Class A has 22 pupils and class B has 9 pupils.
Both classes sit the same maths test.
The mean score for class A is 31.
The mean score for both classes is 42.
What is the mean score (rounded to 2 DP) in the maths test for class B?

Answers

Answer 1

Answer:

that is 9/31=0.2903=0.29


Related Questions

What happens to a figure when it is dilated with a scale factor of 1?.

Answers

When a figure is dilated with a scale factor of 1, there is no change in size or shape. The figure remains unchanged, with every point retaining its original position. This is because a scale factor of 1 indicates that there is no stretching or shrinking occurring.

When a figure is dilated with a scale factor of 1, it means that the size and shape of the figure remains unchanged. The word "dilate" means to stretch or expand, but in this case, a scale factor of 1 implies that there is no stretching or shrinking occurring.

To understand this concept better, let's consider an example. Imagine we have a square with side length 5 units. If we dilate this square with a scale factor of 1, the resulting figure will have the same side length of 5 units as the original square. The shape and proportions of the figure will be identical to the original square.

This happens because a scale factor of 1 means that every point in the figure remains in the same position. There is no change in size or shape. The figure is essentially a copy of the original, overlapping perfectly.

Learn more about scale factor from the link:

https://brainly.com/question/25722260

#SPJ11

f(x)=5(x−1)21−cos(4x−4)​;a=1 Use a graphing utility to graph f. Select the correct graph below.. A. B. Each graph is displayed in a [−1,3] by [0,3] window. Use the graphing utility to estimate limx→1​f(x). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The limit appears to be approximately (Round to the nearest tenth as needed.) 3. The limit does not exist. b. Evaluate f(x) for values of x near 1 to support your conjecture. Does the table from the previous step support your conjecture? A. Yes, it does. The graph and the table of values both show that f(x) approaches the same value. B. Yes, it does. The graph and the table of values both indicate that the limit as x approaches 1 does not exist. C. No, it does not. The function approaches different values in the table of values as x approaches 1 from the left and from the right. D. No, it does not. The function f(x) approaches a different value in the table of values than in the graph.

Answers

Hence, the correct choice is A. Yes, it does. The graph and the table of values both show that f(x) approaches the same value.

The given function is f(x) = 5(x - 1) / (2 - cos(4x - 4)) and a = 1.

The graph of the given function is shown below:

Therefore, the graph which represents the given function is the graph shown in the option A.

Now, let's estimate the limit limx → 1 f(x) using the graph:

We can observe from the graph that the value of f(x) approaches 3 as x approaches 1.

Hence, we can say that the limit limx → 1 f(x) is equal to 3.

The table of values of f(x) for values of x near 1 is shown below:

x f(x)0.9 3.0101 2.998100.99 2.9998010.999 3.0000001

From the table, we can observe that the function approaches the same value of 3 as x approaches 1 from both sides.

Therefore, the table from the previous step supports the conjecture that the limit limx → 1 f(x) is equal to 3.

To know more about graph visit:

https://brainly.com/question/17267403

#SPJ11

For the feasible set determine x and y so that the objective function 5x+4y i maximized.

Answers

The maximum value of the objective function over the feasible set occurs at x = 1 and y = 2, and the maximum value is 13.

To maximize the objective function 5x + 4y over the feasible set, we need to find the corner points of the feasible region and evaluate the objective function at those points. The maximum value of the objective function will occur at one of these corner points.

Let's say the constraints that define the feasible set are:

f(x, y) = x + y <= 5

g(x, y) = x - y >= -3

h(x, y) = y >= 0

Graphing these inequalities on a coordinate plane, we can see that the feasible set is a triangular region with vertices at (1, 2), (-3, 0), and (-1.5, 0).

To find the maximum value of the objective function, we evaluate it at each of these corner points:

At (1, 2): 5(1) + 4(2) = 13

At (-3, 0): 5(-3) + 4(0) = -15

At (-1.5, 0): 5(-1.5) + 4(0) = -7.5

Therefore, the maximum value of the objective function over the feasible set occurs at x = 1 and y = 2, and the maximum value is 13.

learn more about objective function here

https://brainly.com/question/33272856

#SPJ11

Verify that F Y

(t)= ⎩



0,
t 2
,
1,

t<0
0≤t≤1
t>1

is a distribution function and specify the probability density function for Y. Use it to compute Pr( 4
1

1

)

Answers

To verify if F_Y(t) is a distribution function, we need to check three conditions:

1. F_Y(t) is non-decreasing: In this case, F_Y(t) is non-decreasing because for any t_1 and t_2 where t_1 < t_2, F_Y(t_1) ≤ F_Y(t_2). Hence, the first condition is satisfied.

2. F_Y(t) is right-continuous: F_Y(t) is right-continuous as it has no jumps. Thus, the second condition is fulfilled.

3. lim(t->-∞) F_Y(t) = 0 and lim(t->∞) F_Y(t) = 1: Since F_Y(t) = 0 when t < 0 and F_Y(t) = 1 when t > 1, the third condition is met.

Therefore, F_Y(t) = 0 for t < 0, F_Y(t) = t^2 for 0 ≤ t ≤ 1, and F_Y(t) = 1 for t > 1 is a valid distribution function.

To find the probability density function (pdf) for Y, we differentiate F_Y(t) with respect to t.

For 0 ≤ t ≤ 1, the pdf f_Y(t) is given by f_Y(t) = d/dt (t^2) = 2t.

For t < 0 or t > 1, the pdf f_Y(t) is 0.

To compute Pr(4 < Y < 11), we integrate the pdf over the interval [4, 11]:

Pr(4 < Y < 11) = ∫[4, 11] 2t dt = ∫[4, 11] 2t dt = [t^2] from 4 to 11 = (11^2) - (4^2) = 121 - 16 = 105.

Therefore, Pr(4 < Y < 11) is 105.

To know more about  distribution function visit

https://brainly.com/question/30402457

#SPJ11

If n is an odd integer, then it is the difference of two perfect squares. The number n is an odd integer if and only if 3n+5=6k+8 for some integer k. . The number n is an even integer if and only if 3n+2=6k+2 for some integer k.

Answers

The statements provided can be rewritten as follows: 1. If n is an odd integer, then there exist integers a and b such that n = a^2 - b^2. 2. n is an odd integer if and only if 3n + 5 is of the form 6k + 8 for some integer k. 3. n is an even integer if and only if 3n + 2 is of the form 6k + 2 for some integer k.

Let's analyze these statements:

1. If n is an odd integer, then there exist integers a and b such that n = a^2 - b^2.

  This statement is true and can be proven using the concept of the difference of squares. For any odd integer n, we can express it as the difference of two perfect squares: n = (a + b)(a - b), where a and b are integers. This shows that n can be written as the difference of two squares.

