Answer and Step-by-step explanation: Spherical coordinate describes a location of a point in space: one distance (ρ) and two angles (Ф,θ).To transform cartesian coordinates into spherical coordinates:
[tex]\rho = \sqrt{x^{2}+y^{2}+z^{2}}[/tex]
[tex]\phi = cos^{-1}\frac{z}{\rho}[/tex]
For angle θ:
If x > 0 and y > 0: [tex]\theta = tan^{-1}\frac{y}{x}[/tex];If x < 0: [tex]\theta = \pi + tan^{-1}\frac{y}{x}[/tex];If x > 0 and y < 0: [tex]\theta = 2\pi + tan^{-1}\frac{y}{x}[/tex];Calculating:
a) (4,2,-4)
[tex]\rho = \sqrt{4^{2}+2^{2}+(-4)^{2}}[/tex] = 6
[tex]\phi = cos^{-1}(\frac{-4}{6})[/tex]
[tex]\phi = cos^{-1}(\frac{-2}{3})[/tex]
For θ, choose 1st option:
[tex]\theta = tan^{-1}(\frac{2}{4})[/tex]
[tex]\theta = tan^{-1}(\frac{1}{2})[/tex]
b) (0,8,15)
[tex]\rho = \sqrt{0^{2}+8^{2}+(15)^{2}}[/tex] = 17
[tex]\phi = cos^{-1}(\frac{15}{17})[/tex]
[tex]\theta = tan^{-1}\frac{y}{x}[/tex]
The angle θ gives a tangent that doesn't exist. Analysing table of sine, cosine and tangent: θ = [tex]\frac{\pi}{2}[/tex]
c) (√2,1,1)
[tex]\rho = \sqrt{(\sqrt{2} )^{2}+1^{2}+1^{2}}[/tex] = 2
[tex]\phi = cos^{-1}(\frac{1}{2})[/tex]
[tex]\phi[/tex] = [tex]\frac{\pi}{3}[/tex]
[tex]\theta = tan^{-1}\frac{1}{\sqrt{2} }[/tex]
d) (−2√3,−2,3)
[tex]\rho = \sqrt{(-2\sqrt{3} )^{2}+(-2)^{2}+3^{2}}[/tex] = 5
[tex]\phi = cos^{-1}(\frac{3}{5})[/tex]
Since x < 0, use 2nd option:
[tex]\theta = \pi + tan^{-1}\frac{1}{\sqrt{3} }[/tex]
[tex]\theta = \pi + \frac{\pi}{6}[/tex]
[tex]\theta = \frac{7\pi}{6}[/tex]
Cilindrical coordinate describes a 3 dimension space: 2 distances (r and z) and 1 angle (θ). To express cartesian coordinates into cilindrical:
[tex]r=\sqrt{x^{2}+y^{2}}[/tex]
Angle θ is the same as spherical coordinate;
z = z
Calculating:
a) (4,2,-4)
[tex]r=\sqrt{4^{2}+2^{2}}[/tex] = [tex]\sqrt{20}[/tex]
[tex]\theta = tan^{-1}\frac{1}{2}[/tex]
z = -4
b) (0, 8, 15)
[tex]r=\sqrt{0^{2}+8^{2}}[/tex] = 8
[tex]\theta = \frac{\pi}{2}[/tex]
z = 15
c) (√2,1,1)
[tex]r=\sqrt{(\sqrt{2} )^{2}+1^{2}}[/tex] = [tex]\sqrt{3}[/tex]
[tex]\theta = \frac{\pi}{3}[/tex]
z = 1
d) (−2√3,−2,3)
[tex]r=\sqrt{(-2\sqrt{3} )^{2}+(-2)^{2}}[/tex] = 4
[tex]\theta = \frac{7\pi}{6}[/tex]
z = 3
Lexie, a bowler, claims that her bowling score is more than 140 points, on average. Several of her teammates do not believe her, so she decides to do a hypothesis test, at a 5% significance level, to persuade them. She bowls 18 games. The mean score of the sample games is 155 points. Lexie knows from experience that the standard deviation for her bowling score is 17 points. H0: μ=140; Ha: μ>140 α=0.05 (significance level) What is the test statistic (z-score) of this one-mean hypothesis test, rounded to two decimal places?
