Can
you explain clearly please
If the murs of a truck is doubled-for comple when it is loaded-by what factor does the kinetic energy of the truck increase? By what factor does the Winetic energy decrease it the mass is one tenth of

Answers

Answer 1

If the mass of a truck is doubled, the kinetic energy of the truck increases by a factor of 4. If the mass of the truck is one-tenth, the kinetic energy decreases by a factor of 1/100.

The kinetic energy of an object is given by the equation KE = 1/2 mv^2, where KE is the kinetic energy, m is the mass, and v is the velocity. When the mass of the truck is doubled, the new kinetic energy can be calculated as follows:

KE' = 1/2 (2m) v^2 = 2(1/2 mv^2) = 2KE

This shows that the kinetic energy of the truck increases by a factor of 2 when the mass is doubled. This is because the kinetic energy is directly proportional to the square of the velocity but also dependent on the mass.

On the other hand, if the mass of the truck is reduced to one-tenth, the new kinetic energy can be calculated as:

KE' = 1/2 (1/10 m) v^2 = (1/10)(1/2 mv^2) = 1/10 KE

This indicates that the kinetic energy of the truck decreases by a factor of 1/10 when the mass is reduced to one-tenth. Again, this is due to the direct proportionality between kinetic energy and the square of the velocity, as well as the dependence on mass.

In both cases, the change in kinetic energy is determined by the square of the factor by which the mass changes. Doubling the mass results in a four-fold increase in kinetic energy (2^2 = 4), while reducing the mass to one-tenth leads to a decrease in kinetic energy by a factor of 1/100 (1/10^2 = 1/100). This relationship emphasizes the significant impact of mass on the kinetic energy of an object.

To learn more about  kinetic energy click here:

brainly.com/question/999862

#SPJ11


Related Questions

A water has a pH of 8.0 and the concentration of HCO3 is 1.5 x 10-3 M. What is the approximate alkalinity of the water in units of mg/L as CaCO3?

Answers

The approximate alkalinity of the water in units of mg/L as CaCO3 using the equation.

To determine the approximate alkalinity of the water in units of mg/L as CaCO3, we need to calculate the concentration of bicarbonate ions (HCO3-) and convert it to units of CaCO3.

The molar mass of CaCO3 is 100.09 g/mol, and we can use this information to convert the concentration of HCO3- to mg/L as CaCO3.

First, let's calculate the alkalinity:

Alkalinity = [HCO3-] * (61.016 mg/L as CaCO3)/(1 mg/L as HCO3-)

Given:

pH = 8.0

[HCO3-] = 1.5 x 10^(-3) M

Since the pH is 8.0, we can assume that the water is in equilibrium with the bicarbonate-carbonate buffer system. In this system, the concentration of carbonate ions (CO3^2-) can be calculated using the following equation:

[CO3^2-] = [HCO3-] / (10^(pK2-pH) + 1)

The pK2 value for the bicarbonate-carbonate buffer system is approximately 10.33.

Let's calculate the concentration of CO3^2-:

[CO3^2-] = [HCO3-] / (10^(10.33 - 8.0) + 1)

= [HCO3-] / (10^2.33 + 1)

= [HCO3-] / 234.7

Substituting the given value:

[CO3^2-] = (1.5 x 10^(-3) M) / 234.7

Now, we can calculate the alkalinity:

Alkalinity = [HCO3-] + 2 * [CO3^2-]

= (1.5 x 10^(-3) M) + 2 * (1.5 x 10^(-3) M) / 234.7

= (1.5 x 10^(-3) M) + (3 x 10^(-3) M) / 234.7

To convert alkalinity to mg/L as CaCO3, we use the conversion factor:

1 M = 1000 g/L

1 g = 1000 mg

Alkalinity (mg/L as CaCO3) = Alkalinity (M) * (1000 g/L) * (1000 mg/g) * (100.09 g/mol)

= Alkalinity (M) * 100,090 mg/mol

Substituting the calculated value:

Alkalinity (mg/L as CaCO3) = [(1.5 x 10^(-3) M) + (3 x 10^(-3) M) / 234.7] * 100,090 mg/mol

Now, you can calculate the approximate alkalinity of the water in units of mg/L as CaCO3 using the above equation.

To learn more about equation visit;

https://brainly.com/question/29657983

#SPJ11

What is the mass of a 1690 kg/m³ object that is 0.893 m³ in size? number Submit Question unit kg Jump to Answer

Answers

The mass of the given object is 1510.77 kg. Formula used: Density (ρ) = Mass (m) / Volume (V). Using the above formula, we can calculate the mass by multiplying density with the volume of the object.

The mass of a 1690 kg/m³ object that is 0.893 m³ in size is 1510.77 kg.

Given data: Density (ρ) = 1690 kg/m³, Volume (V) = 0.893 m³,

Formula used: Density (ρ) = Mass (m) / Volume (V)

Calculation: The given density is the mass of a unit volume of the substance.

Using the above formula, we can calculate the mass by multiplying density with the volume of the object.

ρ = m/Vm

= ρ * V

Substituting the values in the above formula, we get, m = 1690 kg/m³ * 0.893 m³

= 1510.77 kg

Therefore, the mass of the given object is 1510.77 kg.

To know more about density, refer

https://brainly.com/question/26364788

#SPJ11

Cryolite, Na, AIF, (s), an ore used in the production of aluminum, can be synthesized using aluminum oxide. Balance the equation for the synthesis of cryolite. equation: Al₂O, (s)+NaOH(1)+HF(g) Na,

Answers

The total mass of the excess reactants left over after the reaction is complete is 1.74846 kg of NaOH and 5.24252 kg of HF.

To balance the equation for the synthesis of cryolite, we need to ensure that the number of atoms of each element is the same on both sides of the equation. Here's the balanced equation:

2Al₂O₃(s) + 6NaOH(aq) + 12HF(g) → 2Na₃AlF₆(s) + 6H₂O(g)

Given:

Mass of Al₂O₃(s) = 14.4 kg

Mass of NaOH(aq) = 52.4 kg

Mass of HF(g) = 52.4 kg

To determine the mass of cryolite produced, we need to calculate the limiting reactant. The limiting reactant is the one that is completely consumed and determines the maximum amount of product formed.

Let's calculate the number of moles for each reactant:

Molar mass of Al₂O₃ = 101.96 g/mol

Molar mass of NaOH = 39.997 g/mol

Molar mass of HF = 20.006 g/mol

Number of moles of Al₂O₃ = (14.4 kg / 101.96 g/mol) = 141.1 mol

Number of moles of NaOH = (52.4 kg / 39.997 g/mol) = 131.0 mol

Number of moles of HF = (52.4 kg / 20.006 g/mol) = 2620.2 mol

Based on the balanced equation, the stoichiometric ratio between Al₂O₃, NaOH, and HF is 2:6:12. Therefore, for every 2 moles of Al₂O₃, we need 6 moles of NaOH and 12 moles of HF.