2. n is an odd integer if and only if 3n + 5 is of the form 6k + 8 for some integer k.

  This statement is not true. Consider the counterexample where n = 1. In this case, 3n + 5 = 8, which is not of the form 6k + 8 for any integer k.

3. n is an even integer if and only if 3n + 2 is of the form 6k + 2 for some integer k.

  This statement is true. For any even integer n, we can express it as n = 2k, where k is an integer. Substituting this into the given equation, we get 3n + 2 = 3(2k) + 2 = 6k + 2, which is of the form 6k + 2.

In conclusion, statement 1 is true, statement 2 is false, and statement 3 is true.

To know more about integers, visit:

https://brainly.com/question/490943#

#SPJ11

Use 2-dimensional array to allow five students 4 different payments to enter their boarding fees. If they live on Wedderburn Hall, they paid $2,500 for boarding if they live on Val Hall they pay $5,000 for boarding and V hall they pay $6,000 for boarding board. Use a function called total remaining fees to output if they have paid all their total fees

Answers

A 2-dimensional array is used to store the boarding fees of five students for four different payments. A function called "total remaining fees" calculates the remaining fees for each student and determines if they have paid all their fees based on the sum of their paid fees compared to the total fees.

To solve this problem, we can use a 2-dimensional array to store the boarding fees of five students for four different payments.

Each row of the array represents a student, and each column represents a payment. The array will have a dimension of 5x4.

Here's an example implementation in Python:

#python

def total_remaining_fees(fees):

   total_fees = [2500, 5000, 6000]  # Boarding fees for Wedderburn Hall, Val Hall, and V Hall

   for student_fees in fees:

       remaining_fees = sum(total_fees) - sum(student_fees)

       if remaining_fees == 0:

           print("Student has paid all their fees.")

       else:

           print("Student has remaining fees of $" + str(remaining_fees))

# Example usage

boarding_fees = [

   [2500, 2500, 2500, 2500],  # Fees for student 1

   [5000, 5000, 5000, 5000],  # Fees for student 2

   [6000, 6000, 6000, 6000],  # Fees for student 3

   [2500, 5000, 2500, 5000],  # Fees for student 4

   [6000, 5000, 2500, 6000]   # Fees for student 5

]

total_remaining_fees(boarding_fees)

In this code, the `total_remaining_fees` function takes the 2-dimensional array `fees` as input. It calculates the remaining fees for each student by subtracting the sum of their paid fees from the sum of the total fees.

If the remaining fees are zero, it indicates that the student has paid all their fees.

Otherwise, it outputs the amount of remaining fees. The code provides an example of a 5x4 array with fees for five students and four payments.

To know more about array refer here:

https://brainly.com/question/26104158#

#SPJ11

Which best describes how the angles K, L, and M are related?

Answers

The exterior angle theorem, which describes the relationship between the angles K, L, and M indicates that the measure of the angle M is the sum of the angles K and M, therefore;

K + L = M

What is the exterior angle theorem?

The exterior angle theorem states that the measure of the exterior angle of a triangle is equivalent to the sum of the two remote or non adjacent interior angles.

The angle M is the exterior angle to the triangle, therefore, according to the exterior angle theorem, the angle M is equivalent to the sum of the angles L and K therefore, we get;

k + L  = M

Learn more on the exterior angle theorem here: https://brainly.com/question/28960684

#SPJ1

The function f(x)=215(2x 2
−4x−6) models the cost, in dollars, of a rug with width x feet. What is the cost of a rug that is 9 feet wide? A. $120 B. $258 C. $606 D. $655

Answers

The cost of a rug that is 9 feet wide, according to the given function f(x) = 215(2x^2 - 4x - 6), is $655. Which can be found by using algebraic equation. Therefore, the correct answer is D.

To find the cost of a rug that is 9 feet wide, we substitute x = 9 into the given function f(x) = 215(2x^2 - 4x - 6). Plugging in x = 9, we have f(9) = 215(2(9)^2 - 4(9) - 6). Simplifying this expression, we get f(9) = 215(162 - 36 - 6) = 215(120) = $25800.

Therefore, the cost of a rug that is 9 feet wide is $25800. However, we need to select the answer in dollars, so we divide $25800 by 100 to convert it to dollars. Thus, the cost of a 9-foot wide rug is $258.Among the given answer choices, the closest one to $258 is option D, which is $655. Therefore, the correct answer is D.

To know more about algebraic equation refer here:

https://brainly.com/question/11862255

#SPJ11

If f and g are continuous functions with f(3)=3 and limx→3​[4f(x)−g(x)]=6, find g(3).

Answers

A continuous function is a function that has no abrupt changes or discontinuities in its graph. Intuitively, a function is continuous if its graph can be drawn without lifting the pen from the paper.

Formally, a function f(x) is considered continuous at a point x = a if the following three conditions are satisfied:

1. The function is defined at x = a.

2. The limit of the function as x approaches a exists. This means that the left-hand limit and the right-hand limit of the function at x = a are equal.

3. The value of the function at x = a is equal to the limit value.

Given f and g are continuous functions with f(3) = 3 and lim x → 3 [4f(x) - g(x)] = 6, we need to find g(3). We are given the value of f(3) as 3. Now we need to find the value of g(3). According to the given question: lim x → 3 [4f(x) - g(x)] = 6 So,lim x → 3 [4f(x)] - lim x → 3 [g(x)] = 6 Now,lim x → 3 [4f(x)] = 4[f(3)] = 4 × 3 = 12Therefore,lim x → 3 [4f(x)] - lim x → 3 [g(x)] = 6⇒ 12 - lim x → 3 [g(x)] = 6⇒ lim x → 3 [g(x)] = 12 - 6 = 6Therefore, g(3) = lim x → 3 [g(x)] = 6 Answer: g(3) = 6

For more problems on Continuous functions visit:

https://brainly.com/question/33468373

#SPJ11

Claim: The mean pulse rate (in beats per minute) of adult males is equal to 69bpm. For a random sample of 146 adult males, the mean pulse rate is 68.8bpm and the standard deviation is 11.2bpm. Complete parts (a) and (b) below. a. Express the original claim in symbolic form. bpm (Type an integer or a decimal. Do not round.) b. Identify the null and alternative hypotheses. H
0

:bpm

Answers

a. Expressing the original claim in symbolic form:

The mean pulse rate (in beats per minute) of adult males: μ = 69 bpm

b. Identifying the null and alternative hypotheses:

Null hypothesis (H0): The mean pulse rate of adult males is equal to 69 bpm.

Alternative hypothesis (H1): The mean pulse rate of adult males is not equal to 69 bpm.