Answer:
The test statistic is [tex]t = 3.744[/tex]
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 140[/tex]
The The level of significance is [tex]\alpha = 0.05[/tex]
The sample size is n = 18
The null hypothesis is [tex]H_o : \mu = 140[/tex]
The alternative hypothesis is [tex]H_a : \mu > 140[/tex]
The sample mean is [tex]\= x = 155[/tex]
The standard deviation is [tex]\sigma = 17[/tex]
Generally the test statistics is mathematically represented as
[tex]t = \frac{\= x - \mu }{ \frac{ \sigma}{ \sqrt{n} } }[/tex]
substituting values
[tex]t = \frac{ 155 - 140 }{ \frac{ 17 }{ \sqrt{18} } }[/tex]
[tex]t = 3.744[/tex]
8. Write (2x + 1)(x - 3)(x - 2) in standard form.
2x3 - 9x2 + 6
2x3 - 9x2 + 7x + 6
O
2x3 + 7x - 9x2 + 6
O
7x + 2x3 - 9x2 + 6
Answer:
2x^3 - 9x^2 + 7x + 6
Step-by-step explanation:
(2x + 1)(x - 3)(x - 2)=2x^3 - 9x^2 + 7x + 6
Which of the following best represents the average rate at which the human hair grows?
Answer:
1/2 inch per month
Step-by-step explanation:
The average rate hair grows is about half an inch per month which is 6 inches per year.
A school is holding a raffle to raise money to buy new books for the library. The school plans on awarding 18, $200 prizes, 120 $25 prizes and 270 $5 prizes. Is $10 enough to charge per ticket if they only sell 1000 tickets?
Answer:
Yes
Step-by-step explanation:
18 × 200 = 3600
120 × 25 = 3000
270 × 5 = 1350
in total 7950
tickets = 10 × 1000 = 10000
7950 < 10000
Use a double angle identity to rewrite the formula r(Θ)=[tex]1/16v^2sin(theta)cos(theta)[/tex]
Answer:
1/32v²sin2θ
Step-by-step explanation:
Given the expression r(theta) = 1/16v²sinθcosθ
According to double angle of trigonometry identity;
Sin2θ = sin(θ+θ)
Sin2θ = sinθcosθ + cosθsinθ
Sin2θ = 2sinθcosθ
sinθcosθ = sin2θ/2 ... **
Substituting equation ** into the question
1/16v²sinθcosθ = 1/16v²(sin2θ/2)
1/16v²sinθcosθ = 1/2×1/16v²(sin2θ)
1/16v²sinθcosθ = 1/32v²sin2θ
Hence using the double angle identity, the equivalent expression is 1/32v²sin2θ
Find the solution set of the inequality and the number: 12 − 6x > 24 A. , C. ≤, D. ≥, E. =
Answer:
x < -2
Step-by-step explanation:
12 − 6x > 24
Subtract 12 from each side
12-12 − 6x > 24-12
-6x > 12
Divide each side by -6, remembering to flip the inequality
-6x/-6 < 12/-6
x < -2
Answer:
x < -2
Step-by-step explanation:
12 − 6x > 24
12 - 12 − 6x > 24 - 12
-6x > 12
-6x/(-6) < 12/(-6)
x < -2
It is advertised that the average braking distance for a small car traveling at 65 miles per hour equals 122 feet. A transportation researcher wants to determine if the statement made in the advertisement is false. She randomly test drives 38 small cars at 65 miles per hour and records the braking distance. The sample average braking distance is computed as 116 feet. Assume that the population standard deviation is 21 feet. (You may find it useful to reference the appropriate table: z table or t table) a. State the null and the alternative hypotheses for the test.
