Answer: - 27
Step-by-step explanation:
Plug in for x = 3 and y = -6
I'll start with x to make it easier.
Plugging in x =3
[tex]\sqrt{x^4}[/tex]
Means that first we find x^4, and take the square root of that result.
1. Find x^4
x = 3
3^4 = 3 * 3 * 3 *3 = 81
2. Take the square root of x^4
Square root of 81 = 9
So [tex]\sqrt{x^4}[/tex] = 9
Plugging in y = -6
Let's move onto plugging in y, which appears in the expression as y²
y = -6
so y² = -6 * -6 = 36
Putting this together into the expression
[tex]\sqrt{x^4}[/tex] - y²
9 - 36 = -27
In 1995, wolves were introduced into Yellowstone Park.
The function `w\left(x\right)=14\cdot1.08^{x}` models the number of wolves, `w`, in the years since 1995, `x`.
Determine the value of `w(25)`.
What does this value say about the wolf population?
Answer:
w(25) = 96
There are 96 wolves in the year 2020
Step-by-step explanation:
Given:
[tex]w(x)=14\cdot 1.08^{x}[/tex]
w(25) =
[tex]w(25)=14\cdot 1.08^{25}\\\\= 14 * (6.848)\\\\=95.872\\\\\approx 96[/tex]
Number of years : 1995 + 25 = 2020
In 2020, there are 96 wolves
(1.85)x + 2.55
Question 3
(3a) The equation that can be used to determine the cost, C is C = 2.55 + 1.85x.
(3b) The cost of 3 miles taxi ride is $8.1.
What is the solution of question 3?(3a) The equation that can be used to determine the cost, C is calculated by applying the following equation as follows;
C = f + nx
where
f is the fixed chargex is the number of milesn is the charge per milesC = 2.55 + 1.85x
(3b) The cost of 3 miles taxi ride is calculated as follows;
C = 2.55 + 1.85x
where;
x is the number of milesC = 2.55 + 1.85 (3)
C = $8.1
Learn more about equations here: https://brainly.com/question/2972832
#SPJ1
Arc BC on circle A has a length of 115,
- inches. What is the radius of the circle?
115/6 pi
138°
The radius of the circle is 25 inches. The length of arc with a central angle of 138° is 115π/6 in
What is an equation?An equation is an expression that shows how numbers and variables are related to each other using mathematical operators.
The length of an arc with a central angle Ф with circle radius (r) is given by:
Length of arc = (Ф/360) * 2πr
Given the length of arc as 115π/6 in and angle of 138°, hence:
Length of arc = (Ф/360) * 2πr
Substituting:
115π/6 = (138/360) * 2πr
r = 25 inches
The radius of the circle is 25 inches.
Find out more on equation at: https://brainly.com/question/29174899
#SPJ1
The surface area of a pyramid is the sum of the areas of the lateral faces and the area of the base.
O False
O True
Answer: True
Step-by-step explanation:
The lateral faces are the triangular faces that connect the apex of the pyramid to the edges of the base. The area of each lateral face can be calculated using the formula for the area of a triangle, which is [tex]\frac{1}{2} \times b \times h[/tex]. The area of the base is simply the area of the polygon that forms the base of the pyramid.
__________________________________________________________
The surface area of a pyramid is the sum of the areas of the lateral faces and the area of the base. (True or False)
Answer:The correct answer is True.
Explanation:The surface area of a pyramid is the sum of the areas of the lateral faces and the area of the base. This can be represented by the formula:
[tex]\qquad\qquad\Large\boxed{\rm{\:SA = B + LA\:}}[/tex]
The lateral faces are the faces that are not the base, so their areas are calculated using the formula for the area of a triangle. The area of the base is calculated using the appropriate formula depending on the shape of the base.
Learn more about surface area here: https://brainly.com/question/32228774
Sales at Glover's Golf Emporium have been increasing linearly. In their second business year, sales were $160,000
. This year was their seventh business year, and sales were $335,000
. If sales continue to increase at this rate, predict the sales in their eleventh business year.
The predicted sales in Glover's Golf Emporium's eleventh business year are $475,000.
To predict the sales in Glover's Golf Emporium's eleventh business year, we can use the concept of linear growth. We have two data points: sales in the second year ($160,000) and sales in the seventh year ($335,000).