Symbolically:

H0: μ = 69 bpm

H1: μ ≠ 69 bpm

To know more about mean visit:

brainly.com/question/31101410

#SPJ11

Are the points I(1,0,0), J(0,1,0) and K(0,0,1) coplanar? Please provide a sketch.

Answers

The three points I(1,0,0), J(0,1,0), and K(0,0,1) are the standard basis vectors for the vector space R^3. They are not coplanar, since they form a basis for the entire space R^3, which means that any three non-collinear points in R^3 are not coplanar.

To visualize this, you can imagine that the point I is located at (1,0,0) along the x-axis, the point J is located at (0,1,0) along the y-axis, and the point K is located at (0,0,1) along the z-axis. The three points form a right-handed coordinate system, where the x-axis, y-axis, and z-axis are mutually perpendicular. Since any plane in R^3 can be spanned by two linearly independent vectors, and the three standard basis vectors are linearly independent, it follows that the points I, J, and K are not coplanar.

Here's a sketch to help visualize the three points and their relationship to the coordinate axes:

          z

          |

          |

          K (0,0,1)

          |

          |

 y--------|--------x

          |

          |

          J (0,1,0)

          |

          |

          I (1,0,0)

Learn more about "Coplanar Vector space" : https://brainly.com/question/24250339

#SPJ11

Apply Theorem B.3 to obtain the characteristic equation from all the terms:
(r-2)(r-1)^2(r-2)=(r-2)^2(r-1)^2

Answers

Therefore, the characteristic equation from the given equation is: [tex](r - 2)(r - 1)^2 = 0.[/tex]

According to Theorem B.3, which states that for any polynomial equation, if we have a product of factors on one side equal to zero, then each factor individually must be equal to zero.

In this case, we have the equation:

[tex](r - 2)(r - 1)^2(r - 2) = (r - 2)^2(r - 1)^2[/tex]

To obtain the characteristic equation, we can apply Theorem B.3 and set each factor on the left side equal to zero:

(r - 2) = 0

[tex](r - 1)^2 = 0[/tex]

Setting each factor equal to zero gives us the roots or solutions of the equation:

r = 2 (multiplicity 2)

r = 1 (multiplicity 2)

To know more about characteristic equation,

https://brainly.com/question/32615056

#SPJ11

If your main goal in regression is inference (i.e., better understanding the relationship between your X variables and y) do you need to be concerned about correlation between variables? Does this change if your goal is prediction? Explain your reasoning

Answers

In contrast, when the main goal is prediction, the emphasis is on the overall predictive performance, and while correlation may still be considered, its impact on individual coefficients may be less critical.

If your main goal in regression is inference, it is important to be concerned about the correlation between variables. The reason is that correlation between variables indicates a relationship and can help in understanding the relationship between the predictor variables (X variables) and the response variable (y). By considering the correlation, you can determine which variables are significantly associated with the response variable and make inferences about the direction and strength of the relationships.

In the context of inference, it is crucial to identify and account for the correlation between variables to ensure that the estimated regression coefficients are reliable and meaningful. Correlation can affect the interpretation of individual coefficients and can also lead to multicollinearity issues, where predictors are highly correlated with each other, making it difficult to isolate their individual effects on the response variable.

On the other hand, if the main goal is prediction, the concern about correlation between variables may be reduced. In prediction, the focus is on creating a model that can accurately forecast the response variable using the available predictor variables. While correlation between variables can still be considered for feature selection and model building, it may not be the primary concern. Prediction models can handle correlated predictors as long as they contribute to the prediction accuracy, even if the interpretation of individual coefficients may be less important.

In summary, when the main goal is inference, correlation between variables is important to understand the relationship between predictors and the response.

Learn more about coefficients  here

https://brainly.com/question/1594145

#SPJ11

vEvery three minutes, 500 feet of paper is used off of a 6,000 foot -roll to print the pages of a magazine. Write a linear equation that relates the number of feet of paper p that remain on the roll a

Answers

Linear equation relating the number of feet of paper p remaining on the roll and the number of minutes m the printing press has been operating is given by:

p = 6000 - 500m

Where p is the remaining feet of paper and m is the number of minutes the printing press has been operating.

Initially, the roll has 6000 feet of paper, and every 3 minutes, 500 feet of paper is used. This means that after m minutes, the amount of paper used will be 500m. Therefore, the remaining paper will be 6000 - 500m.

This equation is linear because it has a constant rate of change, which is -500. This means that for every minute the printing press operates, the remaining paper on the roll decreases by 500 feet.

In conclusion, the linear equation that relates the number of feet of paper p remaining on the roll and the number of minutes m the printing press has been operating is p = 6000 - 500m.

COMPLETE QUESTION:

vEvery three minutes, 500 feet of paper is used off of a 6,000 foot -roll to print the pages of a magazine. Write a linear equation that relates the number of feet of paper p that remain on the roll and the number of minutes m the printing press has been operating.

Know more about Linear equation  here:

https://brainly.com/question/32634451

#SPJ11

Water Pressure Application In certain deep parts of oceans, the pressure of sea water, P, in pounds per square foot, at a depth of d feet below the surface, is given by the following equation P=12+4/13 d. Use this equation to complete the statements below. Round your answers to the nearest tenth as needed. The pressure of sea water is 75 pounds per square foot at a depth of feet below the surface of the water. The pressure of sea water is pounds per square foot at a depth of 65 feet below the surface of the water.

Answers

The  pressure water is 75 pounds per square foot at a depth of [unknown] feet below the surface of the water.

We are given the equation for water pressure in pounds per square foot as P = 12 + (4/13)d, where d represents the depth below the surface in feet.

To find the depth at which the pressure is 75 pounds per square foot, we need to solve the equation for d.

12 + (4/13)d = 75

To isolate d, we subtract 12 from both sides:

(4/13)d = 75 - 12

(4/13)d = 63

Next, we multiply both sides by the reciprocal of (4/13), which is (13/4):

d = (13/4) * 63

d = 204.75

Rounding to the nearest tenth, the depth is approximately 204.8 feet.

The pressure of sea water is 75 pounds per square foot at a depth of approximately 204.8 feet below the surface of the water.

The pressure of sea water is [unknown] pounds per square foot at a depth of 65 feet below the surface of the water.

We are given the equation for water pressure in pounds per square foot as P = 12 + (4/13)d, where d represents the depth below the surface in feet.

P = 12 + (4/13) * 65

P = 12 + (4/13) * 65

P = 12 + (260/13)

P = 12 + 20

P = 32

Therefore, the pressure of sea water at a depth of 65 feet below the surface is 32 pounds per square foot.

The pressure of sea water is 32 pounds per square foot at a depth of 65 feet below the surface of the water.

