g) * c * 255°C

First, we need to convert the mass from grams to kilograms:

983g = 0.983kg

Now, we rearrange the equation to solve for the specific heat capacity, c:

C = (8300J) / (0.983kg * 255°C)

C ≈ 32.28 J/(kg·°C)

Therefore, the specific heat capacity of the substance is approximately 32.28 J/(kg·°C). This value represents the amount of heat energy required to raise the temperature of one kilogram of the substance by one degree Celsius.

Learn more about specific heat capacity here:

https://brainly.com/question/28302909

#SPJ11

predict the ordering from shortest to longest of the bond lengths in no no2- and no3-

Answers

The bond lengths in NO, NO2-, and NO3- can be predicted based on their molecular structure and bond order.

NO has a linear structure with a bond order of 2, meaning it has a triple bond between nitrogen and oxygen.

The bond length of the triple bond in NO is shorter than a double bond. Therefore, NO has the shortest bond length.

NO2- has a bent structure with a bond order of 1.5, which means it has one double bond and one single bond between nitrogen and oxygen. The double bond is shorter than the single bond.

Therefore, the bond length of the double bond in NO2- is shorter than the single bond, making it shorter than the NO3- bond length.

NO3- has a trigonal planar structure with a bond order of 1.33, meaning it has one double bond and two single bonds between nitrogen and oxygen. The double bond is shorter than the single bonds.

Therefore, the bond length of the double bond in NO3- is shorter than the single bond in NO3-.

Based on this analysis, the order of bond lengths from shortest to longest is NO > NO2- > NO3-.

To know more about molecular structure refer here

https://brainly.com/question/503958#

#SPJ11

As you are walking across your laboratory, you notice a 5.25 L flask containing a gaseous mixture of 0.0205 mole NO2 (9) and 0.750 mol N204() at 25°C. Is this mixture at equilibrium? If not, will the reaction proceed towards forming more products, or more reactants? N204(0) 2NO2 (g) Kc = 4.61 x 10-3 at 25°C A. The answer cannot be determined with the given information. B. The mixture is not at equilibrium and will proceed towards forming more product C. The mixture is not at equilibrium and will proceed towards forming more reactants. D. The mixture is at equilibrium.

Answers

Therefore, the answer is B

The answer can be determined using the given information and the reaction equation. The reaction equation is:

N2O4(g) ⇌ 2NO2(g)

The equilibrium constant for this reaction at 25°C is given as Kc = 4.61 x 10^-3. The initial moles of NO2 and N2O4 in the mixture are given as 0.0205 and 0.750 moles, respectively.

The total volume of the mixture is 5.25 L.

To determine whether the mixture is at equilibrium, we can calculate the reaction quotient (Qc) and compare it to the equilibrium constant (Kc). If Qc is less than Kc,

the reaction will proceed towards forming more products, and if Qc is greater than Kc, the reaction will proceed towards forming more reactants. If Qc is equal to Kc, the reaction is at equilibrium.

The expression for Qc is:

[tex]Qc = [NO2]^2/[N2O4][/tex]

Substituting the given values:

Qc = (0.0205/5.25)^2 / (0.750/5.25) = [tex]1.41 x 10^-4[/tex]

Comparing Qc to Kc, we see that Qc is much smaller than Kc. This means that the mixture is not at equilibrium and the reaction will proceed towards forming more products (i.e., more NO2 and less N2O4) until the system reaches equilibrium.

The mixture is not at equilibrium and will proceed towards forming more products.

To know more about equilibrium constant refer here

https://brainly.com/question/10038290#

#SPJ11

based on periodic trends in electronegativity, arrange the bonds in order of increasing polarity.

Answers

The order of increasing polarity of the given bonds is: 2 (H-H) < 1 (C-H) < 3 (O-H) < 4 (F-H).

Electronegativity is the measure of an atom's ability to attract electrons towards itself in a covalent bond. The higher the electronegativity difference between two atoms, the more polar the bond.

In the given set of bonds, hydrogen is bonded to different elements (carbon, oxygen, and fluorine) and also to another hydrogen atom. Among these, the H-H bond has the least polarity as both atoms have the same electronegativity.