Complete Question
The complete question is shown on the first uploaded image
Answer:
the null hypothesis is [tex]H_o : \mu = 122[/tex]
the alternative hypothesis is [tex]H_a : \mu \ne 122[/tex]
The test statistics is [tex]t = - 1.761[/tex]
The p-value is [tex]p = P(Z < t ) = 0.039119[/tex]
so
[tex]p \ge 0.01[/tex]
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 122[/tex]
The sample size is n= 38
The sample mean is [tex]\= x = 116 \ feet[/tex]
The standard deviation is [tex]\sigma = 21[/tex]
Generally the null hypothesis is [tex]H_o : \mu = 122[/tex]
the alternative hypothesis is [tex]H_a : \mu \ne 122[/tex]
Generally the test statistics is mathematically evaluated as
[tex]t = \frac { \= x - \mu }{\frac{ \sigma }{ \sqrt{n} } }[/tex]
substituting values
[tex]t = \frac { 116 - 122 }{\frac{ 21 }{ \sqrt{ 38} } }[/tex]
[tex]t = - 1.761[/tex]
The p-value is mathematically represented as
[tex]p = P(Z < t )[/tex]
From the z- table
[tex]p = P(Z < t ) = 0.039119[/tex]
So
[tex]p \ge 0.01[/tex]
x+3y-Z=0
2x+y+Z=1
3X-y+Z=3
x^2+y^2≤ 4y, x^2+y^2≤4x
Answer:
0 what is the question man what
Solve for y: 1/3y+4=16
Hey there! I'm happy to help!
We want to isolate y on one side of the equation to see what it equals. To do this, we use inverse operations to cancel out numbers on the y side and find the correct value.
1/3y+4=16
We subtract 4 from both sides, canceling out the +4 on the right but keeping the same y-value by doing the same to the other side.
1/3y=12
We divide both sides by 1/3 (which is multiplying both sides by 3) which will cancel out the 1/3 and tell us what y is equal to.
y=36
Now you know how to solve basic equations! Have a wonderful day! :D
At a store An orange costs 18 cents A pineapple costs 27 cents An apple costs 15 cents How much does a strawberry cost??
Answer:
A strawberry cost 30 cents
Step-by-step explanation:
Given:
Orange= 18 cents
Pineapple = 27 cents
Apple = 15 cents
Strawberry = ?
From the given:
Orange has 6 letters multiplied by 3
=6 * 3
=18 cents
Pineapple has 9 letters multiplied by 3
=9 * 3
=27 cents
Apple has 5 letters multiplied by 3
= 5 * 3
= 15 cents
Therefore, cost of the strawberry=
Strawberry has 10 letters. Multiply the 10 letters by 3
That is,
10 × 3
= 30 cents
Suppose that you are standing 150 feet from a building and the angle of elevation to the top of the building is 42°. What is the building's height?
Answer:
135.06 feet
Step-by-step explanation:
Since the side of the building makes a right triangle with the ground and you know one side length and the degree angle between you and the top of the building we can use trigonometric function to find the height of the building. So since we know one side other than the hypotenuse we can use tangent to solve. Tangent is the opposite side over the adjacent side of the known angle.
opposite side = x
adjacent side = 150 feet
angle = 42°
tan(42°) = x/150 feet
150 feet * tan(42°) = x
x = 135.06 feet
An airplane travels 1200 miles in 4 hours with the wind. The same trip takes 5 hours against the wind. What is the speed of the plane in still air and what is the wind speed?
Answer:
Speed of plane in still air is 270 mph
Wind speed is 30 mph
Step-by-step explanation:
Check the picture.
The speed of the plane in still air is 270 mph and the speed of the wind will be 30 mph.
What is the distance formula?The distance traveled by an object is the product of the speed of an object and the time taken.
Distance = speed x time
An airplane travels 1200 miles in 4 hours with the wind. The same trip takes 5 hours against the wind.