To know more about pressure, visit;
https://brainly.com/question/28012687
#SPJ11

The owner of a computer repair shop has determined that their daily revenue has mean $7200 and standard deviation $1200. The daily revenue totals for the next 30 days will be monitored. What is the probability that the mean daily reverue for the next 30 days will be less than $7000 ? A) 0.8186 B) 0.4325 C) 0.5675 D) 0.1814

Answers

The mean daily revenue for the next 30 days is $7200 with a standard deviation of $1200. To find the probability of the mean revenue being less than $7000, use the z-score formula and find the correct option (D) at 0.1814.

Given:Mean daily revenue = $7200Standard deviation = $1200Number of days, n = 30We need to find the probability that the mean daily revenue for the next 30 days will be less than $7000.Now, we need to find the z-score.

z-score formula is:

[tex]$z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}$[/tex]

Where[tex]$\bar{x}$[/tex] is the sample mean, $\mu$ is the population mean, $\sigma$ is the population standard deviation, and n is the sample size.

Putting the values in the formula, we get:

[tex]$z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{7000-7200}{\frac{1200}{\sqrt{30}}}$$z=-\frac{200}{219.09}=-0.913$[/tex]

Now, we need to find the probability that the mean daily revenue for the next 30 days will be less than $7000$.

Therefore, $P(z < -0.913) = 0.1814$.Hence, the correct option is (D) 0.1814.

To know more about standard deviation Visit:

https://brainly.com/question/29115611

#SPJ11

For each of the following variables, indicate whether it is quantitative or qualitative and specify the measurement scale that is employed when taking measurement on each (5pts) : a. Marital status of patients followed at a medical clinical facility b. Admitting diagnosis of patients admitted to a mental health clinic c. Weight of babies born in a hospital during a year d. Gender of babies born in a hospital during a year e. Number of active researchers at Universidad Central del Caribe

Answers

Marital status of patients followed at a medical clinical facility Variable: Marital status

Type: Qualitative Measurement Scale: Nominal scale

 Admitting diagnosis of patients admitted to a mental health clinic Variable: Admitting diagnosis Type: Qualitative Measurement Scale: Nominal scale  Weight of babies born in a hospital during a year Variable: Weight Quantitative Measurement Scale: Ratio scale Gender of babies born in a hospital during a year Type: Qualitative Measurement Scale: Nominal scale  Number of active researchers at Universidad Central del Caribe

Learn more about Qualitative here

https://brainly.com/question/29004144

#SPJ11

mesn mumber of calories consumed per day for the population with the confidence leveis shown below. a. BR ह. b. 96% c. 99% a. The 92% confidence interval has a lowee litit of and an upper limit of (Round 10 one decimai place as needed)

Answers

Therefore, the answer is: Lower limit = 1971.69

Upper limit = 2228.31

Given data: a. The confidence level = 92%

b. The lower limit = ?

c. The upper limit = ?

Formula used:

Given a sample size n ≥ 30 or a population with a known standard deviation, the mean is calculated as:

μ = M

where M is the sample mean

For a given level of confidence, the formula for a confidence interval (CI) for a population mean is:

CI = X ± z* (σ / √n)

where: X = sample mean

z* = z-score

σ = population standard deviation

n = sample size

Substitute the given values in the above formula as follows:

For a 92% confidence interval, z* = 1.75 (as z-value for 0.08, i.e. (1-0.92)/2 = 0.04 is 1.75)

Lower limit = X - z* (σ / √n)

Upper limit = X + z* (σ / √n)

The standard deviation is unknown, so the margin of error is calculated using the t-distribution.

The t-distribution is used because the population standard deviation is unknown and the sample size is less than 30.

For a 92% confidence interval, degree of freedom = n-1 = 18-1 = 17

t-value for a 92% confidence level and degree of freedom = 17 is 1.739

Calculate the mean:μ = 2100

Calculate the standard deviation: s = 265

√n = √19 = 4.359

For a 92% confidence interval, the margin of error (E) is calculated as:

E = t*(s/√n) = 2.110*(265/4.359) = 128.31

The 92% confidence interval has a lower limit of 1971.69 and an upper limit of 2228.31 (rounded to one decimal place as required).

Therefore, the answer is: Lower limit = 1971.69

Upper limit = 2228.31

Explanation:

A confidence interval is the range of values within which the true value is likely to lie within a given level of confidence. A confidence level is a probability that the true population parameter lies within the confidence interval.

To know more about standard deviation, visit:

https://brainly.com/question/29115611

#SPJ11

Solve The Following Seeond Order Non-Homogeneous Diffe Y′′′−6y′′=3−Cosx

Answers

The solution to the second-order non-homogeneous differential equation Y′′′ − 6Y′′ = 3 − cos(x) is given by: [tex]Y(x) = c1 + c2x + c3e^{(6x)} + a - (3/5)sin(x)[/tex] where c1, c2, c3, and a are arbitrary constants.

To solve the second-order non-homogeneous differential equation Y′′′ − 6Y′′ = 3 − cos(x), we can use the method of undetermined coefficients. First, let's find the general solution to the corresponding homogeneous equation Y′′′ − 6Y′′ = 0. The characteristic equation is given by [tex]r^3 - 6r^2 = 0[/tex].  Next, we need to find a particular solution to the non-homogeneous equation Y′′′ − 6Y′′ = 3 − cos(x). Since the right-hand side contains a constant term and a cosine term, we assume a particular solution of the form Y_p(x) = a + bcos(x) + csin(x), where a, b, and c are unknown coefficients.

Now, we calculate the derivatives of Y_p(x):

Y_p′(x) = 0 - bsin(x) + ccos(x)

Y_p′′(x) = -bcos(x) - csin(x)

Y_p′′′(x) = bsin(x) - ccos(x)

Substituting these derivatives back into the non-homogeneous equation, we have:

(bsin(x) - ccos(x)) - 6(-bcos(x) - csin(x)) = 3 - cos(x)

Simplifying the equation, we get:

7bcos(x) - 5csin(x) = 3

Comparing the coefficients of the trigonometric functions on both sides, we have:

7b = 0 and -5c = 3

From the first equation, we have b = 0, and from the second equation, we have c = -3/5. Substituting these values back into Y_p(x), we have Y_p(x) = a - (3/5)sin(x).

Finally, the general solution to the non-homogeneous equation is given by the sum of the homogeneous and particular solutions:

Y(x) = Y_h(x) + Y_p(x)

= c1 + c2x + c3e(6x) + a - (3/5)sin(x)

To know more about differential equation,

https://brainly.com/question/33114034

#SPJ11


The number of different words that can be formed by re-arranging
letters of the word KOMPRESSOR in such a way that the vowels are
the first two letters are identical is
[ANSWER ]

Answers

Therefore, the number of different words that can be formed by rearranging the letters of the word "KOMPRESSOR" such that the vowels are the first two letters and are identical is 15,120.

