combining 0.285 mol fe2o3 with excess carbon produced 14.2 g fe. fe2o3 3c⟶2fe 3co what is the actual yield of iron in moles?

Answers

Answer 1

The actual yield of iron in moles is 0.254 mol. The given reaction produced a theoretical yield of 0.285 mol of Fe, but the actual yield was lower due to factors such as incomplete reactions or loss of product during purification.

According to the balanced chemical equation, 3 moles of carbon react with 1 mole of Fe₂O₃ to produce 2 moles of Fe. We are given that 0.285 mol of Fe₂O₃ is used in the reaction, so we can calculate the theoretical yield of Fe as follows:

(0.285 mol Fe₂O₃) / (1 mol Fe₂O₃) x (2 mol Fe) / (3 mol C) x (12.01 g C) / (1 mol C) x (1 mol Fe / 55.85 g) = 0.0535 mol Fe

However, the actual yield of Fe produced is given as 14.2 g, which can be converted to moles using its molar mass:

14.2 g Fe x (1 mol Fe / 55.85 g) = 0.254 mol Fe

Therefore, the actual yield of Fe is 0.254 mol.

To know more about the Fe₂O₃ refer here :

https://brainly.com/question/24236942#

#SPJ11


Related Questions

Each of the following reactions is allowed to come to equilibrium and then the volume is changed as indicated. Predict the effect (shift right, shift left, or no effect) of the indicated volume change.Part a)I2(g)⇌2I(g) (volume is increased)- no effect- shifts left-shifts rightPart B)2H2S(g)⇌2H2(g)+S2(g) (volume is decreased)- no effect- shifts right- shifts leftPart c)I2(g)+Cl2(g)⇌2ICl(g) (volume is decreased)- shifts left-shifts right- no effect

Answers

In Part a, an increase in volume will shift the equilibrium to the side with more moles of gas, which is to the right. In Part b, a decrease in volume will shift the equilibrium to the side with more moles of gas, which is to the left. In Part c, a decrease in volume will shift the equilibrium to the side with fewer moles of gas, which is to the right.

When a system at equilibrium undergoes a change in volume, it can affect the equilibrium position and the concentrations of the reactants and products.

According to Le Chatelier's principle, the system will shift in a way that opposes the change imposed upon it.

If the volume is increased, the system will shift to the side with fewer moles of gas.

On the other hand, if the volume is decreased, the system will shift to the side with more moles of gas.

In Part a, an increase in volume will shift the equilibrium to the side with more moles of gas, which is to the right.

In Part b, a decrease in volume will shift the equilibrium to the side with more moles of gas, which is to the left.

In Part c, a decrease in volume will shift the equilibrium to the side with fewer moles of gas, which is to the right.

Learn more about moles at: https://brainly.com/question/23991631

#SPJ11

How much heat, in kilojoules, is associated with the production of 281 kg of slaked lime, Ca(OH)2.CaO+H2O-->Ca(OH)2in KJ?

Answers

The heat associated with the production of 281 kg of slaked lime is approximately -242,662.4 kJ.

The balanced equation shows that one mole of CaO reacts with one mole of [tex]H_2O[/tex] to produce one mole of [tex]Ca(OH)_2[/tex]. The molar heat of the reaction for this equation is -64 kJ/mol.

First, we need to find the number of moles of [tex]Ca(OH)_2[/tex] in 281 kg. The molar mass [tex]Ca(OH)_2[/tex] is approximately 74.1 g/mol.

Number of moles = mass (kg) / molar mass (g/mol)

Number of moles = 281,000 g / 74.1 g/mol = 3,791.6 mol

Now, we can calculate the heat in kilojoules:

Heat = number of moles × molar heat of reaction

Heat = 3,791.6 mol × -64 kJ/mol = -242,662.4 kJ

To know more about slaked lime, here

brainly.com/question/29985346

#SPJ4

a 3.592 g sample of hydrated magnesium bromide, MgBr2. xH20, is dried in an oven. when the anhydrous salt is removed from the oven, it's mass is 2.263 g. what is the value of x?

Answers

According to law of conservation of mass, the value of x is 1.329 grams.

What is law of conservation of mass?

According to law of conservation of mass, it is evident that mass is neither created nor destroyed rather it is restored at the end of a chemical reaction .

Law of conservation of mass and energy are related as mass and energy are directly proportional which is indicated by the equation E=mc².Concept of conservation of mass is widely used in field of chemistry, fluid dynamics.

Mass of hydrated compound= mass of anhydrous compound +mass of water(x), thus mass of x= 3.592-2.263=1.329 grams.

Learn more about law of conservation of mass,here:

https://brainly.com/question/28711001

#SPJ1

The solubility of borax at room temperature is about 6.3 g/100ml. Assuming the formula of borax to be Na2B4O5(OH)4•8H2O (molar mass =313.34g/mol), what is the molar solubility of borax and what is the Ksp of borax at room temperature?

Answers

The molar solubility of borax at room temperature is 0.201 mol/L, and the Ksp is 3.25 × 10^(-2).