Let the speed of the plane be x
The speed of wind be y
Distance covered with the wind = (x + y)t
1200 = (x + y)4
(x + y) = 1200/4
(x + y)= 300 .....(a)
Distance covered against the wind = (x - y)t
1200 = (x - y)5
(x - y) = 1200/5
(x - y) = 240 .......(b)
By solving both the equation
(x + y)= 300
(x - y) = 240
Therefore the values will be x= 270mph and y = 30 mph
Learn more about the distance formula:
https://brainly.com/question/15172156
Based on this plot, which one of the following statements is not correct? The median room rate is $150 per night. There is one outlier in this data set. The 25th percentile in this data set is $130 per night. The second quartile in the data set is $160 per night.
Answer:
The second quartile in the data set is $130 per night.
Step-by-step explanation:
Quartile is a type of quantile which divides the number of data set into even numbered sub groups. The second quartile is median of data set. This means that 5% of data lies within this point. The middle value between the median and highest value of data set. The second quartile in the data set must be 50% so the statement is not correct.
Translate and solve: 54 greater than x is greater than 216
Answer:
x >162
Step-by-step explanation:
x+54 > 216
Subtract 54 from each side
x+54-54 > 216 - 54
x >162
Answer:
[tex]\huge \boxed{{x>162}}[/tex]
Step-by-step explanation:
[tex]x+54 > 216[/tex]
[tex]\sf Subtract \ 54 \ from \ both \ parts.[/tex]
[tex]x+54 -54> 216-54[/tex]
[tex]x>162[/tex]
What is the probability that a student who has no chores has a curfew ?
Answer:
15/22
Step-by-step explanation:
Of the 66 students who have no chores, 45 have a curfew. So the probability is 45/66 = 15/22.
The accompanying summary data on total cholesterol level (mmol/l) was obtained from a sample of Asian postmenopausal women who were vegans and another sample of such women who were omnivores.
Diet Sample Size Sample Mean Sample SD
Vegan 85.00 5.20 1.08
Omnivore 91.00 5.65 1.10
Calculate a 99% CI for the difference between the population mean total cholesterol level for vegans and population mean total cholesterol level for omnivores. (Use μvegan−μomnivore). Round to three decimal places.)
Interpret the interval.
a. We are 99% confident that the true average cholesterol level for vegans is less than that of omnivores by an amount within the confidence interval.
b. We are 99% confident that the true average cholesterol level for vegans is greater than that of omnivores by an amount within the confidence interval.
c. We are 99% confident that the true average cholesterol level for vegans is greater than that of omnivores by an amount outside the confidence interval.
d. We cannot draw a conclusion from the given information.
Answer: hey
Step-by-step explanation:
What is the value of this expression when g = -3.5?
8 − |2g − 5|
Answer:
-4
Step-by-step explanation:
Replace g by -3.5
● 8- | 2g - 5 |
● 8 - | 2*(-3.5)-5 |
● 8 - |-7-5|
● 8 - | -12|
The absolute value turns the number inside the | | into a positive value
-12 is negative so |-12| = 12
●8 -12
● -4
A cement mixture costs $33 a ton. It is composed of Grade A cement at $36 a ton and Grade B cement at
$24 a ton. How were these two cements mixed?
Follow the instructions on the image
Answer:
k=3
Step-by-step explanation:
Assuming the centre of dilation is 0,0, we can use the formula (kx,ky) to determine it.
Here,
The co-ordinates of pre-image=(0,1),(-1,-1) & (1,-1)
The co-ordinates of image=(0,3),(-3,-3) & (3,-3)
Now,
(kx,ky)=(0,3)
(k*0,k*1)=(0,3)
Equating,
k=3
You can use the other coordinates to further solidify your answer.
Solve for W.
W/9 = g
Answer:
W = 9 * g
Step-by-step explanation:
W/9 = g
W = 9 * g
The expression W/9 = g can be written as W = 9g after cross multiplication.
What is an expression?It is defined as the combination of constants and variables with mathematical operators.
We have an expression:
W/9 = g
To solve for W
Make subject as W:
W = 9g
By cross multiplication.
Thus, the expression W/9 = g can be written as W = 9g after cross multiplication.