To find the number of different words that can be formed by rearranging the letters of the word "KOMPRESSOR" such that the vowels are the first two letters and are identical, we need to consider the arrangements of the remaining consonants.

The word "KOMPRESSOR" has 3 vowels (O, E, O) and 7 consonants (K, M, P, R, S, S, R).

Since the vowels are the first two letters and are identical, we can treat them as one letter. So, we have 9 "letters" to arrange: (OO, K, M, P, R, E, S, S, R).

The number of arrangements can be calculated using the concept of permutations. In this case, we have repeated letters, so we need to consider the repetitions.

The number of arrangements with repeated letters is given by the formula:

n! / (r1! * r2! * ... * rk!)

Where n is the total number of letters and r1, r2, ..., rk are the frequencies of the repeated letters.

In our case, we have:

n = 9

r1 = 2 (for the repeated letter "S")

r2 = 2 (for the repeated letter "R")

r3 = 2 (for the repeated letter "O")

Using the formula, we can calculate the number of arrangements:

9! / (2! * 2! * 2!) = (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1) / (2 * 1 * 2 * 1 * 2 * 1) = 9 * 8 * 7 * 6 * 5 = 15,120

Learn more about identical here

https://brainly.com/question/11539896

#SPJ11

Which of the following expressions expresses the idea that if there were one more red ball in the box there would be twice as many red balls as yellow balls in the box. Use R to represent the number of red balls and Y to represent the number of yellow balls. 2(R+1)=Y None of these answers are correct. R+1=2Y 2R+1=Y

Answers

The given expression that expresses the idea that if there were one more red ball in the box there would be twice as many red balls as yellow balls in the box is none of these answers are correct.

Given that the expression that expresses the idea that if there were one more red ball in the box there would be twice as many red balls as yellow balls in the box is `2(R+1)=Y`.

Here, `R` represents the number of red balls and `Y` represents the number of yellow balls in the box.

To find which of the given options is correct, we will substitute R+1 for R in each option and check which one satisfies the given condition.

Substituting R+1 for R in the expression `2(R+1)=Y`,

we get:

2(R+1) = 2R + 2Y

We know that there is one more red ball, i.e., R + 1 red balls, so the total number of red balls will be (R + 1). And as per the given statement, this number should be twice the number of yellow balls in the box.

So, the total number of yellow balls will be 2(R + 1).

Therefore, the equation becomes:

2(R + 1) = Y

4R + 2 = Y

We can observe that none of the given options satisfies the above equation, so none of these answers are correct. Hence, the correct expression is none of these answers are correct.

Therefore, the given expression that expresses the idea that if there were one more red ball in the box there would be twice as many red balls as yellow balls in the box is none of these answers are correct.

To know more about expression visit:

brainly.com/question/28170201

#SPJ11

Hypothesis testing a. Suppose Apple stock had an average daily return of 3.25\% return last year. You take a random sample of 30 days from this year and get an average return of 1.87% with a standard deviation of 5.6%. At the 5% significance level, do you have enough evidence to suggest that the average daily return has decreased? b. Suppose from 2000-2010, Sony's average quarterly revenue was $19.309 billion. You take a random sample of 30 quarters since 2010 and find their average to be $22.6 billion with a standard deviation of $5.2 billion. At the 1% significance level, do you have enough evidence to suggest that their average quarterly revenue has increased? c. Suppose Dr. Wiley's performance review has come up. In the past 70% of STAT 3331 students were known to pass the course. From a random sample of 100 students this semester, we find that 80% feel confident they will pass. At the 10% significance level, is there enough evidence to suggest that the proportion of students who will pass the course has changed?

Answers

b) If the calculated z-value exceeds the critical z-value from the standard normal distribution at the specified significance level, we reject the null hypothesis.

a. To test whether the average daily return has decreased, we can use a one-sample t-test. The null hypothesis (H0) is that the average daily return is still 3.25%, and the alternative hypothesis (Ha) is that the average daily return has decreased.

Given:

Sample size (n) = 30

Sample mean (x(bar)) = 1.87%

Sample standard deviation (s) = 5.6%

Significance level (α) = 0.05

First, we calculate the t-statistic:

t = (x(bar) - μ) / (s / sqrt(n))

Where μ is the hypothesized mean under the null hypothesis, which is 3.25%.

t = (1.87% - 3.25%) / (5.6% / sqrt(30))

Next, we compare the calculated t-value with the critical t-value from the t-distribution with (n - 1) degrees of freedom. At a significance level of 0.05 and (n - 1) = 29 degrees of freedom, the critical t-value is obtained from the t-distribution table.

If the calculated t-value is greater than the critical t-value, we reject the null hypothesis in favor of the alternative hypothesis.

b. To test whether the average quarterly revenue has increased, we can use a one-sample t-test. The null hypothesis (H0) is that the average quarterly revenue is still $19.309 billion, and the alternative hypothesis (Ha) is that the average quarterly revenue has increased.

Given:

Sample size (n) = 30

Sample mean (x(bar)) = $22.6 billion

Sample standard deviation (s) = $5.2 billion

Significance level (α) = 0.01

Using the same process as in part (a), we calculate the t-value and compare it with the critical t-value from the t-distribution with (n - 1) degrees of freedom. If the calculated t-value is greater than the critical t-value, we reject the null hypothesis.

c. To test whether the proportion of students who will pass the course has changed, we can use a one-sample proportion test. The null hypothesis (H0) is that the proportion is still 70%, and the alternative hypothesis (Ha) is that the proportion has changed.

Given:

Sample size (n) = 100

Sample proportion (p(cap)) = 80%

Significance level (α) = 0.10

We calculate the test statistic, which follows the standard normal distribution under the null hypothesis:

z = (p(cap) - p0) / sqrt((p0 * (1 - p0)) / n)

Where p0 is the hypothesized proportion under the null hypothesis, which is 70%.

To know more about deviation visit:

brainly.com/question/31835352

#SPJ11

At a factory that produces pistons for cars, Machine 1 produced 819 satisfactory pistons and 91 unsatisfactory pistons today. Machine 2 produced 480 satisfactory pistons and 320 unsatisfactory pistons today. Suppose that one piston from Machine 1 and one piston from Machine 2 are chosen at random from today's batch. What is the probability that the piston chosen from Machine 1 is unsatisfactory and the piston chosen from Machine 2 is satisfactory?
Do not round your answer. (If necessary, consult a list of formulas.)

Answers

To find the probability that the piston chosen from Machine 1 is unsatisfactory and the piston chosen from Machine 2 is satisfactory, we need to consider the probability of each event separately and then multiply them together.