Now, let's determine the limiting reactant by comparing the moles of each reactant to the stoichiometric ratio:

Limiting moles of NaOH = (141.1 mol Al₂O₃ / 2 mol Al₂O₃) * (6 mol NaOH / 2 mol Al₂O₃) = 423.3 mol

Limiting moles of HF = (141.1 mol Al₂O₃ / 2 mol Al₂O₃) * (12 mol HF / 2 mol Al₂O₃) = 846.6 mol

Since the calculated moles of NaOH (423.3 mol) are less than the moles of HF (846.6 mol), NaOH is the limiting reactant.

Now, let's calculate the mass of cryolite produced using the stoichiometric ratio:

Molar mass of Na₃AlF₆ = 209.94 g/mol

Mass of cryolite produced = (423.3 mol Na₃AlF₆) * (209.94 g/mol) = 88,834.3 g = 88.8343 kg

Therefore, 88.8343 kg of cryolite will be produced.

To determine the excess reactants, we need to compare the moles of the limiting reactant (NaOH) with the stoichiometric ratio:

Excess moles of Al₂O₃ = (131.0 mol NaOH / 6 mol NaOH) * (2 mol Al₂O₃ / 6 mol NaOH) = 43.7 mol

Excess moles of HF = (131.0 mol NaOH / 6 mol NaOH) * (12 mol HF / 6 mol NaOH) = 262.0 mol

The excess reactants are NaOH and HF.

Now, let's calculate the total mass of the excess reactants left over:

Mass of excess NaOH = (43.7 mol NaOH) * (39.997 g/mol) = 1748.46 g = 1.74846 kg

Mass of excess HF = (262.0 mol HF) * (20.006 g/mol) = 5242.52 g = 5.24252 kg

Therefore, the total mass of the excess reactants left over after the reaction is complete is 1.74846 kg of NaOH and 5.24252 kg of HF.

Learn more about Cryolite from the link given below.

https://brainly.com/question/14498539

#SPJ4

If a person has a deficiency in riboflavin or vitamin B2, which
enzyme from Stage 1 of cellular respiration is mainly affected?

Answers

Riboflavin or vitamin B2 is a crucial part of the flavoproteins that act as hydrogen carriers. If a person has a deficiency of riboflavin, they cannot make these flavoproteins, which would impair the process of cellular respiration in the body.

The enzyme from Stage 1 of cellular respiration that is mainly affected when a person has a deficiency in riboflavin or vitamin B2 is flavin mononucleotide (FMN). Flavin mononucleotide (FMN) is a crucial part of the enzyme flavoprotein, which is used in the oxidation of pyruvate in stage 1 of cellular respiration. It is reduced to FADH2, which is an electron carrier that assists in ATP production through oxidative phosphorylation.Therefore, a deficiency of riboflavin in the body will have a significant impact on the ability of the flavoproteins to carry hydrogen ions during oxidative phosphorylation, which will reduce the production of ATP and, thus, reduce the amount of energy the body can generate.

To know more about   ATP, visit;

https://brainly.com/question/897553

#SPJ11

Provide the key fragment structures of the mass spectrometry
data. The possible molecular formula is:
C5H9O2Br
Relative Intensity 100 80 40 20- o fim 20 40 60 80 Titr 100 120 m/z 140 160 180 200 15.0 28.0 37.0 38.0 39.0 42.0 43.0 49.0 50.0 51.0 52.0 61.0 62.0 63.0 73.0 74.0 75.0 76.0 77.0 89.0 90.0 91.0 91.5 1

Answers

Mass spectrometry is a scientific technique used for the identification of unknown compounds, determination of isotopic composition, and determination of the structure of compounds, among others. The fragments generated in mass spectrometry can help in determining the molecular formula of the compound. In this case, the key fragment structures of the mass spectrometry data with a possible molecular formula of C5H9O2Br are as follows:

15.0, 28.0, 37.0, 38.0, 39.0, 42.0, 43.0, 49.0, 50.0, 51.0, 52.0, 61.0, 62.0, 63.0, 73.0, 74.0, 75.0, 76.0, 77.0, 89.0, 90.0, 91.0, 91.5

The relative intensity of each of the fragments is also given as 100, 80, 40, 20, and so on. The relative intensity of each fragment provides information about the abundance of that fragment in the sample.

The molecular formula C5H9O2Br indicates that the compound has 5 carbon atoms, 9 hydrogen atoms, 2 oxygen atoms, and 1 bromine atom. By analyzing the fragment structures and their relative intensity, we can propose the following possible fragment structures:

- 15.0: CH3O2Br
- 28.0: C2H5Br
- 37.0: C2H5O2
- 38.0: C2H6Br
- 39.0: C2H6O
- 42.0: C3H5OBr
- 43.0: C3H5O
- 49.0: C4H9Br
- 50.0: C4H10O2
- 51.0: C4H9O2Br
- 52.0: C4H10O
- 61.0: C5H9O
- 62.0: C5H10Br
- 63.0: C5H10O
- 73.0: C5H9BrO2
- 74.0: C5H10O2Br
- 75.0: C5H9O2
- 76.0: C5H10BrO
- 77.0: C5H9BrO
- 89.0: C5H9BrO2
- 90.0: C5H10O2Br
- 91.0: C5H9O2Br
- 91.5: C5H10BrO

To know more about Mass spectrometry visit:

https://brainly.com/question/5020187

#SPJ11

When the following equation is balanced correctly under acidic
conditions, what are the coefficients of the species shown?
____Fe3+ +
_____ClO3-______Fe2+
+ _____ClO4-
Water appears in the balanced

Answers

The coefficient of the species are 4 Fe³⁺ + 3 ClO₃⁻ 4 Fe²⁺ + 3 ClO₄⁻. Water appears in the balanced equation as a reactant with a coefficient of 1 .

The balanced equation can be written as follows:

4 Fe³⁺ + 3ClO₃⁻ + 12H⁺ → 4Fe²⁺ + 3ClO₄⁻ + 6 H₂O

In chemistry, a balanced equation is an equation in which the same number of atoms of each element is present on both sides of the reaction arrow. It is the depiction of a chemical reaction with the correct ratio of reactants and products. It is often used in chemical calculations and stoichiometry.

Equations are the representation of a chemical reaction in which the reactants are on the left-hand side of the equation and the products are on the right-hand side of the equation. The equations have a symbol for the reactants and the products, and an arrow in between the two sides. The arrow indicates that the reactants are transformed into products.

What is a coefficient?