Learn more about the expression here:
brainly.com/question/14083225
#SPJ2
p(a) = 0.60, p(b) = 0.20, and p(a and b) = 0.15 what is p(a or b) choices: A. 0.12, B. 0.65, C. 0.40, or D. 0.80 (Note- This is on AP3X)
Answer:
[tex]p(a\ or\ b) = 0.65[/tex]
Step-by-step explanation:
Given
[tex]p(a) = 0.60[/tex]
[tex]p(b) = 0.20[/tex]
[tex]p(a\ and\ b) = 0.15[/tex]
Required
[tex]p(a\ or\ b)[/tex]
The relationship between the given parameters and the required parameters is as follows;
[tex]p(a\ and\ b) = p(a) + p(b) - p(a\ or\ b)[/tex]
Substitute values for the known parameters
[tex]0.15 = 0.60 + 0.20 - p(a\ or\ b)[/tex]
[tex]0.15 = 0.80 - p(a\ or\ b)[/tex]
Collect Like Terms
[tex]p(a\ or\ b) = 0.80 - 0.15[/tex]
[tex]p(a\ or\ b) = 0.65[/tex]
Hence;
[tex]p(a\ or\ b) = 0.65[/tex]
ASAP Which graph has a correlation coefficient, r, closest to 0.75?
Answer:
C. Graph C
Step-by-step explanation:
In a scatter plot, a positive correlation coefficient suggests that as one variable increases the other increases as well, or as one decreases, the other decreases.
Also, the more clustered the data points are along the line of best fit, the higher the value of the coefficient, whether positive or negative.
Graph C shows a positive correlation because as the variable on the x-axis increases, the variable on the y-axis also increases. The data points are more clustered along the line if best fit, if we draw one. This suggest a positive correlation coefficient (r) as strong as 0.75.
Graph C has a correlation coefficient, r, that is closer to 0.75.
Answer: graph A ‼️
Step-by-step explanation:
A random sample of 11 students produced the following data, where x is the hours spent per month playing games, and y is the final exam score (out of a maximum of 50 points). The data are presented below in the table of values.
x y
14 46
15 49
16 37
17 42
18 37
19 31
20 25
21 23
22 20
23 15
24 12
What is the value of the intercept of the regression line, b, rounded to one decimal place?
Answer:
b = - 3.7
Step-by-step explanation:
here are the data values:
x y XY X²
14 46 644 196
15 49 735 225
16 37 592 256
17 42 714 289
18 37 666 324
19 31 589 361
20 25 500 400
21 23 483 441
22 20 440 484
23 15 345 529
24 12 288 576
now we are required to find the summation (total) of all values of X, Y, XY and X².
∑X = 209
∑Y = 337
∑XY = 5996
∑X² = 4081
The formular for finding b is given as:
b = n∑XY - (X)(Y) / n∑X² - (∑X)²
= 11(5996) - (209)(337) / 11(4081) - (209)²
= 65956 - 70433 / 44891 - 43681
= -4477/ 1210
= -3.7
The question asked us to find the value of b but we can go further to find the equation of the regression line:
a = ∑Y - b∑X / n
= 337 - (-3.7)(209)/ 11
=1110.3/11
= 100.94
the equation is:
Y = 100.94 - 3.7X
I hope you find my solution useful!
=
(Algebra) PLZ HELP ASAP!
Answer: Rational, integer, whole, natural, real
So basically everything but irrational
====================================================
Explanation:
109 is a rational number because 109 = 109/1. Any rational number is a fraction of two integers. Because of this, it cannot be irrational as "irrational" means "not rational".
An integer is anything that does not have a fractional or decimal part. So it involves the set of positive and negative whole numbers, and zero as well. So we can see that 109 is an integer.
A whole number is very similar to an integer, but we're referring to the set {0, 1, 2, 3, ..} meaning we ignore the negative integers. This makes 109 a whole number as well.
A natural number is from the set {1, 2, 3, ...}. We've kicked 0 out from the set of whole numbers. This is the set of counting numbers. So 109 is also a natural number.