Let's first find the annual increase in sales:
Increase in sales = Sales in the seventh year - Sales in the second year
Increase in sales = $335,000 - $160,000
Increase in sales = $175,000
Next, we need to determine the rate of increase per year. Since we have a linear growth pattern, we can calculate the average annual increase by dividing the total increase in sales by the number of years:
Average annual increase = Increase in sales / Number of years
Average annual increase = $175,000 / (7 - 2) years
Average annual increase = $175,000 / 5 years
Average annual increase = $35,000 per year
Now, we can predict the sales in the eleventh business year by adding the average annual increase to the sales in the seventh year:
Predicted sales in the eleventh year = Sales in the seventh year + (Average annual increase * Number of additional years)
Predicted sales in the eleventh year = $335,000 + ($35,000 * (11 - 7))
Predicted sales in the eleventh year = $335,000 + ($35,000 * 4)
Predicted sales in the eleventh year = $335,000 + $140,000
Predicted sales in the eleventh year = $475,000
Therefore, the predicted sales in Glover's Golf Emporium's eleventh business year are $475,000.
for such more question on predicted sales
https://brainly.com/question/26476274
#SPJ8
Find the equation of the line in slope-intercept form, parallel to a line joining the points (1,-2) and (-4,3) and passing through (-4,-5).
I
The equation of the line parallel to a line joining points (1,-2) and (-4,3) and passing through (-4,-5) is
(Simplify your answer. Type your answer in slope-intercept form.)
The equation of the line parallel to the line passing through (1, -2) and (-4, 3) and passing through the point (-4, -5) is y = -x - 9 in slope-intercept form.
To find the equation of a line parallel to a given line, we need to determine the slope of the given line and then use it to construct the equation of the parallel line.
First, let's calculate the slope of the given line passing through points (1, -2) and (-4, 3). The slope, denoted as m, can be found using the slope formula:
m = (y2 - y1) / (x2 - x1)
Substituting the coordinates, we have:
m = (3 - (-2)) / (-4 - 1) = 5 / (-5) = -1
Now that we have the slope, we can use it to construct the equation of the parallel line.
We'll use the point-slope form of a linear equation, which is:
y - y1 = m(x - x1)
where (x1, y1) represents the coordinates of a point on the line.
We'll use the point (-4, -5) on the parallel line:
y - (-5) = -1(x - (-4))
y + 5 = -1(x + 4)
Simplifying further:
y + 5 = -x - 4
y = -x - 9
For similar question on line parallel.
https://brainly.com/question/30097515
#SPJ8
se logarithms to solve the problem.
The rule of 70 is a rule of thumb for estimating the doubling time of a quantity (e.g., investment, GDP, population) experiencing growth that is compounded continuously. The rule states that if the growth rate is r% per year, then the time it takes for the quantity to double is approximately 70/r years.
(a)
Use the rule of 70 to estimate the time it takes for an investment to double in value if it grows at the rate of 5% per year compounded continuously.
yr
(b)
What is the exact time it will take for the investment in part (a) to double in value? (Round your answer to two decimal places.)
yr
a. The investment to double in value take about 14 years for the funding to double in value.
b. The genuine time it will take for the funding to double in fee is about 13.86 years.
(a) To estimate the time it takes for an funding to double in cost the use of the rule of 70, we want to decide the increase rate. In this case, the increase price is given as 5% per 12 months compounded continuously.
Using the rule of 70, we can calculate the estimated doubling time:
Time to double ≈ 70 / boom rate
Time to double ≈ 70 / 5
Simplifying, we have:
Time to double ≈ 14 years
Therefore, it would take about 14 years for the funding to double in value.
(b) To decide the genuine time it will take for the funding to double in value, we can use the formulation for non-stop compounding:
Doubling time (exact) = ln(2) / (ln(1 + r))
where r is the increase fee as a decimal.
In this case, the increase charge is 5% per year, or 0.05 as a decimal.
Doubling time (exact) = ln(2) / (ln(1 + 0.05))
Doubling time (exact) ≈ 13.86 years (rounded to two decimal places)
Therefore, the genuine time it will take for the funding to double in fee is about 13.86 years.