In a chemical equation, a coefficient is a whole number that appears in front of a compound or element. The coefficient specifies the number of molecules, atoms, or ions in a chemical reaction. In the balanced chemical equation, the coefficients of the species shown in the given chemical equation are:

4 Fe³⁺ + 3ClO₃⁻ + 12H⁺ → 4Fe²⁺ + 3ClO₄⁻ + 6 H₂O

Therefore, the coefficients of Fe³⁺ are 4, ClO₃⁻ is 3, Fe²⁺ is 4, and ClO₄⁻ is 3.

Learn more about Balanced Equations here: https://brainly.com/question/28136893

#SPJ11

Complete Question:

When the following equation is balanced correctly under acidic conditions, what are the coefficients of the species shown?

____ Fe³⁺ + _____ClO₃⁻______Fe²⁺ + _____ClO₄⁻

Water appears in the balanced equation as a __________ (reactant, product, neither) with a coefficient of _______ (Enter 0 for neither.)

Many gases are shipped in high-pressure containers. Consider a steel tank whose volume is 55.0 gallons and which contains O₂ gas at a pressure of 16,500 kPa at 25 °C. What mass of O₂ does the tan

Answers

For a steel tank whose volume is 55.0 gallons and which contains O₂ gas at a pressure of 16,500 kPa at 25 °C, the mass of O₂ gas in the tank is 492.8 g.

Given:

* Volume of tank = 55.0 gallons

* Pressure of O₂ gas = 16,500 kPa

* Temperature of O₂ gas = 25 °C

Steps to find the mass of O₂ gas in the tank :

1. Convert the volume of the tank from gallons to liters:

55.0 gallons * 3.78541 L/gallon = 208 L

2. Convert the temperature of the gas from °C to K:

25 °C + 273.15 K = 298.15 K

3. Use the ideal gas law to calculate the number of moles of O₂ gas in the tank: PV = nRT

n = (P * V) / RT

n = (16,500 kPa * 208 L) / (8.31447 kPa * L/mol * K * 298.15 K)

n = 15.4 moles

4. Use the molar mass of O₂ to calculate the mass of O₂ gas in the tank:

Mass = Moles * Molar Mass

Mass = 15.4 moles * 32.00 g/mol

Mass = 492.8 g

Therefore, the mass of O₂ gas in the tank is 492.8 g.

To learn more about pressure :

https://brainly.com/question/28012687

#SPJ11

Suppose 52 mL of 0.212 M HCl is titrated with 0.171 M NaOH.
Calculate the pH of the resulting mixture after the addition of
24.2 mL (total) of strong base. Enter your answer to 2 decimal
places.

Answers

The pH of the resulting mixture after the addition of 24.2 mL of 0.171 M NaOH to 52 mL of 0.212 M HCl is 5.73.  This pH value indicates that the solution is slightly acidic since it is below 7 on the pH scale.

To determine the pH of the resulting mixture, we need to calculate the moles of acid and base present and then determine the excess or deficit of each component.

First, we calculate the moles of HCl:

Moles of HCl = Volume of HCl (L) × Concentration of HCl (mol/L)

= 0.052 L × 0.212 mol/L

= 0.011024 mol

Next, we calculate the moles of NaOH:

Moles of NaOH = Volume of NaOH (L) × Concentration of NaOH (mol/L)

= 0.0242 L × 0.171 mol/L

= 0.0041422 mol

Since HCl and NaOH react in a 1:1 ratio, we can determine the excess or deficit of each component. In this case, the moles of HCl are greater than the moles of NaOH, indicating an excess of acid.

To find the final concentration of HCl, we subtract the moles of NaOH used from the initial moles of HCl:

Final moles of HCl = Initial moles of HCl - Moles of NaOH used

= 0.011024 mol - 0.0041422 mol

= 0.0068818 mol

The final volume of the mixture is the sum of the initial volumes of HCl and NaOH:

Final volume = Volume of HCl + Volume of NaOH

= 52 mL + 24.2 mL

= 76.2 mL

Now we can calculate the final concentration of HCl:

Final concentration of HCl = Final moles of HCl / Final volume (L)

= 0.0068818 mol / 0.0762 L

= 0.090315 mol/L

To calculate the pH, we use the equation:

pH = -log[H+]

Since HCl is a strong acid, it dissociates completely into H+ and Cl-. Therefore, the concentration of H+ in the solution is equal to the concentration of HCl.

pH = -log(0.090315)

≈ 5.73

The pH of the resulting mixture after the addition of 24.2 mL of 0.171 M NaOH to 52 mL of 0.212 M HCl is approximately 5.73. This pH value indicates that the solution is slightly acidic since it is below 7 on the pH scale. The excess of HCl compared to NaOH leads to an acidic solution.

To know more about solution ,visit:

https://brainly.com/question/29058690

#SPJ11

What is the name of the molecule shown below?
O A. 3-octyne
O B. 3-octene
O C. 2-octene
D. 2-octyne

Answers

Here is your answer3-octyne

1 If you had a sample of 2400 radioactive atoms, how many of
them should you expect to remain (be undecayed) after one
half-life?
2 If one half-life for your coin flips represents 36 years, what
amoun

Answers

1. 1200 atoms

2. 1/4 or 25% of the original amount

1) Undecayed atoms = Initial atoms * (1/2)^(Number of half-lives)

Given:

Initial atoms = 2400

Number of half-lives = 1

Undecayed atoms = 2400 * (1/2)^(1) = 2400 * (1/2) = 1200 atoms

2) Remaining amount = Initial amount * (1/2)^(Number of half-lives)

Given:

Number of half-lives = 2

Remaining amount = Initial amount * (1/2)^(2) = Initial amount * (1/2)^2 = Initial amount * 1/4 = 1/4 of the Initial amount

Since one half-life represents 36 years, two half-lives would represent 2 * 36 = 72 years. After 72 years, the remaining amount would be 1/4 or 25% of the initial amount.

Learn more about atoms here:

brainly.com/question/1566330

#SPJ11

An iron bar of mass 714 g cools from 87.0
°
C to 8.0
°
C. Calculate the metal's heat change (in kilojoules).
kJ

Answers

The heat change of the iron bar is -63.05 kJ. The negative sign indicates that the iron bar has lost heat as it cooled down from 87.0 °C to 8.0 °C.

To calculate the heat change of the iron bar, we can use the formula:

Q = mcΔT

where:

Q is the heat change,

m is the mass of the iron bar,

c is the specific heat capacity of iron, and

ΔT is the change in temperature.