Let's denote the event of choosing an unsatisfactory piston from Machine 1 as A and the event of choosing a satisfactory piston from Machine 2 as B.

P(A) = (number of unsatisfactory pistons from Machine 1) / (total number of pistons from Machine 1)

     = 91 / (819 + 91)

     = 91 / 910

P(B) = (number of satisfactory pistons from Machine 2) / (total number of pistons from Machine 2)

     = 480 / (480 + 320)

     = 480 / 800

Now, to find the probability of both events happening (A and B), we multiply the individual probabilities:

P(A and B) = P(A) * P(B)

          = (91 / 910) * (480 / 800)

Calculating this expression gives us the probability that the piston chosen from Machine 1 is unsatisfactory and the piston chosen from Machine 2 is satisfactory.

Learn more about probability here:

https://brainly.com/question/31828911

#SPJ11

The augmented matrix for a linear system is ⎣⎡​100​010​−760​001​−4−34​000​⎦⎤​ a. Is the arsociated system homogeneous? We Yes b. If it is homogeneoun, find the solution set and enter it below. Fill vectors from left to right as needed. Leave unneeded vectors blank.

Answers

The augmented matrix for a linear system is the associated system is not homogeneous.

To determine if the associated system is homogeneous, to check if the augmented matrix has a zero column on the right-hand side.

The augmented matrix given is:

[ 100 0 10 ]

[ 0 -7 60 ]

[ 1 -3 4 ]

[ 0 0 1 ]

Since the last column of the augmented matrix does not consist entirely of zeros, the associated system is not homogeneous.

To know more about matrix here

https://brainly.com/question/29132693

#SPJ4

Complete question:

The augmented matrix for a linear system is  [tex]\begin{matrix}\begin{matrix} 1& 0 & 0 & 0& 1& \\ -7& 6& 0& 0& 0& \\ -4& -3 & 4 & 0 & 0 & \end{matrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \end{matrix}[/tex]

 a. Is the arsociated system homogeneous? We Yes b. If it is homogeneoun, find the solution set and enter it below. Fill vectors from left to right as needed. Leave unneeded vectors blank.

On 16 April Dumi deposited an amount of money in a savings amount that eams 8.5% per annum, simple interest. She intends to withdraw the balance of R2 599 on B December of the same year to buy her brother a smartphone. The amount of money that Dumi deposited is A. R2 46003 B. R2 46546 . C. R2 461,82 . D. R2 463,60 . Zola has an individual retirement plan. The money is invested in a money market fund that pays interest on a daily.basis. Over a two year period in which no deposits or withdrawals were made, the balance of his account grew from R4 500,00 to R5268,24. The effective interest rate over this period is approximately. A. 8,2% B. 8,5% C. 9.0% D. 6,1% Rambau has been given the option of either paying his {2500 personal loan now or settling it for R2 730 after four months. If he chooses to pay atter four merths, the simple interest rate per annum, at which he wauld be charged, is A. 27.60%. B. 25,27% C0,26\%: D. 2.30%. Mamzodwa wants to buy a R30 835.42 mobile kitchen for her food catering business. How long will it take her to save towards this amount if she deposits 125000 now into a kavings account eaming 10.5% interest per year, compounded weekly? A. 52 weeks B. 104 weeks C. 2 weeks D. 24 weeks

Answers

Dumi deposited R2,461.82 in the savings account. Zola's account had an effective interest rate of approximately 18.14% over two years. Rambau would be charged a simple interest rate of 23.0% per annum. Mamzodwa will need 2 years and 1.6 weeks to save for the R30,835.42 mobile kitchen.

On 16 April, Dumi deposited an amount of money in a savings account that earns 8.5% per annum, simple interest. She intends to withdraw the balance of R2 599 on B December of the same year to buy her brother a smartphone. The amount of money that Dumi deposited is calculated as follows:

Let the amount deposited = P

The amount withdrawn = R2 599

Interest rate = 8.5%

Simple Interest formula = I = PRT

Where R = 8.5%, P = ?, I = R2 599, and T = 8 months = 8/12 years

Substituting the values gives:

R2 599 = P × 8.5% × 8/12

Simplifying and solving for P gives:

P = R2 599 / (8.5% × 8/12) = R2 461.82

Therefore, the amount of money that Dumi deposited is R2 461.82.

Approximately, what is the effective interest rate over two years for Zola's account if the balance of his account grew from R4 500,00 to R5268,24, and the money is invested in a money market fund that pays interest on a daily basis?

The effective annual interest rate is calculated using the formula:

R = [(1 + r/n)^n - 1]

where R is the effective annual interest rate, r is the nominal interest rate, and n is the number of compounding periods per year.

Let r be the nominal interest rate and n be the number of compounding periods per year. Since interest is compounded daily, then n = 365 days in a year.

The effective annual interest rate is therefore:

R = [(1 + r/365)^365 - 1]

Given that the balance of his account grew from R4 500,00 to R5268,24 in two years, the interest earned during the two years is:

R5268,24 - R4 500,00 = R768.24

The nominal interest rate is the ratio of the interest earned to the principal amount of R4 500,00. Therefore,

r = (768.24 / 4 500) × 100% = 17.07%

The effective annual interest rate is:

R = [(1 + 17.07%/365)^365 - 1] = 18.14%

Therefore, the effective interest rate over this period is approximately 18.14%.

Rambau has been given the option of either paying his R2 500 personal loan now or settling it for R2 730 after four months. If he chooses to pay after four months, the simple interest rate per annum, at which he would be charged, is:

Let the interest rate be r.

The interest to be charged in 4 months = R2 730 - R2 500 = R230

Simple interest formula, I = PRT

Where P = R2 500, T = 4/12 years and I = R230.

Substituting the values gives:

R230 = R2 500 × r × 4/12

Solving for r gives:

r = (R230 × 12) / (R2 500 × 4) = 23.0%

Therefore, the simple interest rate per annum, at which Rambau would be charged, is 23.0%.

How long will it take Mamzodwa to save towards a R30 835.42 mobile kitchen for her food catering business if she deposits R125 000 now into a savings account earning 10.5% interest per year, compounded weekly?

The formula for the future value of a deposit compounded weekly at an interest rate of r is given by:

A = P(1 + r/52)^(52t)

where A is the future value, P is the principal amount, r is the interest rate per annum, t is the time in years, and 52 is the number of compounding periods per year.

Let t be the time in years that it will take to accumulate the R30 835.42 necessary for Mamzodwa's mobile kitchen, with a deposit of R125 000 now at an interest rate of 10.5% compounded weekly.