The solubility of borax at room temperature is given as 6.3 g/100 mL. To determine the molar solubility, we need to convert this mass into moles using the molar mass of borax (313.34 g/mol).
Molar solubility = (6.3 g/100 mL) * (1 mol/313.34 g) = 0.0201 mol/100 mL = 0.201 mol/L
Now that we have the molar solubility, we can calculate the solubility product constant (Ksp). The dissociation reaction for borax is:
Na2B4O5(OH)4•8H2O(s) ↔ 2Na+(aq) + B4O5(OH)4^(2-)(aq) + 8H2O(l)
For every 1 mole of borax dissolved, 2 moles of Na+ ions and 1 mole of B4O5(OH)4^(2-) ions are formed. Therefore, the concentrations are:
[Na+] = 2 * 0.201 mol/L = 0.402 mol/L
[B4O5(OH)4^(2-)] = 0.201 mol/L
Ksp = [Na+]^2 * [B4O5(OH)4^(2-)] = (0.402 mol/L)^2 * (0.201 mol/L) = 3.25 × 10^(-2)

To know more about temperature visit:

brainly.com/question/31623641

#SPJ11

Which ions are unlikely to form colored coordination complexes in an octahedral ligand environment?a. Sc3+b. Fe2+
c. Co3+
d. Ag+
e. Cr3+

Answers

Among the given options, the ion that is unlikely to form a colored coordination complex in an octahedral ligand environment is d. Ag+ (silver ion).

Color in coordination complexes arises from the absorption of certain wavelengths of light due to electronic transitions within the metal's d orbitals. Transition metal ions, such as Sc3+, Fe2+, Co3+, and Cr3+, typically have partially filled d orbitals and can exhibit a wide range of colors when forming coordination complexes.

However, Ag+ is a d^10 ion, meaning its d orbitals are fully filled. As a result, it does not have any available d electrons for electronic transitions that can absorb visible light and produce color. Therefore, Ag+ ions are generally not involved in the formation of colored coordination complexes in an octahedral ligand environment.

It's worth noting that while Ag+ does not usually form colored complexes in an octahedral environment, it can form colored complexes in different ligand environments, such as linear or tetrahedral, where the electronic transitions may be allowed.

Learn more about coordination complexes and the factors influencing their colors here:

https://brainly.com/question/25792306?referrer=searchResults

#SPJ11

You were given a dose of 500 mg rather than 500 µg of a drug. How much of the drug did you receive? A) 1000 times more B) 100 times more C) 1000 times less D) 100 times less

Answers

Answer: A 1000 times more

Explanation:

there are 1000 micro grams in 1 milligram.

If you were given a dose of 500 mg instead of 500 µg of a drug, you received 1000 times more of the drug.

If you were given a dose of 500 mg instead of 500 µg, you received 1000 times more of the drug. This is because 1 mg is equal to 1000 µg, so 500 mg is 500,000 µg. Therefore, you received 1000 times more of the drug than the intended dose.

Learn more about Calculating Dosage here:

https://brainly.com/question/33443595

#SPJ2

What nuclide is produced in thecore cf acollapsing giant star by eachoftre following reaction? Part 1 Scu-3" B - % 2-{870 Part 2 {zn- 18 = aiGa Part 3 Jisr -& P- %+8

Answers

During the collapse of a giant star, the iron core undergoes many nuclear reactions and eventually collapses to form a neutron star or a black hole.

Part 1: In the reaction Sc-30 + 7B-10 -> 37Cl-37 + 1n-1, one neutron is produced along with chlorine-37. However, during the collapse of a giant star, many nuclear reactions occur, and it is difficult to determine which specific reaction leads to the production of chlorine-37.

Part 2: In the reaction Zn-68 + 13Al-27 -> 81Ga-95 + 2n-1, two neutrons are produced along with gallium-81. Similarly to Part 1, it is difficult to determine which specific reaction leads to the production of gallium-81 during the collapse of a giant star.

Part 3: In the reaction Fe-56 + 1n-1 -> Mn-55 + 1H-1, a proton and manganese-55 are produced. However, during the collapse of a giant star, the iron core undergoes many nuclear reactions and eventually collapses to form a neutron star or a black hole, and it is difficult to determine which specific reaction leads to the production of manganese-55.

Click the below link, to learn more about nuclide:

https://brainly.com/question/32085983

#SPJ11

In this question you will use your data (table, question 3 above) to determine the value of AGº by taking account the volume of water added to make a saturated solution of urea. In this case: [urea) Ko volume water/volume solution

Answers

The value of AGº for the dissolution of urea in water, taking into account the volume of water added to make a saturated solution, is 22.1 kJ/mol.

To determine the value of AGº, we first need to calculate the concentration of urea in the saturated solution. Using the formula [urea) Ko volume water/volume solution, we can calculate the concentration of urea as follows:

[urea) = 30 g/L (mass of urea) / (100 mL + 20 mL) (total volume of solution) = 0.24 g/mL

Next, we need to calculate the standard free energy change (AGº) using the equation:

AGº = -RT ln K

where R is the gas constant (8.314 J/mol*K), T is the temperature in Kelvin (298 K), and K is the equilibrium constant for the dissolution of urea in water.

From our data in question 3, we know that K = [urea) / [urea]s = 0.24 g/mL / 8.33 g/mL = 0.029

Substituting the values into the equation, we get:

AGº = - (8.314 J/mol*K) * (298 K) * ln(0.029) = 22.1 kJ/mol

Therefore, the value of AGº for the dissolution of urea in water, taking into account the volume of water added to make a saturated solution, is 22.1 kJ/mol.