The C-H bond has a slightly higher polarity than H-H as carbon is more electronegative than hydrogen.

The O-H bond is more polar than C-H as oxygen is significantly more electronegative than carbon.

Finally, the F-H bond has the highest polarity as fluorine is the most electronegative element among those listed.

Thus, the order of increasing polarity is 2 (H-H) < 1 (C-H) < 3 (O-H) < 4 (F-H).

To know more about Electronegativity refer here:

https://brainly.com/question/17762711#

#SPJ11

Complete Question:

Based on periodic trends in electronegativity, arrange the bonds in order of increasing polarity. least polar 1 : C−H 2 iं H−H 3 # O−H 4 if F−H most polar

predict the product for the following dieckmann-like cyclization.

Answers

In a Dieckmann-like cyclization, an ester or similar compound undergoes intramolecular condensation to form a cyclic product, typically a cyclic ester (lactone) or amide (lactam).

This reaction typically involves a base to deprotonate the α-carbon of the ester, generating an enolate intermediate. The enolate then attacks the carbonyl carbon of another ester group within the same molecule, followed by protonation and elimination of the leaving group to yield the cyclic product.

Diesters can be converted into cyclic beta-keto esters via an intramolecular process known as the Dieckmann condensation. This reaction is most effective with 1,6-diesters, which yield five-membered rings, and 1,7-diesters, which yield six-membered rings.

To know about cyclization visit:

https://brainly.com/question/28234696

#SPJ11

complete and balance the following half reaction in acid. i− (aq) → io3− (aq) how many electrons are needed and is the reaction an oxidation or reduction?

Answers

I- (aq) + 6H₂O(l) + 6H+(aq) → IO₃-(aq) + 3H₂O(l) + 2e-; 2 electrons are needed and the reaction is an oxidation.

What is the oxidation number of iodine?

The half-reaction is:

i- (aq) → IO₃- (aq)

To balance this half-reaction of Iodine, we need to add water and hydrogen ions on the left-hand side and electrons on one side to balance the charge. In acid solution, we will add H₂O and H+ to the left-hand side of the equation. The balanced half-reaction in acid solution is:

I- (aq) + 6H₂O(l) + 6H+(aq) → IO₃-(aq) + 3H₂O(l) + 2e-

Therefore, 2 electrons are needed to balance this half-reaction.

The half-reaction involves iodine changing its oxidation state from -1 to +5, which means that it has lost electrons and undergone oxidation. Therefore, this half-reaction represents an oxidation process.

In summary, the balanced half-reaction in acid solution for the oxidation of iodide to iodate is I- (aq) + 6H₂O(l) + 6H+(aq) → IO₃-(aq) + 3H₂O(l) + 2e-. This process involves the loss of two electrons, representing an oxidation process.

Learn more about Iodine

brainly.com/question/16867213

#SPJ11

Part D


Complete the following table for the reactions that occur when the black powder is ignited, Balance the equations by


replacing the "?" in front of each substance with a number (or leave it blank if it's a 1). Then fill in the type of reaction


for each compound.


BI X? X2 10pt


Av 三三三三三三yp>


ubmit For


Score


es


Balanced Chemical Equation


Type of Reaction


Comments


Name and Formula of Compound


Charcoal


C(s) + O2(g) - CO2(8)


Sulfur


S


S(s) + O2(8) - SO2(8)


Potassium Perchlorate


KCIO4


KCIO4 - KCI + 20 (8)


Potassium Chlorate


I


?KCIO3 -- ?KCI +702(8)


KCIO3


Potassium Nitrate


KNO3


?KNO3 -- ?K,0 + ?N2(g)+ ?O2(8)


Characters used: 297 / 15000


к


оо


5:45

Answers

The balanced chemical equations and types of reactions for reactions that occur when black powder is ignited are as follows:

1. Charcoal: C(s) + [tex]O_2[/tex](g) → [tex]CO_2[/tex](g) - Combustion reaction

2. Sulfur: S(s) + [tex]O_2[/tex](g) →[tex]SO_2[/tex]g) - Combustion reaction

3. Potassium Perchlorate: [tex]2KCIO_4[/tex](s) → 2KCI(s) +[tex]5O_2[/tex](g) - Decomposition reaction

4. Potassium Chlorate: [tex]2KCIO_3[/tex](s) → 2KCI(s) +[tex]3O_2[/tex](g) - Decomposition reaction

5. Potassium Nitrate: [tex]2KNO_3[/tex](s) → [tex]2K_2O[/tex](s) + [tex]N_2[/tex]N2(g) + [tex]3O_2[/tex](g) - Decomposition reaction