A real number is any number you have encountered so far assuming your teacher has not introduced complex and imaginary numbers yet. Effectively a real number is any number that can be written as decimal. This makes 109 to be a real number.
Find the value of x that will make L || M
Answer:
x = 7
Step-by-step explanation:
L and M would be parallel if angle 2x -3 and the angle x + 4 are equal.
Thus, 2x - 3 = x + 4, so that x = 7
The given line segment has a midpoint at (-1, -2).
What is the equation, in slope-intercept form, of the
perpendicular bisector of the given line segment?
ch
4
3
O y=-4x - 4
O y = -4x - 6
O y=x-4
2
1
х
5 4 -3 -2 -11
61,-2)
Oy=+x-6
234
(3.-1).
-3
(-5, 3)
w5
Answer:
y = -4x -6
Step-by-step explanation:
The given segment has a rise if 1 for a run of 4, so a slope of ...
m = rise/run = 1/4
The desired perpendicular has a slope that is the negative reciprocal of this:
m = -1/(1/4) = -4
A point that has a rise of -4 for a run of 1 from the given midpoint is ...
(-1, -2) +(1, -4) = (0, -6) . . . . . . . the y-intercept of the bisector
So, our perpendicular bisector has a slope of m=-4 and a y-intercept of b=-6. Putting these in the slope-intercept form equation, we find the line to be ...
y = mx +b
y = -4x -6
The equation of the line in slope intercept form is y = -4x -6
What is a linear equation?A linear equation is in the form:
y = mx + b
Where y,x are variables, m is the rate of change and b is the y intercept.
Two lines are perpendicular of the product of the slope is -1
The line passes through the point (-5, -3) and (3, -1). Hence:
Slope = (-1 - (-3)) / (3 - (-5)) = 1/4
The slope of the line perpendicular to this line is -4 (-4 * 1/4 = -1).
The line passes through (-1, -2), hence:
y - (-2) = -4(x - (-1))
y + 2 = -4(x + 1)
y = -4x -6
The equation of the line in slope intercept form is y = -4x -6
Find out more on linear equation at: https://brainly.com/question/14323743
A lighthouse casts a
revolving beam of light as far as the pier. What
is the area that the light covers?
Answer:
First, let's find how far away the pier is.
Using the distance formula, we can see that the pier is [tex]\sqrt{58}[/tex] units away.
So, the radius is sqrt 58.
Area = pi (r)^2
So, the area is 182.82 square units.
Let me know if this helps!
We have that The area that the light covers is is mathematically given as
[tex]A=\pi x^2[/tex]
From the Question we are told that
Revolving beam of light as far as the pier
Let distance to pier be x
Generally the revolving beam turns a complete angle of 360
Therefore
Its goes in a circle
The area that the light covers is is mathematically given as
[tex]A=\pi r^2[/tex]
[tex]A=\pi x^2[/tex]
In conclusion
The area that the light covers is is mathematically given as
[tex]A=\pi x^2[/tex]
For more information on this visit
https://brainly.com/question/16418397
State whether each ratio forms a proportion.
1) 6:3, 18:9 2) 3:4, 30:40 3) 14/18,28/36 4) 2/5,5/2
Answer: Please Give Me Brainliest, Thank You!
#1, #2, #3 do, but #4 doesn't
Step-by-step explanation:
#1
18/9=2
6/3=2
#2
30/3=10
40/4=10
#3
28/14=2
36/18=2
Find the exact value by using a half-angle identity.
tan seven pi divided by eight
9514 1404 393
Answer:
1 -√2
Step-by-step explanation:
[tex]\tan(x/2)=\dfrac{1-\cos(x)}{\sin(x)}\\\\\tan\left(\dfrac{1}{2}\cdot\dfrac{7\pi}{4}\right)=\dfrac{1-\cos\dfrac{7\pi}{4}}{\sin\dfrac{7\pi}{4}}=\dfrac{1-\dfrac{1}{\sqrt{2}}}{-\dfrac{1}{\sqrt{2}}}=\boxed{1-\sqrt{2}}[/tex]
tan(7π/8) = 1 -√2