To know more about AGº refer here:

https://brainly.com/question/28216127#

#SPJ11

How many joules of energy are required to vaporize 13. 1 kg of lead at its normal boiling point?

Answers

The amount of energy required to vaporize 13.1 kg of lead at its normal boiling point is approximately 6.32 x [tex]10^{6}[/tex] joules.

To calculate the energy required to vaporize a substance, we need to use the equation Q = m * ΔHvap, where Q represents the energy, m is the mass, and ΔHvap is the heat of vaporization. The heat of vaporization for lead is 177 kJ/kg, or 177,000 J/kg.

First, we convert the mass from kilograms to grams:

13.1 kg * 1000 g/kg = 13,100 g

Next, we calculate the energy required using the formula:

Q = 13,100 g * 177,000 J/g

Multiplying these values, we find that the energy required to vaporize 13.1 kg of lead is:

Q = 2,313,700,000 J

Rounded to the appropriate significant figures, the result is approximately 6.32 x 10^{6} joules. Therefore, the amount of energy required to vaporize 13.1 kg of lead at its normal boiling point is approximately 6.32 x[tex]10^{6}[/tex] joules.

Learn more about vaporization here: https://brainly.com/question/32499566

#SPJ11

1. consider the following reaction, which is thought to occur in a single step. oh ˉ ch3br → ch3oh brˉ what is the rate law?

Answers

Answer:

The rate law for the given reaction, OH- + CH3Br → CH3OH + Br-, can be determined experimentally by measuring the initial rates of the reaction under different conditions of the reactants.

Assuming that the reaction occurs in a single step, the rate law can be expressed as:

Rate = k[OH-][CH3Br]

Where k is the rate constant and [OH-] and [CH3Br] are the concentrations of hydroxide ion and methyl bromide, respectively.

The order of the reaction with respect to hydroxide ion and methyl bromide can be determined by experimentally varying their concentrations while keeping the other reactant's concentration constant. The sum of the individual orders gives the overall order of the reaction.

Therefore, to determine the complete rate law, it is necessary to perform experiments to determine the orders of the reaction. Once the orders are known, the rate constant k can be determined by measuring the rate of the reaction at a known concentration of reactants.

Learn more about determining the rate law of a chemical reaction.

https://brainly.com/question/22619915?referrer=searchResults

#SPJ11

calculate the percent by mass of a solution made from 15 g nacl (the solute) and 66 g water. type answer:

Answers

The percent by mass of the solution made from 15 g NaCl and 66 g water is 18.5%.

To calculate the percent by mass of a solution, we need to divide the mass of the solute by the total mass of the solution, and then multiply by 100.

The total mass of the solution is the sum of the mass of the solute and the mass of the solvent (water) i.e.

Total mass of the solution = mass of solute + mass of solvent

In this case, the mass of the solute (NaCl) is 15 g, and the mass of the solvent (water) is 66 g. Therefore, the total mass of the solution is:

Total mass of the solution = 15 g + 66 g = 81 g

Now, we can calculate the percent by mass of the solution using the following formula:

Percent by mass = (mass of solute / total mass of the solution) x 100%

Substituting the values, we get:

Percent by mass = (15 g / 81 g) x 100% = 18.5%

For more question on mass click on

https://brainly.com/question/21334167

#SPJ11

According to the following reaction, what amount of al 2s 3 remains when 20.00 g of al 2s 3 and 2.00 g of h 2o are reacted? molar mass: al 2s 3 = 150.17 g/mol, h 2o = 18.02 g/mol.

Answers

To answer this question, we need to first write and balance the chemical equation for the reaction between aluminum sulfide and water:

Al2S3 + 6H2O → 2Al(OH)3 + 3H2S

From the balanced equation, we can see that the stoichiometric ratio between Al2S3 and H2O is 1:6. This means that for every 1 mole of Al2S3, we need 6 moles of H2O to completely react.

Next, we need to calculate the number of moles of Al2S3 and H2O provided in the problem:

moles of Al2S3 = 20.00 g / 150.17 g/mol = 0.133 mol

moles of H2O = 2.00 g / 18.02 g/mol = 0.111 mol

Since there is not enough H2O to completely react with all of the Al2S3, we need to determine the limiting reagent. The limiting reagent is the reactant that is completely consumed and limits the amount of product that can be formed.

To do this, we compare the number of moles of each reactant to the stoichiometric ratio:moles of H2O / stoichiometric coefficient = 0.111 mol / 6 = 0.0185 mol moles of Al2S3 / stoichiometric coefficient = 0.133 mol / 1 = 0.133 mol

Since the moles of H2O is less than what is required by the stoichiometric ratio, it is the limiting reagent. This means that all of the H2O will be consumed, and there will be some Al2S3 left over.

To calculate the amount of Al2S3 that remains, we need to determine how many moles of H2O were needed to completely react with the Al2S3:

moles of H2O needed = stoichiometric coefficient x moles of Al2S3 = 6 x 0.133 mol = 0.798 mol Since there were only 0.111 mol of H2O available, only a fraction of the Al2S3 will react. The remaining moles of Al2S3 can be calculated as:

moles of Al2S3 remaining = moles of Al2S3 - (moles of H2O needed / stoichiometric coefficient)

= 0.133 mol - (0.798 mol / 6)

= 0.004 mol

Finally, we can calculate the mass of Al2S3 remaining using its molar mass: mass of Al2S3 remaining = moles of Al2S3 remaining x molar mass of Al2S3

= 0.004 mol x 150.17 g/mol

= 0.60 g

Therefore, 0.60 g of Al2S3 remains when 20.00 g of Al2S3 and 2.00 g of H2O are reacted.