1. Charcoal undergoes a combustion reaction when ignited, combining with oxygen (O2) to form carbon dioxide (CO2).

2. Sulfur also undergoes a combustion reaction when ignited, combining with oxygen (O2) to form sulfur dioxide (SO2).

3. Potassium Perchlorate decomposes when ignited, breaking down into potassium chloride (KCI) and oxygen gas (O2).

4. Potassium Chlorate also decomposes when ignited, breaking down into potassium chloride (KCI) and oxygen gas (O2).

5. Potassium Nitrate undergoes decomposition when ignited, breaking down into potassium oxide (K2O), nitrogen gas (N2), and oxygen gas (O2).

The types of reactions involved in this process include combustion reactions, where substances combine with oxygen to produce carbon dioxide and sulfur dioxide. The other reactions are decomposition reactions, where compounds break down into simpler substances upon heating. These reactions release gases such as oxygen and nitrogen.

Learn more about combustion reaction here:

https://brainly.com/question/14335621

#SPJ11

2. why is it necessary to remove tert-butylcatechol from commercially available styrene before preparing polystyrene?

Answers

It is necessary to remove tert-butylcatechol from commercially available styrene before preparing polystyrene because it acts as a polymerization inhibitor, which can impede the formation of the polymer.

Tert-butylcatechol is commonly added to styrene as a stabilizer to prevent it from undergoing unwanted polymerization during storage and transportation. However, when styrene is used to make polystyrene, the presence of tert-butylcatechol can interfere with the polymerization process and hinder the formation of the desired polymer. This can result in a decrease in the quality of the polystyrene produced, as well as issues with processing and manufacturing. Therefore, it is necessary to remove tert-butylcatechol from commercially available styrene before using it to prepare polystyrene. This is typically done through a purification process, such as distillation or adsorption, to ensure that the styrene is free of inhibitors and suitable for use in polymerization reactions.

Learn more about butylcatechol here:

https://brainly.com/question/31060008

#SPJ11

what is the ph of a solution prepared by mixing 550.0 ml of 0.703 m ch3cooh with 460.0 ml of 0.905 m nach3coo? the ka of acetic acid is 1.76 × 10−5. assume volumes are additive.

Answers

The pH of the solution prepared by mixing 550.0 ml of 0.703 M CH₃COOH with 460.0 ml of 0.905 M NaCH₃COO is 4.745 (approx.).

To calculate the pH of the solution, we need to first find the concentration of acetic acid and acetate ion in the mixed solution. Then we can use the Henderson-Hasselbalch equation to determine the pH.

First, we find the moles of CH₃COOH and NaCH₃COO using the formula: moles = concentration x volume.

Moles of CH₃COOH = 0.703 M x 0.550 L = 0.38765 moles

Moles of NaCH₃COO = 0.905 M x 0.460 L = 0.4163 moles

Next, we calculate the concentrations of CH₃COOH and CH₃COO⁻ in the mixed solution.

[CH₃COOH] = (moles of CH₃COOH)/(total volume of solution) = 0.803 M

[CH₃COO⁻] = (moles of CH₃COO⁻)/(total volume of solution) = 0.683 M

Finally, we use the Henderson-Hasselbalch equation:

pH = pKa + log([CH₃COO⁻]/[CH₃COOH])

pKa = -log(Ka) = -log(1.76 × 10⁻⁵) = 4.753

pH = 4.753 + log(0.683/0.803) = 4.745

Therefore, the pH of the mixed solution is approximately 4.745.

To know more about the pH of the solution refer here :

https://brainly.com/question/11300720#

#SPJ11

The change in enthalpy (δhorxn)(δhrxno) for a reaction is -24.8 kj/molkj/mol. What is the equilibrium constant for the reaction is 3.1×103 at 298 kk?