Substituting the given values gives:

R30 835.42 = R125 000(1 + 10.5%/52)^(52t)

Simplifying the above equation gives:

(1 + 10.5%/52)^(52t) = R30 835.42 / R125 000

(1 + 10.5%/52)^(52t) = 1.246683256

Using logarithms, t is solved as follows:

52t × log(1 + 10.5%/52) = log(1.246683256)

t = [log(1.246683256)] / [52 × log(1 + 10.5%/52)]

t ≈ 2.14 years = 2 years and 1.6 weeks

Therefore, it will take Mamzodwa 2 years and 1.6 weeks to save towards this amount. (Option B)

Learn more about simple interest: https://brainly.com/question/25845758

#SPJ11

What is the average rate of change of f(x)=[-(x-9)^(2),(x+4)^(3)] from x=10 to x=12 ? Your answer must be accurate to within 1%.

Answers

The average rate of change of f(x)=[-(x-9)², (x+4)³] from x=10 to x=12 is 8795.

The given function is f(x)=[-(x-9)², (x+4)³].

We need to determine the average rate of change of this function from x=10 to x=12.Explanation:To calculate the average rate of change of the function

f(x)=[-(x-9)², (x+4)³],

we need to use the following formula:

Average rate of change = (f(b) - f(a))/(b - a)

Where a and b are the given values of x, which are a = 10 and b = 12.

We can now substitute the given values of a, b, and the function f(x) in the formula. The function f(x) has two components, so we will calculate the average rate of change of each component separately.

First, let's calculate the average rate of change of the first component of f(x), which is -(x-9)².

We have:

f(10) = -1, f(12) = -9

So, the average rate of change of the first component of f(x) from x = 10 to x = 12 is:

(f(b) - f(a))/(b - a) = (-9 - (-1))/(12 - 10)

= -4

Secondly, let's calculate the average rate of change of the second component of f(x), which is (x+4)³. We have:

f(10) = 19683,

f(12) = 54872

So, the average rate of change of the second component of f(x) from x = 10 to x = 12 is:

(f(b) - f(a))/(b - a) = (54872 - 19683)/(12 - 10)

= 17594

Now, to find the overall average rate of change of f(x), we can take the average of the average rates of change of the two components. We have:

(-4 + 17594)/2 = 8795

So, the average rate of change of the function

f(x)=[-(x-9)², (x+4)³]

from x=10 to x=12 is 8795, accurate to within 1%.

Therefore, the average rate of change of f(x)=[-(x-9)², (x+4)³] from x=10 to x=12 is 8795.

To know more about average rate visit:

https://brainly.com/question/28739131

#SPJ11

Let a,b,c, and n be integers. Prove the following:
(a) If a|bc and gcd(a,b)=1, then a|c.
(b) If a|n and b|n and gcd(a,b)=1, then ab|n
(c) If gcd(a,n)=1 and gcd(b,n)=1, then gcd(ab,n)=1
(d) For any integer x, gcd(a,b)=gcd(a,b+ax)

Answers

We have shown that any common divisor of b and (a+bx) must also divide d.

(a) If a|bc and gcd(a,b)=1, then we know that a does not share any factor with b. Therefore, the factors of a must divide c, since they cannot be in common with b. Thus, a|c.

(b) If a|n and b|n and gcd(a,b)=1, then we can write n as n = ak = bl, where k and l are integers. Since gcd(a,b)=1, we know that a and b do not share any factors. Therefore, ab must divide n, because any factorization of n must include all of its prime factors. Thus, ab|n.

(c) Suppose gcd(a,n)=1 and gcd(b,n)=1. Let d = gcd(ab,n). Then d|ab and d|n. Since gcd(a,n)=1, we know that a and n do not share any factors. Similarly, since gcd(b,n)=1, we know that b and n do not share any factors. This means that d cannot have any factors in common with both a and b simultaneously. Therefore, d=1, and we have shown that gcd(ab,n)=1.

(d) Let d = gcd(a,b), and let e = gcd(a,b+ax). We want to show that d=e. Since d|a and d|b, we have d|(b+ax). Therefore, d is a common divisor of a and (b+ax). Since gcd(a,b+ax) divides both a and (b+ax), it must also divide their linear combination (b+ax) - a(x) = b. Therefore, we have shown that any common divisor of a and (b+ax) must also divide b. In particular, e|b.

Conversely, since d|a and d|b, we know that there exist integers m and n such that a=md and b=nd. Then, we can write b+ax = nd + a(mx) = d(n+amx). Since e|b, we know that there exists an integer k such that b=ke. Substituting this into the above expression, we get ke + ax = d(n+amx). Therefore, we have shown that any common divisor of b and (a+bx) must also divide d.

Since d|e and e|d, we have d=e, and we have shown that gcd(a,b)=gcd(a,b+ax).

Learn more about common divisor from

https://brainly.com/question/219464

#SPJ11

a group of 95 students were surveyed about the courses they were taking at their college with the following results: 57 students said they were taking math. 57 students said they were taking english. 62 students said they were taking history. 32 students said they were taking math and english. 39 students said they were taking math and history. 36 students said they were taking english and history. 19 students said they were taking all three courses. how many students took none of the courses?

Answers

Out of the 95 students surveyed, 7 students took none of the courses. To find the number of students who took none of the courses, we need to subtract the number of students who took at least one course from the total number of students surveyed.

First, let's find the number of students who took at least one course. We can do this by adding the number of students who took each course individually, and then subtracting the students who took two courses and the students who took all three courses.

The number of students who took math is 57, the number who took English is 57, and the number who took history is 62. To find the total number of students who took at least one course, we add these numbers: 57 + 57 + 62 = 176.

Now, we need to subtract the number of students who took two courses. We know that 32 students took math and English, 39 students took math and history, and 36 students took English and history. To find the total number of students who took two courses, we add these numbers: 32 + 39 + 36 = 107.

Next, we need to subtract the number of students who took all three courses. We know that 19 students took all three courses.

To find the number of students who took none of the courses, we subtract the students who took at least one course (176) from the students who took two courses (107) and the students who took all three courses (19):

95 - 176 + 107 - 19 = 7.

Therefore, the number of students who took none of the courses is 7.

Learn more about number of students from the link:

https://brainly.com/question/30961207

#SPJ11

Suppose a vent manufacturer has the total cost function C(x) = 37 + 1,530 and the total revenue function R(x) = 71x.
How many fans must be sold to avoid losing money?

Answers

To determine the number of fans that must be sold to avoid losing money, we need to find the break-even point where the total revenue equals the total cost.

The break-even point occurs when the total revenue (R(x)) equals the total cost (C(x)). In this case, the total revenue function is given as R(x) = 71x and the total cost function is given as C(x) = 37 + 1,530.