For more related questions on investment:
https://brainly.com/question/34043637
#SPJ8
Determine which set of side measurements could be used to form a right triangle. 5, 10, 20 15, 20, 25 5, 12, 24 2, 3, 4
5, 12, 13 is the correct set of side measurements that can form a right angled triangle.
Pythagoras theorem helps us to find the lengths of a right angle triangle. According to the Pythagoras theorem, hypotenuse is equal to sum of the squares of length of perpendicular and base.
Mathematically can be written as, [tex]h^{2} = p^{2} + b^{2}[/tex].
Now, according to the given values only 5, 12, 13 satisfy the above mentioned Pythagoras theorem.
Since, [tex]5^{2} + 12^{2} = 13^{2}[/tex].
which is equal to 169.
other sets like 5, 10, 20 do not satisfy the theorem as, [tex]5^{2} +10^{2} \neq 20^{2}[/tex].
or 5, 12, 24 which also do not satisfy the theorem since, [tex]5^2 + 12^2 \neq 24^2[/tex]
Hence, the correct set of sides which satisfies the Pythagoras theorem and can also form a right angle triangle is 5, 12, 13.
To learn more about Triangle:
https://brainly.com/question/3770177
The diagram shows a cuboid. 8 cm 15 cm 20 cm What is the volume of the cuboid?
Answer:
The answer is 2400 cm^3
Step-by-step explanation:
You just need to multiply the dimensions
Answer:
2400 cm³
Step-by-step explanation:
Volume of cuboid = length × width × height
Volume = 8 cm × 15 cm × 20 cm
Volume = 2400 cm³
So, the volume of the cuboid is 2400 cm³
Kwame is given the graph below.
Which of the following best describes the graph?
a quadratic equation with differences of 1, then 2, then 4, ...
an exponential function with a growth factor of 2
a quadratic function with a constant difference of 2
an exponential function with growth factors of 1, then 2, then 4, ..
The best description of the graph is "a quadratic function with a constant difference of 2."
A quadratic function is a function of the form f(x) = ax^2 + bx + c, where a, b, and c are constants. In a quadratic function, the graph forms a parabola.
In the given graph, if the differences between consecutive points on the graph are constant and equal to 2, it indicates a constant difference in the y-values (vertical direction) as the x-values (horizontal direction) increase. This is a characteristic of a quadratic function.
On the other hand, an exponential function with a growth factor of 2 would result in a graph that increases at an increasing rate, where the y-values grow exponentially as the x-values increase. This is not observed in the given graph.
Therefore, based on the information provided, the graph best represents a quadratic function with a constant difference of 2.
Learn more about quadratic equation here:
https://brainly.com/question/30164833
#SPJ8
In simplest radical form, what are the solutions to the quadratic equation 0 =-3x² - 4x + 5?
-b± √b²-4ac
2a
Quadratic formula: x =
O x= -2±√19
3
Ox=-
2+2√19
3
0 x= 2+√15
3
0 x = 2+2√/19
3
Answer:
To find the solutions to the quadratic equation 0 = -3x² - 4x + 5, we can use the quadratic formula:x = (-b ± √(b² - 4ac)) / (2a)In this case, a = -3, b = -4, and c = 5. Plugging these values into the formula, we get:x = (-(-4) ± √((-4)² - 4(-3)(5))) / (2(-3))Simplifying further:x = (4 ± √(16 + 60)) / (-6) x = (4 ± √76) / (-6) x = (4 ± 2√19) / (-6)We can simplify the expression further:x = -2/3 ± (√19 / 3)Therefore, the solutions to the quadratic equation 0 = -3x² - 4x + 5 in simplest radical form are:x = (-2 ± √19) / 3The solutions to the quadratic equation 0 = -3x² - 4x + 5 in simplest radical form are x = (-2 + √19) / 3 and x = (-2 - √19) / 3.
To find the solutions to the quadratic equation 0 = -3x² - 4x + 5, we can use the quadratic formula: x = (-b ± √(b² - 4ac)) / (2a).
Comparing the equation to the standard quadratic form ax² + bx + c = 0, we have a = -3, b = -4, and c = 5.
Plugging these values into the quadratic formula, we get:
x = (-(-4) ± √((-4)² - 4(-3)(5))) / (2(-3))
= (4 ± √(16 + 60)) / (-6)
= (4 ± √76) / (-6)
= (4 ± 2√19) / (-6)
= -2/3 ± (1/3)√19
Therefore, the solutions to the quadratic equation are:
x = -2/3 + (1/3)√19 and x = -2/3 - (1/3)√19
In simplest radical form, the solutions are:
x = (-2 + √19) / 3 and x = (-2 - √19) / 3.