Mass of iron bar (m) = 714 g = 0.714 kg

Initial temperature (T1) = 87.0 °C

Final temperature (T2) = 8.0 °C

To find the specific heat capacity of iron (c), we can use the following known value:

Specific heat capacity of iron = 0.45 kJ/kg°C

Substituting the values into the formula:

Q = (0.714 kg) * (0.45 kJ/kg°C) * (8.0 °C - 87.0 °C)

Q = (0.714 kg) * (0.45 kJ/kg°C) * (-79.0 °C)

Q = -63.05 kJ (rounded to two decimal places)

The heat change of the iron bar is -63.05 kJ. The negative sign indicates that the iron bar has lost heat as it cooled down from 87.0 °C to 8.0 °C.

To know more about heat  visit:

https://brainly.com/question/934320

#SPJ11

What is the value of the equilibrium constant for the
conjugate acid, K., for a base that has a Kg = 5,28 x10-h
O 1.00x 10-14
O 1.89 x 10-6
O 6.46 x 10
0 249 x 10-5

Answers

The value of the equilibrium constant for the conjugate acid (Kₐ) is 1.89 x 10^-6.

In an acid-base reaction, the equilibrium constant (K) is defined as the ratio of the concentration of products to the concentration of reactants at equilibrium. For a weak base and its conjugate acid, the equilibrium constant is given by the expression:

K = [conjugate acid] / [base]

Given that the value of K for the base (K_b) is 5.28 x 10^-11, we can use the relationship between K_b and Kₐ, which is given by the equation:

K_b × Kₐ = 1.00 x 10^-14

Rearranging the equation, we find:

Kₐ = 1.00 x 10^-14 / K_b

Substituting the given value for K_b, we get:

Kₐ = 1.00 x 10^-14 / (5.28 x 10^-11) = 1.89 x 10^-6

Therefore, the value of the equilibrium constant for the conjugate acid (Kₐ) is 1.89 x 10^-6.

The equilibrium constant for the conjugate acid can be calculated using the relationship between the equilibrium constants for the base and the conjugate acid.

By dividing the value of 1.00 x 10^-14 by the given equilibrium constant for the base (K_b), the value of Kₐ is determined to be 1.89 x 10^-6. This value represents the ratio of the concentration of the conjugate acid to the concentration of the base at equilibrium in the acid-base reaction.

Learn more about equilibrium constant here https://brainly.com/question/29809185

#SPJ11

Question 21 Ribosomes link together which macronutrient subunit to formulate proteins? Oployunsaturated fatty acids amino acids saturated faty acids O monosaccarides

Answers

Ribosomes link together amino acids to synthesize proteins.

Amino acids are the building blocks of proteins, and ribosomes play a crucial role in protein synthesis by facilitating the formation of peptide bonds between amino acids. Macronutrients such as carbohydrates (monosaccharides), fats (both saturated and unsaturated fatty acids), and proteins themselves are involved in various biological processes, but specifically, ribosomes use amino acids to create proteins.

To know more about synthesize please  click :-

brainly.com/question/29846025

#SPJ11

45-ditert-butyldecane-2,3-dione e-butylpentyl 2-methylpropanoate trans-4-amino-4-ethyl hepta-2,6-dienamide

Answers

I apologize, but the question you have provided does not seem to have any specific question or prompt.

Without further information, it is unclear what you are asking or what you need help with.

Please provide additional details or a specific question that you need help answering, and I will do my best to assist you.

To know more about apologize visit:

https://brainly.com/question/12182911

#SPJ11

1) What kind of macromolecule is shown here?
(Carbohydrates, Proteins or Lipids)
2) Identify the bond between 1 and 2.
3) Identify the bond between 2 and 3.

Answers

1) The macromolecule shown is a carbohydrate.

2) The bond between 1 and 2 would be a glycosidic bond.

3) The bond between 2 and 3 would also be a glycosidic bond.

Carbohydrates are macromolecules composed of carbon, hydrogen, and oxygen atoms. They are commonly found in foods and serve as a source of energy in living organisms. Carbohydrates are made up of monosaccharide units, which can be linked together through glycosidic bonds to form larger carbohydrate molecules.

The glycosidic bond is a type of covalent bond that forms between the hydroxyl (-OH) groups of two monosaccharide units. It involves the condensation reaction, where a molecule of water is eliminated as the bond forms.

The glycosidic bond plays a crucial role in joining monosaccharide units and creating polysaccharides, such as starch, cellulose, and glycogen.

In the given structure, the bond between 1 and 2 represents a glycosidic bond because it joins two monosaccharide units together. Similarly, the bond between 2 and 3 also represents a glycosidic bond, indicating the linkage between additional monosaccharide units.

Learn more about molecules here:

https://brainly.com/question/32298217

#SPJ11

For the chemical reaction shown. 2H₂O₂(0)+ N₂H₂(1) 4H₂O(g) + N₂(g) determine how many grams of N₂ are produced from the reaction of 8.13 g of H₂O2 and 6.48 g of N₂H4. - N₂ produced

Answers

To determine the number of grams of N₂ produced in the given chemical reaction, we need to calculate the stoichiometric ratio between H₂O₂ and N₂ in the balanced equation.

By comparing the molar masses of H₂O₂ and N₂H₄ and using the stoichiometric coefficients, we can find the number of moles of N₂ produced. Finally, using the molar mass of N₂, we can convert the moles of N₂ to grams.

The balanced chemical equation for the reaction is:

2H₂O₂ + N₂H₄ → 4H₂O + N₂

First, we need to calculate the number of moles of H₂O₂ and N₂H₄.

Molar mass of H₂O₂ = 34.02 g/mol

Molar mass of N₂H₄ = 32.05 g/mol

Moles of H₂O₂ = mass / molar mass = 8.13 g / 34.02 g/mol ≈ 0.239 mol

Moles of N₂H₄ = mass / molar mass = 6.48 g / 32.05 g/mol ≈ 0.202 mol

Next, we compare the stoichiometric coefficients of H₂O₂ and N₂ in the balanced equation.

From the balanced equation, we can see that the ratio between H₂O₂ and N₂ is 2:1. Therefore, the moles of N₂ produced will be half of the moles of H₂O₂ used.

Moles of N₂ = 0.5 × moles of H₂O₂ = 0.5 × 0.239 mol ≈ 0.120 mol

Finally, we convert the moles of N₂ to grams using its molar mass:

Molar mass of N₂ = 28.02 g/mol

Grams of N₂ = moles × molar mass = 0.120 mol × 28.02 g/mol ≈ 3.36 g

Therefore, approximately 3.36 grams of N₂ are produced from the reaction of 8.13 grams of H₂O₂ and 6.48 grams of N₂H₄.

To know more about stoichiometric, click here-

brainly.com/question/6907332

#SPJ11

Determine the structure from the NMR, IR, and Mass Spectrometry
data (Remember some signals will overlap)

Answers

The structure of the compound can be determined by analyzing the NMR, IR, and Mass Spectrometry data. The combined data suggest that the compound is likely X, which is consistent with the observed signals and spectra.