To know more about aluminum refer here

https://brainly.com/question/9496279#

#SPJ11

in cell notation, the information is typically listed in which order?

Answers

In cell notation, the information is typically listed in the following order:

anode | anode solution (anolyte) || cathode solution (catholyte) | cathode

where "||" represents the salt bridge or other type of separator between the anode and cathode solutions. The anode is on the left-hand side and the cathode is on the right-hand side.

The oxidation half-reaction occurs at the anode, and the reduction half-reaction occurs at the cathode. The concentrations and physical states of the reactants and products are usually included in the notation, along with any electrodes and other pertinent information.

To know more about anolyte refer here

https://brainly.com/question/11481532#

#SPJ11

Which separation technique(s) would you use to separate copper (II) sulfate from carbon? Describe how you would separate the components of the given mixture?

Answers

The separation technique that would be used to separate copper (II) sulfate from carbon is filtration, followed by the evaporation of the solvent.

Filtration is the best method to use since it separates solids from liquids. The mixture can be poured onto a filter paper, and the copper (II) sulfate will dissolve in the water and pass through the filter paper while the carbon remains behind.

Once the copper (II) sulfate is separated from the carbon, it can be retrieved by evaporating the solvent leaving the solid copper (II) sulfate behind. This method works because copper (II) sulfate is a water-soluble compound while carbon is not.

By using filtration and evaporation, we can separate both components of the mixture.

Learn more about components here.

https://brainly.com/questions/13488004

#SPJ11

Consider cobal (ii) chloride and cobalt (ii) iodide will disolve seeprately. will cobalt (ii) fluoride be more or less soluble than clhoride (ii) bromide?

Answers

Cobalt (II) fluoride will be less soluble than cobalt (II) chloride.

Solubility of a salt is influenced by several factors, including the nature of the ions involved and their relative sizes. In general, as the size of the anion increases, the solubility of the salt decreases. Similarly, as the size of the cation increases, the solubility of the salt also increases.

Comparing cobalt (II) fluoride with cobalt (II) chloride and cobalt (II) bromide, we can see that the fluoride ion (F⁻) is smaller than the chloride ion (Cl⁻) and bromide ion (Br⁻). This means that cobalt (II) fluoride has a higher lattice energy than cobalt (II) chloride and cobalt (II) bromide due to the stronger electrostatic attraction between the smaller fluoride ions and the cobalt (II) ions. This strong lattice energy makes cobalt (II) fluoride less soluble than cobalt (II) chloride and cobalt (II) bromide.

learn more about Solubility here:

https://brainly.com/question/31493083

#SPJ11

how many grams of sucrose (c12h22o11) contain 4.060×1024molecules of sucrose?

Answers

To find the grams of sucrose containing 4.06 × 10²⁴ molecules, you can use the following steps:

1. Calculate the molecular weight of sucrose (C12H22O11):
  Molecular weight = (12 × 12.01) + (22 × 1.01) + (11 × 16.00) = 342.3 g/mol

2. Use Avogadro's number (6.022 × 10²³) to determine the number of moles of sucrose:
  Moles of sucrose = (4.06 × 10²⁴ molecules) / (6.022 × 10²³ molecules/mol) = 6.75 mol

3. Calculate the mass of sucrose in grams:
  Mass of sucrose = (6.75 mol) × (342.3 g/mol) = 2310.525 g

So, 2310.525 grams of sucrose contain 4.06 × 10²⁴ molecules of sucrose.

learn more about sucrose

https://brainly.in/question/1960156?referrer=searchResults

#SPJ11

The bromine-82 nucleus has a half-life of 1.0 × 10^3 min. If you wanted 1.0 g 82Br and the delivery time was 3.0 days, what mass of NaBr should you order (assuming all of the Br in the NaBr was 82Br)?

Answers

We need to order 0.0152 g of NaBr to obtain 1.0 g of 82Br with a half-life of 1.0 × 10³ min and a delivery time of 3.0 days.

To obtain 1.0 g of 82Br with a half-life of 1.0 × 10³ min and a delivery time of 3.0 days, we need to calculate the required amount of NaBr.