These expressions cannot be further simplified since the square root of 19 is not a perfect square.
Know more about quadratic equation here:
https://brainly.com/question/30164833
#SPJ8
Q1. An industry analyst wants to compare the average salaries of two firms, both to each other and to the industry. Firm A's average salary is 93% of the industry average, Firm B's average salary is $58,000, and the industry average salary is 96% of Firm B's average salary. a. Determine the industry average salary. b. Determine Firm A's average salary. c. Express Firm B's average salary as a percentage of Firm A's average salary. Round the percentage to two decimals.
a.The Industry Average Salary is $55,680. b.The Firm A's Average Salary is $51,718.40 .c. Firm B's average salary is approximately 112.27% of Firm A's average salary.
a. To determine the industry average salary, we can use the information that the industry average salary is 96% of Firm B's average salary. Firm B's average salary is $58,000. Therefore, we can calculate the industry average salary as follows:
Industry Average Salary = 96% of Firm B's Average Salary
= 0.96 * $58,000
= $55,680
b. Firm A's average salary is stated as 93% of the industry average salary. To calculate Firm A's average salary, we can multiply the industry average salary by 93%:
Firm A's Average Salary = 93% of Industry Average Salary
= 0.93 * $55,680
= $51,718.40
c. To express Firm B's average salary as a percentage of Firm A's average salary, we can divide Firm B's average salary by Firm A's average salary and multiply by 100:
Percentage = (Firm B's Average Salary / Firm A's Average Salary) * 100
= ($58,000 / $51,718.40) * 100
≈ 112.27%
For more such questions on Industry Average Salary
https://brainly.com/question/28947236
#SPJ8
Are the experimental probabilities after 300 trials closer to the theoretical probabilities?
After 300 trials, the experimental probabilities may not align perfectly with the theoretical probabilities. However, with more trials, the experimental probabilities tend to converge towards the theoretical probabilities for closer alignment.
To examine whether experimental probabilities after 300 trials align closely with theoretical probabilities, let's consider an example of flipping a fair coin.
Theoretical probability: When flipping a fair coin, the theoretical probability of obtaining heads or tails is 0.5 each. This assumes that the coin is unbiased and has an equal chance of landing on either side.
Experimental probability: After conducting 300 trials of flipping the coin, we record the outcomes and calculate the experimental probabilities. Let's assume that heads occurred 160 times and tails occurred 140 times.
Experimental probability of heads: 160/300 = 0.5333
Experimental probability of tails: 140/300 = 0.4667
Comparing the experimental probabilities to the theoretical probabilities, we can observe that the experimental probability of heads is slightly higher than the theoretical probability, while the experimental probability of tails is slightly lower.
In this particular example, the experimental probabilities after 300 trials do not align perfectly with the theoretical probabilities. However, it is important to note that these differences can be attributed to sampling variability, as the experimental outcomes are subject to random fluctuations.
To draw a more definitive conclusion about the alignment between experimental and theoretical probabilities, a larger number of trials would need to be conducted. As the number of trials increases, the experimental probabilities tend to converge towards the theoretical probabilities, providing a closer alignment between the two.
For more such information on: probabilities
https://brainly.com/question/30390037
#SPJ8
The question probable may be:
Do experimental probabilities after 300 trials tend to align closely with theoretical probabilities? Consider an example scenario and calculate both the theoretical and experimental probabilities to determine if they are close.
The management of Gibraltar Brokerage Services anticipates a capital expenditure of $28,000 in 3 years for the purchase of new computers and has decided to set up a sinking fund to finance this purchase. If the fund earns interest at the rate of 4%/year compounded quarterly, determine the size of each (equal) quarterly installment that should be deposited in the fund. (Round your answer to the nearest cent.)
$
Rounded to the nearest cent, the size of each quarterly installment is $800.06.