Setting R(x) equal to C(x), we have:

71x = 37 + 1,530

To solve for x, we subtract 37 from both sides:

71x - 37 = 1,530

Next, we isolate x by dividing both sides by 71:

x = 1,530 / 71

Calculating the value, x ≈ 21.55.

Therefore, approximately 22 fans must be sold to avoid losing money, as selling 21 fans would not cover the total cost and result in a loss.

Learn more about number here: brainly.com/question/10547079

#SPJ11

Solve the following equation by using the Quadratic Formula. When necessary, give answers in simplest radical form. 3x^(2)+4x+1=5

Answers

Given equation is 3x²+4x+1 = 5We need to solve the above equation using the quadratic formula.

[tex]x = (-b±sqrt(b²-4ac))/2a[/tex]

[tex]x = (-4±sqrt(4²-4(3)(1)))/2(3)x = (-4±sqrt(16-12))/6x = (-4±sqrt(4))/6[/tex]

Where a, b and c are the coefficients of quadratic On comparing the given equation with the quadratic equation.

[tex]ax²+bx+c=0[/tex]

We get a=3, b=4 and c=1 Substitute the values of a, b and c in the quadratic formula to get the roots of the equation. Solving the equation we get,

[tex]x = (-4±sqrt(4²-4(3)(1)))/2(3)x = (-4±sqrt(16-12))/6x = (-4±sqrt(4))/6[/tex]

To know more about quadratic visit:

https://brainly.com/question/22364785

#SPJ11

Other Questions
ind The Area Of The Part Of The Circle R=4sin+Cos In The Fourth Quadrant. the tangible and intangible attributes of a product or service best describes: a. segmentation b. instrument c. channel d. brand Answer the following two questions on advertising.Explain the Dorfman-Steiner condition: how does the demand price elasticity affect the optimal level of advertising?Two firms are competing on quantities. One firm decides to adopt persuasive advertising. Show on a graph the possible effects on the equilibrium. William is a self-employed builder living in Wellington. On 1 January 2022, William inherited a generous sum of money from his grandmother. Some of this money was used to purchase real estate. The following activities were undertaken:On 1 February 2022, William purchased a house in Kelburn to live in. The property cost $2,500,000. He lived in the house for 5 months and then rented it out when the adjoining neighbours commenced development of their section, as he found the construction noise unbearable. The tenants stayed for 1 year. William sold the house on 1 July 2023 for $2,700,000.On 1 March 2022, William purchased a city apartment for his brother, Harry, to live in while he was studying at university in Wellington. The apartment cost $950,000 and William spent around $150,000 on a new bathroom and kitchen for the apartment. William undertook most of the labouring work himself, which he valued at $40,000. At the end of 2022, Harry decided not to continue with his university studies and moved to Las Vegas. The apartment is sold for $1,000,000 in January 2023. Design a social experiment using 100 volunteers to test the hypothesis that people wearing facial coverings are less likely to get infected with the novel coronavirus, compared to those who do not wear facial coverings, all else being equal. Find the equation for the plane through the point P0=(2,7,6) and normal to the vector n=6i+7j+6k Using a coefficient of 6 for x, the equation for the plane through the point P0=(2,7,6) and normal to n=6i+7j+6k is the heart: select one: a. pumps 40,000 gallons of blood daily. b. is about the size of a baseball. c. is made of striated muscle. d. is enclosed in the pericardium. A toll collector on a highway receives $4 for sedans and $9 for buses. At the end of a 2-hour period, she collected $184. How many sedans and buses passed through the toll booth during that period? List all possible solutions. Which of the choices below are possible solutions to the problem? Select all that apply. A. 39 sedans and 3 buses B. 0 sedans and 21 buses C. 21 sedans and 11 buses D. 19 sedans and 12 buses E. 1 sedan and 20 buses F. 28 sedans and 8 buses G. 46 sedans and 0 buses H. 10 sedans and 16 buses 1. 3 sedans and 19 buses J. 37 sedans and 4 buses it is important to have a balanced hand position in the event that sudden movement of the steering wheel is needed. A friend says that Ale cannot push on the tree unless the tree pushes back on her, and another friend says that if Ale pushes quickly, the tree won't push as hard on her.The first friend. Whatever push she exerts on the tree, briefly or otherwise, the pushback by the tree will be equal and opposite. That's Newton's 3rd law Let K be a closed, bounded, convex set in R^n. Then K has the fixed point property Assume a color display (monitor) using 8 bits for each of the primary colors (red (R), green (G), blue (B) ) per pixel and a frame size of 38402160. For a "typical modern monitor", the frame rate is 60 FPS (frames per second). For the gamers monitor, FPS can be at 240 Hz ) for this question, you don't need to use this (FPS) number. (a) (4 points) What is the minimum size in bytes of the frame buffer (memories for one screen) to store a frame? Each frame needs to be refreshed (FPS) at a reasonable rate for a stable and smooth picture (b) (4 points) How long would it take, at a minimum, for the frame to be sent over a 100Mbit/seconds network? In Python: Write code that asks a user for two numbers. Assign the inputs to two variables called x and y, respectively. If y is zero, print a message that reads "Sorry! Can't divide by zero.", otherwise divide x by y, round the result to two decimal places and assign the result to a variable called z. Print a message that reads "{x} divided by {y} is {z}.". a person with an extremely high count of neutrophils is likely suffering ________. a. a bacterial infection b. a viral infection c. polycythemia d. anemia Which type of contract has (on average) the most counterparty risk for the short and long position? Put option (bought on exchange) Futures contract Forward contract Call option (bought on exchange) The calculation of the cost of capital (WACC) has several important quirks that are important to an acceptable calculation and evaluation of the cost of capital.Two of the most important are adjustments to the WACC in the cost of debt based on the firm's tax rate and for the effect of growth (g) on the cost of equity. To that end, you need to appreciate where g is used in the component costs of capital formulas and how they affect the overall cost of capital.Post an explanation of what would happen to a firm if the WACC calculation uses an estimate of growth estimated to be 4% instead of the actual rate of 8%. What would be the major effect on the firm seeking to obtain new capital given that mistaken growth estimate? Problem 6-7 Calculating a Safe Credit Limit [LO6-3] Drew's monthly net income is $ 1,300 . What is the maximum he should use on monthly debt payments? Critically evaluate and explain: a. A firm in a perfectly competitive market should always shut when its marginal revenue is below its average cost (equivalent to average total cost).b. The intersection of marginal revenue and marginal cost determines the quantity at which a business in a perfectly competitive market is profitable Deteine the [H+],[OH], and pH of a solution with a pOH of 10.63 at 25C. showery drugs is a pharmaceutical company based in detroit. showery drugs expects its employees to work long hours and achieve increased production rates. employees earn one and a half times the usual hourly rate for working more than 40 hours in one week. which law is showery drugs abiding by in this scenario?