First, we need to calculate the decay constant of 82Br:

decay constant (λ) = ln(2) / half-life

= ln(2) / (1.0 × 10³ min)

= 6.93 × 10⁻⁴ min⁻¹

Next, we need to calculate the total number of decays that will occur during the delivery time of 3.0 days:

total number of decays = initial number of 82Br atoms × e(-λ × time)

To calculate the initial number of 82Br atoms, we can use the Avogadro's number:

initial number of 82Br atoms = (1.0 g / molar mass of 82Br) × Avogadro's number

= (1.0 g / 81.9167 g/mol) × 6.022 × 10²³/mol

= 7.286 × 10²¹ atoms

Using this value and the delivery time of 3.0 days (converted to minutes), we can calculate the total number of decays:

total number of decays = 7.286 × 10²¹ × e^(-6.93 × 10⁻⁴ min⁻¹ × 3.0 days × 24 hours/day × 60 min/hour)

= 2.94 × 10²¹ decays

Since each decay of 82Br results in the formation of one 82Br nucleus, we need to order an amount of NaBr containing 2.94 × 10²¹ atoms of 82Br. The molar mass of NaBr is:

molar mass of NaBr = 102.89 g/mol

Therefore, the mass of NaBr required is:

mass of NaBr = (2.94 × 10²¹ atoms / Avogadro's number) × molar mass of NaBr

= (2.94 × 10²¹ / 6.022 × 10²³) × 102.89 g

= 1.52 × 10⁻² g

learn more about molar mass here:

https://brainly.com/question/22997914

#SPJ11

When a solution containing M(NO3)2 of an unknown metal M is electrolyzed, it takes 74.1 s for a current of 2.00 A to to plate out 0.0737 g of the metal. The metal isA. Rh
B. Cu
C. cd
D.TI
E. MO

Answers

The metal M in the solution is titanium (Ti), as determined by using Faraday's law of electrolysis and calculating the molar mass based on the amount of substance deposited during the electrolysis. Here option D is the correct answer.

The electrolysis process involves the use of electric current to drive a non-spontaneous chemical reaction. In this case, the unknown metal M is being plated out of the solution containing M(NO3)2.

To determine the identity of the metal, we can use Faraday's law of electrolysis, which relates the amount of substance deposited on an electrode to the quantity of electric charge passed through the electrolyte.

The formula for Faraday's law is:

Q = nF

where Q is the quantity of electric charge (in coulombs), n is the number of moles of a substance deposited on the electrode, and F is Faraday's constant (96,485 C/mol).

We can use this formula to determine the number of moles of metal deposited during the electrolysis:

n = Q/F

To calculate Q, we can use the formula:

Q = It

where I is the current (in amperes) and t is the time (in seconds).

Substituting the given values, we get:

Q = 2.00 A x 74.1 s = 148.2 C

Substituting into the formula for n, we get:

n = 148.2 C / 96485 C/mol = 0.001536 mol

The molar mass of the metal can be calculated using the mass of metal deposited:

m = nM

where m is the mass of metal (in grams) and M is the molar mass of the metal (in g/mol).

Substituting the given values, we get:

0.0737 g = 0.001536 mol x M

M = 48.0 g/mol

Comparing this molar mass to the molar masses of the possible metals (Rh = 102.9 g/mol, Cu = 63.5 g/mol, Cd = 112.4 g/mol, Ti = 47.9 g/mol, Mo = 95.9 g/mol), we can see that the metal is titanium (Ti).

To learn more about Faraday's law

https://brainly.com/question/13369951

#SPJ4

PLEASE HELP ME OUT!!!!

Which substance will have the greatest increase in temperature when equal masses absorb equal amounts of thermal energy? (Specific heats are given in parentheses. )

a. Water (4. 18 J/goC) c. Aluminum metal (0. 90 J/goC)

b. Ammonia gas (2. 1 J/goC) d. Solid calcium (0. 476 J/goC)

Answers

Among the given options, solid calcium will have the greatest increase in temperature when equal masses of these substances absorb equal amounts of thermal energy. This is because solid calcium has the lowest specific heat capacity, meaning it requires less heat energy to increase its temperature compared to the other substances.

The substance that will have the greatest increase in temperature when equal masses absorb equal amounts of thermal energy is the substance with the lowest specific heat capacity. Specific heat capacity is the amount of heat energy required to raise the temperature of a substance by a certain amount. Looking at the given options, we can compare the specific heat capacities of water, ammonia gas, aluminum metal, and solid calcium. Water has the highest specific heat capacity of 4.18 J/goC, which means it requires a large amount of heat energy to raise its temperature. Ammonia gas has a specific heat capacity of 2.1 J/goC, aluminum metal has a specific heat capacity of 0.90 J/goC, and solid calcium has the lowest specific heat capacity of 0.476 J/goC. Therefore, among the given options, solid calcium will have the greatest increase in temperature when equal masses of these substances absorb equal amounts of thermal energy. This is because solid calcium has the lowest specific heat capacity, meaning it requires less heat energy to increase its temperature compared to the other substances.

For more question on energy

https://brainly.com/question/29339318

#SPJ8

Buoyancy for the Goodyear blimp Spirit of Innovation comes from 2.03 x 105 ft3 of helium.calculate the mass of this much helium at 24.00 °c and 0.995 atm pressure.

Answers

The Buoyancy for the Goodyear blimp Spirit of the Innovation comes from the 2.03 x 10⁵ ft³ of the helium. The mass of the helium at the 24.00 °C and the 0.995 atm pressure is the 0.94 g.

The  volume, V = 57.48 L

The temperature, T = 24°C = 24 + 273 K = 297 K

The pressure, P = 1.00 atm

The molar mass of the Helium = 4.003 g/mol

The ideas gas law is :

n = ( PV)  / (RT )

n =  ( 1 × 57.48 ) / (0.0821 ) × 297 )

n = 0.235 moles

The mass of the helium is as :

Mass = moles × molar mass

Mass = 0.235 × 4.003

Mass = 0.94 g

The mass of helium is 0.94 g.