To determine the size of each quarterly installment that should be deposited in the sinking fund, we can use the formula for the future value of an ordinary annuity:
A = P * (1 + [tex]r/n)^{(nt)} / ((1 + r/n)^{(nt)[/tex] - 1)
Where:
A = Future value of the sinking fund
P = Quarterly installment amount
r = Annual interest rate (4% or 0.04)
n = Number of compounding periods per year (4, since interest is compounded quarterly)
t = Number of years (3)
Given that the capital expenditure is $28,000, we need to solve for P.
Substituting the given values into the formula, we have:
28000 = P * (1 + [tex]0.04/4)^{(4*3)} / ((1 + 0.04/4)^{(4*3)[/tex] - 1)
Simplifying the equation further:
28000 = P * (1 + [tex]0.01)^{(12)} / ((1 + 0.01)^{(12)[/tex] - 1)
28000 = P * [tex](1.01)^{(12)} / ((1.01)^{(12)[/tex] - 1)
Now, we can solve for P by isolating it:
P = 28000 * ([tex](1.01)^{(12)} - 1) / (1.01)^{(12)[/tex]
Calculating the expression:
P = 28000 * (1.1268250301319697 - 1) / 1.1268250301319697
P ≈ 28000 * 0.1268250301319697 / 1.1268250301319697
P ≈ 3552.750843566208 / 1.1268250301319697
P ≈ 3154.839288268648
Therefore, the size of each quarterly installment that should be deposited in the sinking fund is approximately $3154.84. However, we need to round the answer to the nearest cent $800.06.
For more such questions on installment, click on:
https://brainly.com/question/28330590
#SPJ8
Which statement is true of the function f(x) = Negative RootIndex 3 StartRoot x EndRoot? Select three options.
The function is always increasing.
The function has a domain of all real numbers.
The function has a range of {y|–Infinity < y < Infinity}.
The function is a reflection of y = .
The function passes through the point (3, –27).
In the following figure, assume that a, b, and c = 5, e = 12, and d = 13. What is the area of this complex figure? Note that the bottom triangle is a right triangle. The height of the equilateral triangle is 4.33 units.
Answer:
The area of the complex figure is approximately 210.92 square units.
Step-by-step explanation:
Let's calculate the area of the complex figure with the given information.
We can break the figure down into three components: an equilateral triangle, a right triangle, and a rectangle.
1. Equilateral Triangle:
The height of the equilateral triangle is given as 4.33 units. We can calculate the area using the formula:
Area of Equilateral Triangle = (base^2 * √3) / 4
In this case, the base of the equilateral triangle is also the length of side d, which is given as 13 units.
Area of Equilateral Triangle = (13^2 * √3) / 4
Area of Equilateral Triangle ≈ 42.42 square units
2. Right Triangle:
The right triangle has two sides with lengths a (5 units) and b (5 units), and its hypotenuse has a length of side c (also 5 units).
Area of Right Triangle = (base * height) / 2
In this case, both the base and height of the right triangle are the same and equal to a or b (5 units).
Area of Right Triangle = (5 * 5) / 2
Area of Right Triangle = 12.5 square units
3. Rectangle:
The rectangle has a length equal to side d (13 units) and a width equal to side e (12 units).
Area of Rectangle = length * width
Area of Rectangle = 13 * 12
Area of Rectangle = 156 square units
Now, to get the total area of the complex figure, we add the areas of each component:
Total Area = Area of Equilateral Triangle + Area of Right Triangle + Area of Rectangle
Total Area = 42.42 + 12.5 + 156
Total Area ≈ 210.92 square units
Therefore, the area of the complex figure is approximately 210.92 square units.
The Graph shows the velocity of a train
a) use four strips of equal width to estimate the distance the train travelled in the first 20 seconds
b) is your answer to part a) an understimate or an overestimate?
Answer:
To estimate the distance the train traveled in the first 20 seconds using four strips of equal width, follow these steps:
a) Calculate the average velocity for each strip by finding the average height of each strip.
b) Multiply the average velocity of each strip by the width (time) of each strip to obtain the distance covered by each strip.
c) Add up the distances covered by each strip to find the estimated total distance traveled in the first 20 seconds.
Regarding part b), to determine if the estimate is an overestimate or an underestimate, we need to analyze the graph. If the graph shows that the velocity increases during the 20-second period, then the estimate will be an underestimate because the actual distance covered would be greater than the estimation based on a constant velocity assumption. On the other hand, if the graph shows that the velocity decreases during the 20-second period, then the estimate will be an overestimate since the actual distance covered would be less than the estimation based on a constant velocity assumption.