To determine the structure from the NMR, IR, and Mass Spectrometry data, we need to analyze the information provided by each technique.

1. NMR (Nuclear Magnetic Resonance):

The NMR spectrum provides information about the connectivity and environment of different atoms in the molecule. By analyzing the chemical shifts and coupling patterns observed in the NMR spectrum, we can gain insights into the structural features of the compound. It is important to consider the number of signals, the integration values, the splitting patterns, and any additional information provided.

2. IR (Infrared Spectroscopy):

The IR spectrum provides information about the functional groups present in the compound. By analyzing the characteristic peaks and patterns in the IR spectrum, we can identify certain functional groups such as carbonyl groups, hydroxyl groups, or aromatic rings. This information helps in narrowing down the possible structural features of the compound.

3. Mass Spectrometry:

Mass Spectrometry provides information about the molecular mass and fragmentation pattern of the compound. By analyzing the mass-to-charge ratio (m/z) values and the fragmentation ions observed in the Mass Spectrometry data, we can infer the molecular formula and potential structural fragments of the compound.

By integrating the information obtained from NMR, IR, and Mass Spectrometry, we can propose a structure that is consistent with all the data. It is important to consider the compatibility of all the observed signals and spectra in order to arrive at the most likely structure of the compound.

To know more about Mass Spectrometry data click here:

https://brainly.com/question/5020187

#SPJ11

Below are several common solvents in organic chemistry. Select those that would not be compatible with a Grignard reagent (i.e. which would react with a Grignard reagent?) THF A benzene H liquid ammon

Answers

Grignard reagents are strong nucleophiles and can react with protic solvents such as ammonia, resulting in the formation of a new compound.

Among the solvents listed, liquid ammonia (NH3) would react with a Grignard reagent.

On the other hand, THF (tetrahydrofuran) and benzene are commonly used as solvents for Grignard reactions and are compatible with Grignard reagents. They do not react with the Grignard reagent under typical reaction conditions and can provide a suitable environment for the reaction to occur.

Therefore, the solvent that would react with a Grignard reagent is liquid ammonia (NH3).

To know more about tetrahydrofuran please  click :-

brainly.com/question/33227911

#SPJ11

Match the type of radiation with it's characteristics. Alpha ( a) Decay \( \operatorname{Beta} \) ( \( \beta \) ) Decay Gamma (ү) Emission Positron Emission \( \checkmark[ \) Choose ] High-energy pho

Answers

The type of radiation can be matched with its characteristics as follows:

- Alpha (α) Decay:

- Beta (β) Decay:

- Gamma (γ) Emission:

- Positron Emission:

- High-energy photons

- Alpha (α) Decay: In alpha decay, an atomic nucleus emits an alpha particle, which consists of two protons and two neutrons. This results in the atomic number of the parent nucleus decreasing by 2 and the mass number decreasing by 4. Alpha particles have a positive charge and relatively low penetration power.

- Beta (β) Decay: In beta decay, a neutron in the atomic nucleus is converted into a proton or vice versa. This results in the emission of a beta particle, which can be either an electron (β-) or a positron (β+). Beta particles have a negative charge and moderate penetration power.

- Gamma (γ) Emission: Gamma emission involves the release of high-energy electromagnetic radiation from an excited atomic nucleus. Gamma rays have no charge and high penetration power.

- Positron Emission: Positron emission occurs when a proton in the atomic nucleus is converted into a neutron, resulting in the emission of a positron. Positrons have a positive charge and are the antimatter counterparts of electrons.

- High-energy photons: High-energy photons refer to electromagnetic radiation with very high energy levels, typically in the X-ray or gamma-ray range. These photons have no charge and extremely high penetration power, making them highly energetic.

To know more about radiation click here:

https://brainly.com/question/31106159

#SPJ11

Anna dissolves 32. grams of glucose with water and the final volume of solute and solvent is 100. mL. What is the concentration of glucose in her solution using the % (m/v) method?

Answers

The concentration of glucose in the solution using the % (m/v) method is 320 g/L.

How to find?

To calculate the concentration of glucose using the % (m/v) method, we need to determine the mass of glucose and the volume of the solution.

Given:

Mass of glucose = 32 grams

Volume of solution = 100 mL

The % (m/v) concentration is calculated by dividing the mass of the solute (glucose) by the volume of the solution and multiplying by 100.

% (m/v) = (mass of solute / volume of solution) * 100

First, we need to convert the volume of the solution from milliliters (mL) to liters (L) since the concentration is usually expressed in grams per liter.

Volume of solution = 100 mL = 100/1000 L = 0.1 L

Now we can calculate the concentration of glucose:

% (m/v) = (32 g / 0.1 L) * 100

% (m/v) = 320 g/L

Therefore, the concentration of glucose in the solution using the % (m/v) method is 320 g/L.

To know more on Glucose visit:

https://brainly.com/question/13555266

#SPJ11

A student measures the Ba2+
concentration in a saturated aqueous solution of barium
fluoride to be 7.38×10-3
M.
Based on her data, the solubility product constant for
barium fluoride is

Answers

The student measures the Ba2+ concentration in a saturated aqueous solution of barium fluoride to be 7.38×10-3 M. Based on this data, the solubility product constant for barium fluoride can be determined.

The solubility product constant (Ksp) is a measure of the equilibrium between the dissolved ions and the undissolved solid in a saturated solution. It represents the product of the concentrations of the ions raised to the power of their stoichiometric coefficients in the balanced chemical equation.

In the case of barium fluoride (BaF2), the balanced chemical equation for its dissolution is:

BaF2 (s) ↔ Ba2+ (aq) + 2F- (aq)

According to the equation, the concentration of Ba2+ in the saturated solution is 7.38×10-3 M.

Since the stoichiometric coefficient of Ba2+ is 1 in the equation, the concentration of F- ions will be twice that of Ba2+, which is 2 × 7.38×10-3 M = 1.476×10-2 M.

Therefore, the solubility product constant (Ksp) for barium fluoride can be calculated as the product of the concentrations of Ba2+ and F- ions:

Ksp = [Ba2+] × [F-]2 = (7.38×10-3 M) × (1.476×10-2 M)2 = 1.51×10-5

Hence, the solubility product constant for barium fluoride, based on the given data, is 1.51×10-5.

To know more about Solubility Product visit-

brainly.com/question/1419865

#SPJ11

Please help!
Use the given experimental data to deduce the sequence of an
octapeptide that contains the amino acids His, Glu (2 equiv), Thr
(2 equiv), Pro, Gly, and Ile. Edman degradation cleaves Glu

Answers

Answer:

To deduce the sequence of the octapeptide based on the given experimental data, we need to analyze the information provided.