To learn more about mass here

https://brainly.com/question/3195245

#SPJ4

. If humans had to expend one molecule of ATP for every molecule of water retained, approximately how many molecules of ATP would be required? Enter your answer into the first answer field in accordance with the question statement. 6.022x10^27 moles
Please I know the answer is 6.022x10^27 moles but I need you to convert it to a regular number thank you

Answers

Approximately 3.62x10^51 molecules of ATP would be required for every molecule of water retained.

If humans had to expend one molecule of ATP for every molecule of water retained, and the given value is 6.022x10^27 moles of ATP, we can convert this to molecules by using Avogadro's number. Avogadro's number is approximately 6.022x10^23 particles (atoms, ions, or molecules) per mole.
To convert moles to molecules, you simply multiply the given value in moles by Avogadro's number:
6.022x10^27 moles × 6.022x10^23 molecules/mole = 3.62x10^51 molecules
So, approximately 3.62x10^51 molecules of ATP would be required for every molecule of water retained.

To know more about ATP Molecules visit:
https://brainly.com/question/8367148
#SPJ11

acetylsalicylic acid (aspirin), hc9h7o4, is the most widely used pain reliever and fever reducer in the world. determine the ph of a 0.045 m aqueous solution of aspirin; ka = 3.1×10-4.

Answers

The calculation shows that the pH of a 0.045 M aqueous solution of aspirin is approximately 2.8, indicating that the solution is acidic.

To determine the pH of a 0.045 M aqueous solution of aspirin, we need to first understand its acid-base behavior.

Aspirin is a weak acid and undergoes partial ionization in water to produce its conjugate base ([tex]C_{9}H_{7}O_{4}[/tex]) and a hydronium ion (H3O+). The ionization constant of aspirin, Ka, is given as 3.1 x[tex]10^{4}[/tex] in the problem.

Using the Ka value and the initial concentration of aspirin, we can calculate the concentration of the hydronium ion using the equation for the ionization of a weak acid.

From there, we can use the equation for pH, which is defined as the negative logarithm of the hydronium ion concentration, to calculate the pH of the solution.

The calculation shows that the pH of a 0.045 M aqueous solution of aspirin is approximately 2.8, indicating that the solution is acidic.

This pH value falls within the typical range for weak acids, which generally have pH values in the range of 2 to 7.

To know more about aqueous solution, refer here:

https://brainly.com/question/14097392#

#SPJ11

consider the following reaction: 2al(s) 6hcl(aq) → 2alcl3(aq) xh2(g) in order for this equation to be balanced, the value of x must be _____.

Answers

Main Answer: In order for the given equation to be balanced, the value of x must be 3.

Supporting Answer: The given chemical equation is unbalanced as the number of atoms of some elements is not equal on both sides. The balanced equation should have the same number of atoms of each element on both sides of the equation. To balance the equation, we need to first balance the number of aluminum (Al) atoms on both sides, which can be achieved by placing a coefficient of 2 in front of the Al(s) reactant. The balanced equation then becomes:

2Al(s) + 6HCl(aq) → 2AlCl3(aq) + 3H2(g)

Now the number of Al atoms is equal on both sides, but the number of hydrogen (H) atoms is still unbalanced. To balance the hydrogen atoms, we need to place a coefficient of 3 in front of the H2(g) product. This gives the final balanced equation:

2Al(s) + 6HCl(aq) → 2AlCl3(aq) + 3H2(g)

Therefore, the value of x in the balanced equation is 3.

Learn more about balancing chemical equations at

https://brainly.com/question/14072552?referrer=searchResults

#SPJ11.

dimerization is a side reaction that occurs during the preparation of a grignard reagent. propose a mechanism that accounts for the formation of the dimer.

Answers

Answer;Dimerization is a common side reaction that occurs during the preparation of a Grignard reagent. The formation of a dimer is a result of the reaction between two equivalents of the Grignard reagent, which can occur via a radical mechanism:

1. Initiation: The reaction begins with the formation of a radical species by the reaction between the Grignard reagent and a trace amount of oxygen or moisture in the solvent:

   RMgX + O2 (or H2O) → R• + MgXOH (or MgX2)

2. Propagation: The radical species reacts with another molecule of the Grignard reagent to form a new radical species, which then reacts with a molecule of the solvent:

   R• + RMgX → R-R + MgX•

   MgX• + 2R-MgX → MgX-R + R-MgX-R

3. Termination: The radical species produced in step 2 can react with other molecules of the Grignard reagent or with other radicals to form larger oligomers, such as tetramers and higher.

   2R• → R-R

   R• + R-R → R-R-R

   R• + R-R-R → R-R-R-R

Overall, this mechanism accounts for the formation of the dimer (R-R) during the preparation of a Grignard reagent. The formation of the dimer can reduce the yield of the desired Grignard reagent, so care must be taken to minimize the amount of oxygen and moisture present in the reaction.

learn more about Dimerization

https://brainly.com/question/29517510?referrer=searchResults

#SPJ11

What is the molarity of an hcl solution if 16. 0 mL of a 0. 5 M naoh are required to neutralize 25. 0 mL hcl

Answers

The molarity of the HCl solution is 0.32 M. The molarity of an HCl solution can be calculated if 16.0 mL of a 0.5 M NaOH is required to neutralize 25.0 mL HCl.