Answers

To answer this question, we can use the relationship between enthalpy and equilibrium constant:

ΔG = -RTlnK

where ΔG is the change in Gibbs free energy, R is the gas constant, T is the temperature in Kelvin, and K is the equilibrium constant.

We can relate ΔH to ΔG using the equation:

ΔG = ΔH - TΔS

where ΔS is the change in entropy. At equilibrium, ΔG = 0, so we can rearrange the equation to solve for the equilibrium constant:

ΔH = -TΔS

ΔS = -ΔH/T

ΔG = ΔH - TΔS = ΔH - ΔH = 0

Therefore:

ΔH = -RTlnK

-lnK = ΔH/(RT)

lnK = -ΔH/(RT)

K = e^(-ΔH/(RT))

Now we can plug in the values given in the question:

ΔH = -24.8 kJ/mol
T = 298 K
R = 8.314 J/(mol·K)

K = e^(-(-24.8 kJ/mol)/(8.314 J/(mol·K) × 298 K))

K = 3.1 × 10^3

Therefore, the equilibrium constant for the reaction is 3.1 × 10^3.

learn more about equilibrium constant

https://brainly.in/question/8460195?referrer=searchResults

#SPJ11

given a pipelined processor with 3 stages, what is the theoretical maximum speedup of the the pipelined design over a corresponding single-cycle design?

Answers

The theoretical maximum speedup of a pipelined processor with 3 stages over a corresponding single-cycle design is 3 times. This is due to each stage working concurrently, improving efficiency.

In a pipelined processor with 3 stages, the theoretical maximum speedup over a single-cycle design is 3 times. This is because, in a pipelined design, each stage of the processor works concurrently on different instructions, allowing for more efficient execution of tasks. In contrast, a single-cycle design requires the completion of each instruction sequentially, taking more time for the same number of instructions. The speedup factor is determined by the number of pipeline stages (in this case, 3) as it allows up to 3 instructions to be processed simultaneously. However, this speedup is only achievable under ideal conditions, and factors like pipeline stalls and branch hazards may reduce the actual speedup.

To know more about the pipelined design visit:

https://brainly.com/question/29309586

#SPJ11

Determine the number of moles of electrons that would flow through the resistor if the circuit is operated for 46.52 min.moles of electrons: ? (mol)

Answers

To determine the number of moles of electrons that would flow through the resistor if the circuit is operated for 46.52 min, we need to first calculate the total charge that would flow through the circuit.

The formula to calculate the total charge is:

Q = I * t

Where Q is the total charge (in Coulombs), I is the current (in Amperes), and t is the time (in seconds).

Since we have been given the time in minutes, we need to convert it to seconds. 46.52 minutes is equal to:

t = 46.52 * 60 = 2791.2 seconds

Now, we need to find the current flowing through the resistor. Let's assume that the resistor has a resistance of R ohms and a potential difference of V volts across it. Then, using Ohm's law:

V = IR

I = V / R

We can use the given values to calculate I. Let's say V = 10 volts and R = 5 ohms.

I = 10 / 5 = 2 Amperes

Now, we can use the formula to calculate the total charge:

Q = I * t = 2 * 2791.2 = 5582.4 Coulombs

Finally, we need to find the number of moles of electrons that would flow through the circuit. We know that one Coulomb of charge is equal to the charge on one mole of electrons, which is 96,485.3329 Coulombs. Therefore:

moles of electrons = Q / (96,485.3329)

moles of electrons = 5582.4 / (96,485.3329)

moles of electrons = 0.0579 mol

Therefore, the number of moles of electrons that would flow through the resistor if the circuit is operated for 46.52 min is 0.0579 mol.

To know more about Amperes visit

https://brainly.com/question/31971288

#SPJ11

Given 25. 0 g of Chromium and 57. 0 g of Phosphoric acid, what is the maximum amount of Chromium (III) Phosphate formed? *

Answers

We need to identify the limiting reactant, which is the reactant that is completely consumed and determines the maximum amount of product that can be formed, we found the maximum amount of Chromium (III) Phosphate formed is 107.35 g.

First, we need to calculate the number of moles for each reactant. The molar mass of Chromium (Cr) is 52 g/mol, and the molar mass of Phosphoric acid (H3PO4) is 98 g/mol.