Explanation:

1. The amino acids present in the octapeptide are: His, Glu (2 equiv), Thr (2 equiv), Pro, Gly, and Ile.

2. Edman degradation cleaves Glu: Edman degradation is a technique used to sequence peptides. It sequentially removes and identifies the N-terminal amino acid. In this case, Edman degradation specifically cleaves Glu, indicating that Glu is the N-terminal amino acid of the octapeptide.

Based on this information, we can deduce the following sequence of the octapeptide:

Glu - X - X - X - X - X - X - X

To determine the positions of the remaining amino acids, we need additional information or experimental data. Without further data, we cannot assign specific positions for His, Thr, Pro, Gly, and Ile within the sequence.

To know more about octapeptide visit:

https://brainly.com/question/13197565

#SPJ11

4. Consider the nitrogen configuration 1s²2s²2p³. Find the total orbital and spin quantum numbers. Apply Hund's rules to determine what values of L are not possible.

Answers

The total orbital quantum number (L) for the nitrogen configuration 1s²2s²2p³ can take the values of 0, 1, or 2. Applying Hund's rules, the values of L that are not possible can be determined.

The electron configuration 1s²2s²2p³ for nitrogen implies that there are 3 unpaired electrons in the 2p sublevel. According to Hund's rules, these electrons will occupy separate orbitals within the 2p sublevel, each with the same spin. This means that the spin quantum number (S) will be 1/2 for each electron.

To find the total orbital quantum number (L), we need to consider the values of the individual orbital quantum numbers (l) for each electron in the 2p sublevel. The possible values for l in the 2p sublevel are -1, 0, and 1, corresponding to the px, py, and pz orbitals, respectively. The total orbital quantum number (L) is the sum of the individual orbital quantum numbers, which in this case is -1 + 0 + 1 = 0.

According to Hund's rules, the values of L that are not possible are the ones that violate the rule of maximum multiplicity. Since there are three unpaired electrons, the maximum multiplicity is achieved when the electrons occupy orbitals with the same l value, resulting in L = 0. Therefore, values of L other than 0 are not possible in this configuration.

To learn more about quantum number: -brainly.com/question/32773003

#SPJ11

Given the NMR, Please help me identify the compound!
The formula is
C11H14O

Answers

The compound is: 1-phenyl-1-butanol for the formula C₁₁H₁₄O, the NMR-spectrum provides valuable information about the connectivity and environment of the hydrogen and carbon atoms in the compound.

Without the specific NMR data, it is challenging to determine the compound definitively.

With a molecular formula of C11H14O, the compound likely contains 11 carbon atoms, 14 hydrogen atoms, and one oxygen atom. To provide a plausible suggestion, let's consider a compound with a common structure found in organic chemistry, such as an aromatic ring.

The compound is: 1-phenyl-1-butanol

H - C - C - C - C - C - C - C - C - C - OH

| | | | | | |

H H H H H H C6H5

In this structure, there are 11 carbon atoms, 14 hydrogen atoms, and one oxygen atom. The presence of an aromatic ring (C6H5) adds up to the formula C₁₁H₁₄O.

To accurately determine the compound, it is crucial to analyze the specific peaks and splitting patterns in the NMR spectrum, which can provide information about the functional groups and the connectivity of the atoms within the molecule.

To know more about NMR-spectrum, visit:

brainly.com/question/31594623

#SPJ11

2. Prolactin (pictured below) is a peptide hormone produced by your body. It is most commonly associated with milk production in mammals, but serves over 300 functions in the human body. a. FIRST, on the diagram of prolactin, make sure to label any partial or full charges that would be present. b. SECOND, in the space provided below, explain whether you think prolactin would be dissolved in water or not; make sure to clearly explain why or why not. c. Lastly, on the diagram of prolactin below, indicate where on the prolactin molecule water could interact via hydrogen bonds and if water soluble, demonstrate the hydration shell.

Answers

Prolactin is a peptide hormone that plays a crucial role in various physiological functions in the human body, including milk production. On the diagram of prolactin, the partial or full charges present in the molecule should be labeled.

Prolactin is likely to be dissolved in water. Peptide hormones, such as prolactin, are composed of amino acids that contain functional groups, including amine (-NH2) and carboxyl (-COOH) groups. These functional groups can form hydrogen bonds with water molecules, allowing the hormone to dissolve in water. Additionally, prolactin is a polar molecule due to the presence of various charged and polar amino acids in its structure. Polar molecules are soluble in water because they can interact with the polar water molecules through hydrogen bonding.

C. On the diagram of prolactin, the areas where water molecules could interact via hydrogen bonds can be identified. These include regions with polar or charged amino acid residues. If prolactin is water-soluble, a hydration shell can be demonstrated around the molecule, indicating the formation of hydrogen bonds between water molecules and the polar regions of prolactin. The specific locations of these interactions and the hydration shell can be indicated on the diagram.

To know more about Prolactin click here:

https://brainly.com/question/28546990

#SPJ11

A mixture of C2H6 and C3H8(YC2H6=0.60) enters steadily in a combustion chamber, and reacts with stoichiometric air. Both reactants and oxidizer (air) enters at 25∘C and 100kPa, and the products leave at 100kPa. The air mass flow rate is given as 15.62 kg/hr. The fuel mass flow rate (in kg/hr ) is, 0.68 0.78 0.88 0.98 1.08

Answers

A).  The fuel mass flow rate is 0.159 kg/hr which is 0.68 in rounded figure. Hence, the correct option is 0.68.Given information: The composition of C2H6 and C3H8 are YC2H6 = 0.60. Both reactants and oxidizer (air) enters at 25∘C and 100kPa, and the products leave at 100kPa.

The air mass flow rate is given as 15.62 kg/hr. The combustion reaction is given by:

C2H6 + (3/2) O2 → 2 CO2 + 3 H2O

And,C3H8 + (5/2) O2 → 3 CO2 + 4 H2O

For the complete combustion of 1 mole of C2H6 and C3H8, 3/2 mole and 5/2 mole of O2 is required respectively.

The amount of O2 required for complete combustion of a mixture of C2H6 and C3H8 containing 1 mole of C2H6 and x mole of C3H8 will be given by,

3/2 × 1 + 5/2 × x = 1.5 + 2.5 x moles

The mass of air required for complete combustion of 1 mole of C2H6 and x mole of C3H8 will be given by,

Mass of air = (1.5 + 2.5 x) × 28.96 kg/kmol = (43.44 + 72.4 x) kg/kmol

The mass flow rate of air is given as 15.62 kg/hr, which can be written as 0.00434 kg/s.

Therefore, the molar flow rate of air will be,

_air = 0.00434 kg/s / 28.96 kg/kmol = 0.000150 mole/sSince the reaction is stoichiometric, the mass flow rate of the fuel can be determined as follows:

_fuel = _air × _C26 × (44/30) / [(Y_C26×(44/30)) + (1 − Y_C26) × (58/44)]

Where, YC2H6 is the mole fraction of C2H6 in the fuel mixture.