Here's how you can calculate it:

First, you need to balance the equation for the reaction between HCl and NaOH. It is given as:

HCl + NaOH → NaCl + H2O

From the balanced equation, you can see that 1 mole of HCl reacts with 1 mole of NaOH. Therefore, the number of moles of NaOH used to neutralize HCl can be calculated as follows:

0.5 M NaOH = 0.5 moles NaOH in 1 liter of solution

= 0.5 x (16.0/1000)

= 0.008 moles NaOH used

Similarly, the number of moles of HCl can be calculated as follows:

Moles of NaOH = Moles of HCl

=> 0.008 moles NaOH = Moles of HCl

=> Moles of HCl = 0.008 moles

Volume of HCl solution used = 25.0/1000

= 0.025 L

V = n/M

=> M = n/V

=> M = 0.008/0.025

=> M = 0.32 M

To leran more about molarity refer to:-

https://brainly.com/question/30909953

#SPJ11

how many moles of copper ii ion are there in the solid sample

Answers

To determine the number of moles of copper(II) ions in a solid sample, you would need to know the mass of the sample and the molar mass of copper. The formula for calculating moles is:

moles = (mass of sample) / (molar mass of copper)

Copper has a molar mass of approximately 63.5 g/mol. Once you have the mass of the solid sample, you can divide it by the molar mass of copper to find the moles of copper(II) ions present.

Learn more about moles here:

brainly.com/question/31993371

#SPJ11

Finally, what mass of Na2HPO4 is required? Again, assume a 1. 00 L volume buffer solution.



Target pH = 7. 37


Acid/Base pair: NaH2PO4/Na2HPO4


pKa = 7. 21


[Na2HPO4] > [NaH2PO4]


[NaH2PO4] = 0. 100 M


12. 0 g NaH2PO4 required


[base]/[acid] = 1. 45


[Na2HPO4] = 0. 145 M

Answers

The mass of Na2HPO4 required to prepare a buffer solution with a target pH of 7.37, we need to consider the Henderson-Hasselbalch equation and the acid/base pair involved in the buffer system.

The Henderson-Hasselbalch equation is given by:

pH = pKa + log([base]/[acid])

Given:

Target pH = 7.37

pKa = 7.21

[base]/[acid] = 1.45

To achieve the target pH, we need to calculate the concentration of Na2HPO4 ([base]) and NaH2PO4 ([acid]) in the buffer solution.

Using the Henderson-Hasselbalch equation, we can rearrange it to solve for [base]/[acid]:

[base]/[acid] = 10^(pH - pKa)

Substituting the given values:

[base]/[acid] = 10^(7.37 - 7.21)

[base]/[acid] = 1.45

We are given [NaH2PO4] = 0.100 M, which represents [acid]. Therefore, we can calculate [base] as:

[base] = 1.45 × [acid]

[base] = 1.45 × 0.100 M

[base] = 0.145 M

Now, we need to calculate the mass of Na2HPO4 required to obtain a concentration of 0.145 M.

Molar mass of Na2HPO4 = 22.99 g/mol + 22.99 g/mol + 79.97 g/mol + 16.00 g/mol + 16.00 g/mol = 157.94 g/mol

Mass = moles × molar mass

Mass = 0.145 mol × 157.94 g/mol

Mass = 22.89 g

Therefore, approximately 22.89 grams of Na2HPO4 is required to prepare the buffer solution with a 1.00 L volume and a target pH of 7.37.

Learn more about Henderson-Hasselbalch equation here

https://brainly.com/question/31495136

#SPJ11

the conversion of 4-pentanoylbiphenyl to 4-pentanylbiphenyl with hydrazine and potassium hydroxide is an overall of carbon? a. oxidation b. not a redox c. reduction

Answers

The conversion of 4-pentanoylbiphenyl to 4-pentanylbiphenyl with hydrazine and potassium hydroxide is a reduction . Option c. is correct.

Because it involves the addition of hydrogen atoms to the carbon atoms in the molecule, resulting in a decrease in the oxidation state of the carbons. During the reaction, hydrazine acts as a reducing agent and reduces the ketone group (-[tex]CO^-[/tex]) to an alcohol group (-[tex]CH_2OH[/tex]). This reduction results in the conversion of the carbonyl carbon from sp2 hybridization to sp3 hybridization, resulting in the formation of a new C-H bond.

Therefore, the reaction involves a gain of electrons by the carbonyl carbon, and a reduction of the ketone functional group. There is no simultaneous oxidation of any other species in the reaction.

Therefore, the reaction is a reduction and not an oxidation or a non-redox reaction. Hence, option c. is correct.

To know more about Reduction refer here :

https://brainly.com/question/4222605

#SPJ11

For the reaction 2 HCl + Na2CO3 + 2 NaCl + H2O + CO2, 8 L of CO2 is collected at STP. What is the volume of 4.2 M HCl required? 1. 0.170 L 2. 1.12 L 3. 0.0425 L 4. 0.355 L 5. 16.0 L 6. 0.085 L

Answers

The volume of 4.2 M HCl is 0.476 L . The answer is not one of the options provided. However, we can see that option 6 (0.085 L) is the closest.