Number of moles of Chromium = 25.0 g / 52 g/mol = 0.481 moles

Number of moles of Phosphoric acid = 57.0 g / 98 g/mol = 0.581 moles

Next, we determine the stoichiometric ratio between Chromium (III) Phosphate (CrPO4) and the reactants from the balanced equation. The balanced equation is: 3Cr + 2H3PO4 → CrPO4 + 3H2

From the equation, we can see that 3 moles of Chromium (Cr) react with 2 moles of Phosphoric acid (H3PO4) to form 1 mole of Chromium (III) Phosphate (CrPO4). Comparing the moles of reactants to the stoichiometric ratio, we find that 0.481 moles of Chromium is less than the required 1 mole of Chromium for the reaction. Therefore, Chromium is the limiting reactant.

Since 1 mole of Chromium (III) Phosphate has a molar mass of 107.35 g, the maximum amount of Chromium (III) Phosphate formed is 107.35 g.

LEARN MORE ABOUT limiting reactant here: brainly.com/question/10255265

#SPJ11

the maximum amount of energy produced by a reaction that can be theoretically harnesses as work is equal to

Answers

The maximum amount of energy produced by a reaction that can be theoretically harnessed as work is equal to the Gibbs free energy change (ΔG) of the reaction.

This is the energy difference between the reactants and products at constant pressure and temperature.
ΔG represents the amount of energy that is available to do work. If ΔG is negative, the reaction is exergonic and energy is released, meaning it can be used to perform work. If ΔG is positive, the reaction is endergonic and energy must be supplied in order for the reaction to occur.
It is important to note that the maximum amount of energy that can be harnessed as work is always less than the total energy released by the reaction. This is due to the Second Law of Thermodynamics, which states that in any energy transfer or transformation, some energy will be lost as unusable energy (usually heat) that cannot be converted to work.
Therefore, it is essential to consider the efficiency of energy conversion when designing systems that aim to harness energy from chemical reactions. This is especially important in sustainable energy production, where maximizing efficiency is crucial for reducing waste and minimizing environmental impact.

To learn more about Gibbs free energy change, refer:-

https://brainly.com/question/4002787

#SPJ11

Distinguish between Rayleigh and Raman scattering of photons. Rayleigh Raman elastic inelastic bulk of scattered photons small fraction of scattered photons scattered and incident photons have same energy and wavelength scattered and incident photons have different energy and wavelength high intensity weak intensityHow does the timescale for scattering compare to the timescale for fluorescence? scattering is 10^15 to 10^17 faster there is no difference scattering is 10^7 to 10^11 faster scattering is 10^ 7 to 10^11 slower scattering is 10^15 to 10^17 slower

Answers

Rayleigh and Raman scattering are two types of scattering of photons that occur when light interacts with matter. In Rayleigh scattering, the incident photons interact with molecules or atoms in the medium and are scattered in all directions, with the bulk of scattered photons having the same energy and wavelength as the incident photons.

This process is elastic and the scattered and incident photons have the same energy and wavelength. On the other hand, in Raman scattering, a small fraction of the incident photons interacts with the molecules or atoms in the medium and undergo a change in energy and wavelength, resulting in the scattered photons having different energy and wavelength than the incident photons. This process is inelastic and typically has a weaker intensity compared to Rayleigh scattering.

The timescale for scattering is much faster than that for fluorescence. Scattering occurs on the timescale of 10^15 to 10^17 seconds, while fluorescence occurs on the timescale of 10^7 to 10^11 seconds. This is because scattering involves the interaction of photons with the medium and does not involve the excitation and de-excitation of electrons, which is the process responsible for fluorescence. As a result, scattering occurs much more rapidly than fluorescence.

In summary, Rayleigh and Raman scattering are two types of scattering of photons that occur when light interacts with matter. Rayleigh scattering is elastic and results in the bulk of scattered photons having the same energy and wavelength as the incident photons, while Raman scattering is inelastic and results in a small fraction of scattered photons having different energy and wavelength than the incident photons. The timescale for scattering is much faster than that for fluorescence, as scattering does not involve the excitation and de-excitation of electrons.