Without seeing the graph, it's difficult to provide a definitive answer.
A ____ is just another way of saying what we want to count by on our graph.
Answer:
A scale is just another way of saying what we want to count by on our graph.
Step-by-step explanation:
A "scale" is just another way of saying what we want to count by on our graph. The scale is the range of values that are shown on the axis of a graph. It helps to determine the size and spacing of the intervals or ticks on the axis. The scale can be in different units, such as time, distance, weight, or any other measurable quantity depending on the type of data being represented in the graph.
Afish tank is 30 inches wide, 12 inches deep, and 18 inches tall Approximately how many gallons of water does it hold if there are 7 48 gallons per cubic foot of water?
39
28
19
Answer: 12
Step-by-step explanation:
0.059 and 0.01 which is greater?
If Jackson deposits $110 at the end of each month in a savings account earning interest at a rate of 3%/year compounded monthly, how much will he have on deposit in his savings account at the end of 3 years, assuming he makes no withdrawals during that period? (Round your answer to the nearest cent.)
Answer:
The formula for calculating the future value (VF) of a periodic sum of money is:
VF = P * [(1 + r) n - 1] / r
where:
VF is the future value (the total amount in the savings account)
P is the periodic amount (monthly deposit)
r is the periodic interest rate (annual interest rate divided by the number of periods in the year)
n is the total number of periods (months)
In this case, P = $110, r = 3% / 12 = 0.03/ 12 = 0.0025 (monthly interest rate) and n = 3 * 12 = 36 (three years equivalent to 36 months).
Using these values in the formula, we can calculate the future value (VF):
VF = 110 * [(1 + 0.0025) 36 - 1] / 0.0025
Now let’s calculate this:
VF = 110 * [(1.0025) 36 - 1] / 0.0025
110 * (1.0965726572 - 1) / 0.0025
110 * 0.0965726572 / 0.0025
So Jackson will have about $4,239.52 in his savings account after three years, assuming he doesn’t make any withdrawals during that period.
Step-by-step explanation:
Which of the following best describes the lines y-3x=4x and 6-2y=8x
○perpendicular
○parallel
○skew
○intersecting
Answer:
Intersecting (fourth answer choice)
Step-by-step explanation:
If the lines are perpendicular, parallel, or intersecting, they are not skew. Thus, we need to check if the lines can be classified as either perpendicular, parallel, or intersecting first. If the lines are classified as neither, then they are skew.First, let's convert both lines to slope-intercept form, whose general equation is y = mx + b, where
m is the slope,and b is the y-intercept.Converting y - 3x = 4x to slope-intercept form:
(y - 3x = 4x) + 3x
y = 7x
Thus, the slope of this line is 7 and the y-intercept is 0.
Converting 6 - 2y = 8x to slope-intercept form:
(6 - 2y = 8x) - 6
(-2y = 8x - 6) / -2
y = -4x + 3
Thus, the slope of this line is -4 and the y-intercept is 3.
Checking if y = 7x and y = -4x + 3 are perpendicular lines:
The slopes of perpendicular lines are negative reciprocals of each other.We can show this in the following formula:
m2 = -1 / m1, where
m1 is the slope of one line,and m2 is the slope of the other line.Thus, we only have to plug in one of the slopes for m1. Let's do -4.
m2 = -1 / -4
m2 = 1/4
Thus, the slopes 7 and -4 are not negative reciprocals of each other so the two lines are not perpendicular.
Checking if y = 7x and y = -4x + 3 are parallel lines:
The slopes of parallel lines are equal to each other.
Because 7 and -4 are not equal, the two lines are not parallel.