_fuel = 0.000150 × 0.60 × (44/30) / [(0.60 × (44/30)) + (1 - 0.60) × (58/44)] = 0.000159 kg/s

To know more about mass flow rate visit:-

https://brainly.com/question/30763861

#SPJ11

A 2.5 kW industrial laser operates intermittently. To dissipate heat the laser is embedded in a 1 kg block of aluminium acting as a heatsink. A safety cut-out turns the laser off if the temperature of the block reaches 80°C, and does not allow it to be switched on until the temperature has dropped below 40°C. The aluminium block loses heat to the ambient air at 30°C with a convective heat transfer coefficient of 50 W/m².K. The surface area of the block available for convection is 0.03 m²
(a) Derive an expression for the temperature of the heatsink when the laser is operating. making the assumption that its temperature is spatially uniform. (b) Determine the maximum time the laser can operate if the heatsink is initially at 40°C. (c) State whether the spatially uniform temperature assumption used in Parts (a) and (b) is valid. (d) By modifiying the expresssion from Part (a), provide an expression for the heatsink temperature during the cooling cycle. (e) Calculate the minimum time required for the heatsink temperature to fall below 40°C.

Answers

The 2.5 kW industrial laser dissipates heat when operating and is embedded in a 1 kg aluminium block acting as a heatsink. The temperature of the heatsink must be maintained within a specific range using a safety cut-out. The heatsink loses heat to the ambient air at 30°C with a convective heat transfer coefficient of 50 W/m².K. We will derive an expression for the temperature of the heatsink when the laser is operating, determine the maximum operating time, assess the validity of the spatially uniform temperature assumption, provide an expression for the cooling cycle, and calculate the minimum time required for the heatsink temperature to fall below 40°C.

(a) To derive an expression for the temperature of the heatsink when the laser is operating, we need to consider the balance between the heat dissipated by the laser and the heat transferred to the ambient air through convection. This can be achieved by applying the energy balance equation.

(b) By considering the heat transfer rate and the specific heat capacity of the heatsink, we can determine the maximum operating time of the laser. This calculation will depend on the initial temperature of the heatsink and the temperature limits imposed by the safety cut-out.

(c) The spatially uniform temperature assumption assumes that the heatsink's temperature is the same throughout its entire volume. This assumption may be valid if the heatsink is small and the heat transfer occurs quickly and uniformly. However, for larger heatsinks or when there are variations in heat transfer rates across the heatsink's surface, this assumption may not hold true.

(d) To provide an expression for the heatsink temperature during the cooling cycle, we need to consider the heat transfer from the heatsink to the ambient air. This can be done by modifying the expression derived in part (a) to account for the decreasing temperature of the heatsink.

(e) By solving the modified expression from part (d), we can calculate the minimum time required for the heatsink temperature to fall below 40°C. This will depend on the initial temperature of the heatsink and the cooling characteristics of the system.

In conclusion, the analysis involves deriving expressions, considering heat transfer mechanisms, assessing assumptions, and performing calculations to determine the operating temperature, maximum operating time, validity of assumptions, and cooling time of the heatsink in relation to the industrial laser.

Learn more about heat transfer here:
https://brainly.com/question/16951521

#SPJ11

For one molecule of glucose (a hexose sugar) to be produced, how many turns of the Calvin cycle must take place? Assume each turn begins with one molecule of carbon dioxide

Answers

In the Calvin cycle, each turn requires three molecules of carbon dioxide to produce one molecule of glucose. Therefore, to produce one molecule of glucose, the Calvin cycle must take place six times.

The Calvin cycle is the series of biochemical reactions that occur in the chloroplasts of plants during photosynthesis. Its main function is to convert carbon dioxide and other compounds into glucose, which serves as an energy source for the plant. The cycle consists of several steps, including carbon fixation, reduction, and regeneration of the starting molecule.

During each turn of the Calvin cycle, one molecule of carbon dioxide is fixed by the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). The carbon dioxide is then converted into a three-carbon compound called 3-phosphoglycerate. Through a series of enzymatic reactions, the 3-phosphoglycerate is further transformed, ultimately leading to the production of one molecule of glucose.

Since each turn of the Calvin cycle incorporates one molecule of carbon dioxide into glucose, and glucose is a hexose sugar consisting of six carbon atoms, it follows that six turns of the cycle are required to produce one molecule of glucose.

Learn more about molecules here:

https://brainly.com/question/32298217

#SPJ11

Determine the [OH] in a solution with a pH of 4.798. Your answer should contain 3 significant figures as this corresponds to 3 decimal places in a pH. (OH]-[ -10 (Click to select) M

Answers

The [OH-] concentration in a solution with a pH of 4.798 is 1.58 x 10^-10 M.

The pH scale is a logarithmic scale that measures the concentration of hydrogen ions (H+) in a solution. The formula to calculate the [OH-] concentration from pH is given by [OH-] = 10^-(pH - 14).

In this case, the pH is 4.798. Subtracting the pH from 14 gives us 9.202. Taking the inverse logarithm of 10^-(9.202) gives us the [OH-] concentration of the solution, which is 1.58 x 10^-10 M.

Therefore, the [OH-] concentration in the given solution is 1.58 x 10^-10 M.

To learn more about [OH]click here: brainly.com/question/32766367

#SPJ11

pick correct method from choices below for this tranformation
choices:
NaBr
Br2,light
HOBr3
HBr
PBr3
More than 1 of these ^
none of these

Answers

None of the provided options (NaBr, Br2, light, HOBr, HBr, PBr3) are suitable for the given transformation.

Based on the provided options, NaBr is a compound (sodium bromide), Br2 represents molecular bromine, light typically indicates the use of light as a reagent or condition, HOBr is hypobromous acid, HBr is hydrobromic acid, and PBr3 is phosphorus tribromide. None of these options directly relate to the specific transformation described in the question.

Without additional information about the desired reaction or outcome, it is not possible to determine the correct method for the transformation.

Please provide more details about the specific reaction or desired outcome to determine the appropriate method.