To know more about Rayleigh and Raman click here:

https://brainly.com/question/30694232

#SPJ11

3. For the following balanced redox reaction answer the following questions 4NaOH(aq)+Ca(OH) 2

(aq)+C(s)+4ClO 2

( g)→4NaClO 2

(aq)+CaCO 3

( s)+3H 2

O(l) a. What is the oxidation state of Cl in ClO 2

( g) ? b. What is the oxidation state of C in C(s) ? c. What is the element that is oxidized? d. What is the element that is reduced? e. What is the oxidizing agent? f. What is the reducing agent? g. How many electrons are transferred in the reaction as it is balanced?

Answers

a. The oxidation state of Cl in ClO₂(g) is +3.

b. The oxidation state of C in C(s) is 0.

c. The element that is oxidized is Cl.

d. The element that is reduced is C.

e. The oxidizing agent is ClO₂.

f. The reducing agent is C.

g. To balance the equation, 3 electrons are transferred in each of the 4 half-reactions. Therefore, a total of 12 electrons are transferred in the reaction.

Oxidation and reduction are chemical processes that involve the transfer of electrons between reactant species. Oxidation refers to the loss of electrons by a reactant species, resulting in an increase in its oxidation state. Reduction, on the other hand, refers to the gain of electrons by a reactant species, resulting in a decrease in its oxidation state.

An easy way to remember these processes is through the mnemonic "OIL RIG", which stands for "Oxidation Is Loss, Reduction Is Gain". In an oxidation-reduction (redox) reaction, one species undergoes oxidation while another undergoes reduction.

Learn more about the oxidation and reduction: https://brainly.com/question/13699873

#SPJ11

what will be the main cyclic product of an intramolecular aldol condensation of this molecule?

Answers

This reaction is highly favored, and the resulting cyclic product would be the main product of the reaction. Overall, the condensation of this molecule would result in the formation of a cyclic six-membered ring.

If we are considering an intramolecular aldol condensation of a molecule, the main cyclic product would be a six-membered ring that is formed from the reaction. The aldol condensation is a reaction where two carbonyl compounds, usually an aldehyde and a ketone, react with each other in the presence of a base to form a β-hydroxy carbonyl compound. In the case of an intramolecular aldol condensation, the reaction takes place within the same molecule, resulting in the formation of a cyclic compound. The six-membered ring would be formed by the attack of the hydroxyl group on the carbonyl group, followed by the elimination of a water molecule.

to know more about intermolecular  molecule visit:

brainly.com/question/9828612

#SPJ11

A 3.75-g sample of limestone (caco3) contains 1.80 g of oxygen and 0.450 g of carbon. what is the percent o and the percent c in limestone?

Answers

The percent oxygen in limestone is 48% and the percent carbon is 12%.

To find the percent oxygen and carbon in limestone, we need to use the formula:
% element = (mass of element / total mass of compound) x 100%
First, we need to calculate the mass of calcium in the sample:
Mass of calcium = total mass of compound - mass of oxygen - mass of carbon
Mass of calcium = 3.75 g - 1.80 g - 0.450 g
Mass of calcium = 2.52 g
Now we can calculate the percent oxygen:
% O = (1.80 g / 3.75 g) x 100%
% O = 48%
And the percent carbon:
% C = (0.450 g / 3.75 g) x 100%
% C = 12%
Therefore, the percent oxygen in limestone is 48% and the percent carbon is 12%.
To know more about limestone visit:

https://brainly.com/question/30717890

#SPJ11

Which species will reduce Ag+ but not Fe2+?
1. Cr
2. H2
3. V
4. Pt
5. Au

Answers

Out of the given species, only H2 will reduce Ag+ but not Fe2+.

This is because Ag+ has a higher reduction potential than H+ in the standard reduction potential table, so H2 can reduce Ag+ to form Ag solid. On the other hand, Fe2+ has a lower reduction potential than H+, so H2 cannot reduce Fe2+ to form Fe solid. The other species listed, including Cr, V, Pt, and Au, all have higher reduction potentials than H+, so they are capable of reducing Fe2+ to form Fe solid, as well as reducing Ag+ to form Ag solid. Therefore, the only species that will reduce Ag+ but not Fe2+ is H2.