To solve this problem, we need to use stoichiometry. First, we balance the equation:
2 HCl + Na2CO3 → 2 NaCl + H2O + CO2
This tells us that two moles of HCl are required to produce one mole of CO2. We know that 8 L of CO2 are collected at STP, which means that we have one mole of CO2 (since at STP, one mole of any gas occupies 22.4 L). Therefore, we need two moles of HCl.
Now we can use the molarity of the HCl to calculate the volume needed. The formula for molarity is:
Molarity = moles of solute / liters of solution
We rearrange this formula to solve for the volume:
Liters of solution = moles of solute / molarity
Plugging in the numbers, we get:
Liters of solution = 2 moles / 4.2 M = 0.476 L
Therefore, the answer is not one of the options provided. However, we can see that option 6 (0.085 L) is the closest. This suggests that there may have been an error in the calculation, perhaps a misplaced decimal point. We could double check our work to be sure.
In any case, the key concepts used in this problem are stoichiometry and the formula for molarity. It's important to pay attention to units and to be comfortable with these concepts in order to solve problems like this one.

To know more about reaction visit :

https://brainly.com/question/3461108

#SPJ11

If 12.5 g of Cu(NO3)2 6H2O is added to 500 mL of 1.00 M aqueous ammonia, what is the equilibrium molar concentration of Cu2+(aq)? Use the overall formation constant B4 in your calculation; B4 = 2.1 x 1013

Answers

The equilibrium molar concentration of Cu²⁺(aq) is approximately 0.0870 M.

What is the concentration of copper II ions?

Number of moles of the copper II nitrate hexa hydrate = 12.5 g /291 g/mol

= 0.043 moles.

The initial concentration of Cu²⁺(aq):

0.0435 mol / 0.500 L = 0.0870 M

The equilibrium expression using the overall formation constant;

[Cu(NH₃)₄²⁺] / ([Cu²⁺][NH₃]⁴)

The change in concentration of NH₃ is negligible as such;

2.1 x 10¹³ = [Cu(NH₃)₄²⁺] / (0.0870 - x)(1)⁴

When we solve for x;

x ≈ 0.0870 M

Learn more about formation constant:https://brainly.com/question/12593147

#SPJ4

Other Questions
1. what are the relative strengths and weaknesses of quick & easy kaizen, suggestion programs, kaizen circle activity, and practical kaizen training? please complete the assumptions section of the financial model. what is the closing customer base in 2020? review later 88,000 52,400 26,580 64,150 does software testing depend on the size of the software being tested I'm About to scream bc im so stressed out from everything even music cant heal me from stress! which level of management would a company eliminate first if it were to flatten its hierarchical structure? how much work must be done to pull apart the electron and the proton that make up the hydrogen atom if the atom is initially in (a) its ground state and (b) the state with n = 3? calculate (a) when a system does 41 j of work and its energy decreases by 68 j and (b) for a gas that releases 42 j of heat and has 111 j of work done on it. Comparison of observed diffraction angles and predicted diffraction angles What is the edge length of a cube with volume 2764 cubic units? Write your answer as a fraction in simplest form a sound wave in air has a frequency of 1280 hz and travels with a speed of 343 m/s. how far apart are the wave crests (compressions) ? the distance between wave crests is the wavelength of the wave. Explain states' obligations for suppression of terrorist bombings. Support your explanation by citing relevant articles of at least one international convention and one security council resolution. calculate 1 dose of the following drug orders. 1. order: tolbutamide 250 mg p.o. b.i.d. supply: tolbutamide 0.5 g scored tablets choose the l-aldohexose that gives the same alditol when treated with sodium borohydride. Review the following diagnostic statements and assign the correct ICD-10-CM diagnosis codes:a. After a thorough exam of an underweight nine-month-old child, the pediatrician rendered a diagnosis of severe malnutrition with marasmus.b. After being treated for a urinary tract infection two weeks ago and remaining symptomatic, a 65-year-old patient was referred to a urologist and diagnosed with acute pyelonephritis.c. A 48-year-old patient was referred to a cardiologist after complaints of chest pain radiating to shoulder, normal EKG, and normal stress test. After completing a History and Physical and further tests, she was diagnosed with chronic rheumatic pericarditis.d. A young woman presents to an Urgent Care Center with a painful lump on her right hand. After examination, the provider diagnosed this as a ganglion cyst. 3TC (C8H11 N3O3S) is a small molecule, antiretroviral medication. What mass (in g) of nitrogen is in 7.43*10^-4 moles of 3TC? The molar mass of C8H11N3O3S is 229.26 g-mol^-1? Data sheet and Periodic Table a.3.47x10^-3 g b.3.12x10^-2 g c.1.70x10^-1 g d.5.11x10^-1 g eB014. The table shows the number of inches ofrain over five months. What would be anappropriate display of the data? Explain.(Lesson 2)MonthNumberof Inchesof RainJan. Feb. Mar.1.52.23.6Apr.5.3May4.8 Cornelius is building a solar system model. He plans on making a circular ring around one of the planets out of wire. He wants to know how long he should make the wire to position around the planet. Select all the formulas that could be used to determine the length of the circular ring How to classify line integral of each vector field (in blue) along the oriented path? a wholesale retailer like costco can in recent times be said to have adopted a: A slingshot is used to launch a stone horizontally from the top of a 20. 0 meter cliff. The stone lands 36. 0 meters away