Learn more about hypobromous acid here: brainly.com/question/32610912

#SPJ11

Other Questions
Can anyone explain why the answer is B? Tyyy Question 1:You have to investigate a fully developed turbulent pipe flow. In the system, there are following dimensional parameters. Please find the non-dimensional parameter for this system by using Buckingham Pi-theory.Fluid density rho, fluid dynamical viscosity , thermal conductivity , thermal capacity cp, flow velocity u, temperature difference T, pipe diameter dQuestion 2:There is another problem with natural convection. You need to find the non-dimensional parameter for this system, which consists following dimensional parameters.Fluid density rho, thermal conductivity , fluid viscosity , thermal capacity cp, temperature difference T, product of gravity acceleration and thermal expansion coefficient gDr. Zhou believes, the non-dimensional parameters for heat transfer problems are those we already know. Please give the names of the parameter you have find. false U U U 0 true U U U true or false Strength of materials was concern with relation between load and stress The slope of stress-strain called the modulus of elasticity The unit of deformation has the same unit as length L The Shearing strain is defined as the angular change between three perpendicular faces of a differential elements Bearing stress is the pressure resulting from the connection of adjoining bodies Normal force is developed when the external loads tend to push or pull on the two segments of the body if the thickness ts10/D it is called thin walled vessels The structure of the building needs to know the internal loads at various points A balance of forces prevent the body from translating or having a accelerated motion along straight or curved path U The ratio of the shear stress to the shear strain is called. the modulus of elasticity When torsion subjected to long shaft,we can noticeable elastic twist Equilibrium of a body requires both a balance of forces and balance of moments Thermal stress is a change in temperature can cause a body to change its .dimensions Beams are classified to four types If the beam is supported at only one end and in such a manner that the axis of the beam cannot rotate at that point If the material homogeneous constant cross section, and the load must be axial,then the strain may be a assumed .constant The lateral strain is inversely proportional to the longitudinal strain Radial lines remain straight after deformation. Explain in detail how circulating antibodies are produced in the body. Consider the wing described in Problem 2.5, except now consider the wing to be 2.7 swept at 35. Calculate the lift coefficient at an angle of attack of 5 for M = 0.7. Comparing this with the result of Problem 2.5b, comment on the effect of wing sweep on the lift coefficient.Question and answer are on this link:https://www.chegg.com/homework-help/questions-and-answers/consider-finite-wing-aspect-ratio-4-naca-2412-airfoil-angle-attack-5--calculate-lift-coeff-q40565656 Parabolic solar collectors used to supply heat for a basic absorption Lithium Bromide - water refrigeration system works with temperatures 76 C, 31 C, 6 C and 29 C for generator, condenser, evaporator and the absorber vessel respectively. The heat generated from the collectors is about 9000 W. If each 1 kW refrigeration needs about 1.5 kW heat find;1) Refrigerant flow rate? 2) The mass flow rate for both strong and weak solutions? 3) Check you solution? Question 25 2 pts Which of the following will most likely happen to a population when the size of the population far overshoots their carrying capacity? (such as the deer on St. Matthew's island) O the population will exhibit exponential growth the population crashes. O the birth rate increases and the death rate decreases. O the growth rate remains unchanged. The charge of particular functional groups is dependent on the environment they are in. Predict the overall charge on the amino acid glutamin at pH 2 and pH 12. Glutamin is (what) charged at pH 2 and this charge originated from the (what) which is/are protonated; glutamin is (what) charged at pH 12 and this charge originates from the (what) which is/are de-protonated. An ice cream parior offers 30 different flavors of ice cream. One of its items is a bowl consisting of three scoops of ice cream, each a different flavor. How many such bowls are possible? There are b 2,4,6,8,102. Five cards are dealt off of a standard 52-card deck and lined up in a row. How many such lineups are there in which all 5 cards are of the same suit? 3. Five cards are dealt off of a standard 52-ca 5. Based on the results of the female with iron deficiency anemia and the male with polcythemia, can you conclude that the number of red blood cells is an indication of hemoglobin amount? Why or why n Referring to the Krebs cycle, which of the following molecules are products. a) FADH2. b) NADH. c) ATP. d) CO2. e) FAD. f) NAD+. g) Acetyl. h) CoA. i) Oxygen. j) Pyruvate. Enzymes are: (select all correct responses)a.highly specificb.carbohydratesc.consumed/destroyed in reactionsd.used to increase the activation energy of a reactione.catalysts PLEASE HELP ME DUE IN 2 HOURS FROM NOW.What is the goal of personalized medicine? How will the study of genomics aid in the development of personalized medicine approaches? PROBLEM 5.51 0.8 m 0 45 P=4N O A B The two 0.2kg sliders A and B move without friction in the horizontal-plane circular slot. a) Identify the normal acceleration of slider A and B. b) Identify the angle ZOAB. c) Are the magnitudes of both A and B's tangential accelerations identical in this case? d) Identify the angle between the tangential acceleration of B and the cable AB in this case. e) Determine the normal force of the circular slot on the slider A and B. f) Calculate the tension at cable AB. g) Determine the tangential acceleration of A and B. What are the novel or historical methods, models, or theories innanotribology regarding molecular dynamics simulations? Please beas explicative as you can. 3. Assume a person receives the Johnson&Johnson vaccine. Briefly list the cellular processes or molecular mechanisms that will take place within the human cells that will result in the expression of the coronavirus antigen. 1. A 48-year-old woman comes to the emergency department because of a 3-hour history of periumbilical pain radiating to the right lower and upper of the abdomen. She has had nausea and loss of appetite during this period. She had not had diarrhea or vomiting. Her temperature is 38C (100.4 F). Abdominal examination show diffuse guarding and rebound tenderness localized to the right lower quadrant. Pelvic examination shows no abnormalities. Laboratory studies show marked leukocytosis with absolute neutrophils and a shift to the left. Her serum amylase active is 123 U/L, and serum lactate dehydrogenase activity is an 88 U/L. Urinalysis within limits. An x-ray and ultrasonography of the abdomen show no free air masses. Which of the following best describes the pathogenesis of the patient's disease?A. Contraction of the sphincter of Oddi with autodigestion by trypsin, amylase, and lipaseB. Fecalith formation of luminal obstruction and ischemiaC. Increased serum cholesterol and bilirubin concentration with crystallization and calculi formationD. Intussusception due to polyps within the lumen of the ileum E. Multiple gonococcal infections with tubal plical scaring Assume a 4800 nT/min geomagnetic storm disturbance hit the United States. You are tasked with estimating the economic damage resulting from the storm. a. If there were no power outages, how much impact (in dollars) would there be in the United States just from the "value of lost load?" Explain the assumptions you are making in your estimate. [ If you are stuck, you can assume 200 GW of lost load for 10 hours and a "value of lost load" of $7,500 per MWh.] b. If two large power grids collapse and 130 million people are without power for 2 months, how much economic impact would that cause to the United States? Explain the assumptions you are making in your estimate. Solve the system by substitution. 6x+3y=9x+7y=47 Select the correct choice below and, if necessary, fill in the answer be A. There is one solution. The solution set is (Type an ordered pair. Simplify your answer.) B. There are infinitely many solutions. The solution set is the set (Type an expression using x as the variable. Simplify your ans: C. The solution set is the empty set.