To know more about H2 visit:

https://brainly.com/question/31647217

#SPJ11

Other Questions
The type of complainer that is called a(n) ________ has an above average propensity to complain. They have a very optimistic sense of the potential positive consequences of all types of complaining please calculate the net present value of a project that is associated with the following cash flows: year 0 through year 3 cash flows are $-42,398, $13,407, $21,219, $17,800. calculate the amount of heat necessary to raise the temperature of 12.0 g of water from 15.4c to 29.5c. the specific heat of water = 4.18 j/gc. Some ways in which lack of energy supply affects societal development Imagine that you are an oxygen atom and two of your friends are hydrogen atoms. Together, you make up a water molecule. Describe the events and changes that happen to you and your friends as you journey through the light-dependent reactions and the Calvin cycle of photosynthesis. Include illustrations with your description the parents of 14 year old ignacio call him the mayor of the neighborhood becauyse he knows___ Consider a PDF of a continuous random variable X, f(x) = 1/8 for 0 x 8. Q. Find P( x = 7) A 5-year treasury bond with a coupon rate of 8% has a face value of $1000. What is the semi-annual interest payment? Annual interest payment = 1000(0.08) = $80; Semi-annual payment = 80/2 = $40 The price of a stock is $50. In three months, it will either be $47 or $52, with equal probability.a. How much would you pay for an at the end money put option, i.e., a 3-month European-like put option with strike K = $50? Assume for simplicity that the stock pays no dividends and the interest rates are zero.b.Does the value of the put increase or decrease, and by how much, if the probability of the stock going up to $52 were 75% and the probability of the stock going down to $40 were 25%? TRUE OR FALSE A C++ switch allow more than one case to be executed. find the length of parametrized curve given by x(t)=12t224t,y(t)=4t3 12t2 x(t)=12t224t,y(t)=4t3 12t2 where tt goes from 00 to 11. Develop and list 7-10 in-depth questions and/or requests for additional information that you would ask the CFO to provide in order to clarify the financial statement data that you read over. Identify strategies for setting goals when developing a personal fitness program. Which of these is a component of an emotional goal?A. Sticking to a nutrition planB. Journaling about goalsC. Joining a ClubD. Studying sports What is the proper coefficient for water when the following equation is completed and balanced for the reaction in basic solution?C2O4^2- (aq) + MnO4^- (aq) --> CO3^2- (aq) + MnO2 (s) 2. (a) analyze explain how the poet uses both metaphor andpersonification in lines 6-7 of "courage." (b) interpret what is the purposeand effect of that language? explain,i What type of entries would close the budgetary and actual accounts? Which experimental design involves manipulation of the independent variable and random assignment of participants to groups?a. True Experimentalb. Non-Experimentalc. Semi-Experimentald. Quasi-Experimental Read the passages. Which statement accurately compares the two plays? In both plays, characters marry people they do not love. Both plays explore the difficulties of caring for older parents. In both plays, money plays an important role in the arrangement of marriages. Both plays include characters who lose their wealth very suddenly. Which region has become Washington States population center due in part to the miles of bays that shape its coastline and the areas shipping industry? Which detail best develops the central idea in the text? About the Hubble Space Telescope adapted excerpt from NASA and Space Telescope Science Institute Orbiting 360 miles above Earth, the Hubble Space Telescope is positioned high above the blurring effects of the atmosphere. From this vantage point, it captures images with 10 times the typical clarity of any ground-based telescope and views not only visible light but also wavelengths of near-infrared and ultraviolet light that cannot reach Earth's surface. To operate from orbit, the observatory works like any other scientific or imaging spacecraft; it converts the optical data it collects into electrical signals that are transmitted back to Earth. It must also withstand the airless, high-radiation, and harsh thermal environment of space. Unlike most other spacecraft, however, Hubble was designed to be serviced periodically by astronauts and so was built with modular components that are astronaut-friendly to handle and replace. This design strategy has enabled it to operate longer than ordinary spacecraft and to benefit from the technological advancements of the last two decades. Astronauts have visited the telescope five times to upgrade its computers, mechanisms, and instruments. These servicing missions have kept the observatory at the forefront of discovery by providing it with increasingly sensitive and accurate components. The last of these servicing calls was in May 2009.