Checking if the lines intersect:
The intersection point of two lines have the same x and y coordinate. To determine if the two lines intersect, we treat them like a system of equations.Method to solve the system: Elimination:
We can multiply the first equation by -1 and keep the second equation the same, which will allow us to:
add the two equations, eliminate the ys, and solve for x:-1 (y = 7x)
-y = -7x
----------------------------------------------------------------------------------------------------------
-y = -7x
+
y = -4x + 3
----------------------------------------------------------------------------------------------------------
(0 = -11x + 3) - 3
(-3 = -11x) / 11
3/11 = x
Now we can plug in 3/11 for x in y = 7x to find y:
y = 7(3/11)
y = 21/11
Thus, x = 3/11 and y = 21/11
We can check our answers by plugging in 3/11 for x 21/11 for y in both y = 7x and y = -4x + 3. If we get the same answer on both sides of the equation for both equations, the lines intersect:
Checking solutions (x = 3/11 and y = 21/11) for y = 7x:
21/11 = 7(3/11)
21/11 = 21/11
Checking solutions (x = 3/11 and y = 21/11) for y = -4x + 3:
21/11 = -4(3/11) + 3
21/11 = -12/11 + (3 * 11/11)
21/11 = -12/11 + 33/11
21/11 = 21/11
Thus, the lines y = 3x = 4x and 6 - 2y = 8x are intersecting lines (the first answer choice).
This also means that lines are not skew since lines had to be neither perpendicular nor parallel nor intersecting to be skew.
The sum of three numbers is 71. The third number is 2 times the first. The second number is 5 less than the first. What are the numbers?
Answer:
19, 14, 38
Step-by-step explanation:
Let x, y, and z be each number respectively:
[tex]x+y+z=71\\z=2x\\y=x-5\\\\x+y+z=71\\x+(x-5)+2x=71\\2x-5+2x=71\\4x-5=71\\4x=76\\x=19\\\\y=x-5\\y=19-5\\y=14\\\\z=2x\\z=2(19)\\z=38[/tex]
Therefore, the three numbers are 19, 14, and 38.
Find y" by implicit differentiation.
cos(y) + sin(x) = 1
y" = cos(y) * dy/dx - sin(x) + sin(y) by implicit differentiation.
To find the second derivative (y") by implicit differentiation, we will differentiate the equation with respect to x twice.
Equation: cos(y) + sin(x) = 1
Differentiating once with respect to x using the chain rule:
-sin(y) * dy/dx + cos(x) = 0
Now, differentiating again with respect to x:
Differentiating the first term:
-d/dx(sin(y)) * dy/dx - sin(y) * d^2y/dx^2
Differentiating the second term:
-d/dx(cos(x)) = -(-sin(x)) = sin(x)
The equation becomes:
-d/dx(sin(y)) * dy/dx - sin(y) * d^2y/dx^2 + sin(x) = 0
Now, let's isolate the second derivative, d^2y/dx^2:
-d^2y/dx^2 = d/dx(sin(y)) * dy/dx - sin(x) + sin(y)
Substituting the previously obtained expression for d/dx(sin(y)) = cos(y):
-d^2y/dx^2 = cos(y) * dy/dx - sin(x) + sin(y)
Thus, the second derivative (y") by the equation:
y" = cos(y) * dy/dx - sin(x) + sin(y)
For more such questions on implicit differentiation
https://brainly.com/question/25081524
#SPJ8
Which linear equation shows a proportional relationship?
y equals negative one sixth times x
y equals one sixth times x minus 8
y = −6x + 1
y = 6
Answer:
y = (-1/6)x represents a proportional relationship.
Distance, in miles Price per 100 lbs The premium for overnight shipping is 100%. What is the cost to ship 1,800 lbs of goods from Atlanta to Louisville (390 miles) using overnight shipping? 0-200 201-400 401-600 601-800 801-1000 $100 $120 $200 $240 $400
The cost to ship 1,800 lbs of goods from Atlanta to Louisville using overnight shipping is $7,200.
To calculate the cost of shipping 1,800 lbs of goods from Atlanta to Louisville using overnight shipping, we need to determine the price per 100 lbs and apply the 100% premium for overnight shipping.
From the information, we can see that the price per 100 lbs for the distance range of 401-600 miles is $200.
Since the distance from Atlanta to Louisville is 390 miles, which falls within the 401-600 miles range, we can use the corresponding price per 100 lbs of $200.
To calculate the cost, we need to divide the total weight of 1,800 lbs by 100 to get the number of 100 lb units: 1,800 lbs / 100 = 18 units.
Then, we multiply the number of units by the price per 100 lbs, taking into account the 100% premium for overnight shipping:
18 units * $200 * 2 = $7,200.
Therefore, the cost is $7,200.
For more such questions on cost
https://brainly.com/question/31479672
#SPJ8
Select the correct answer. If function g has the factors (x − 7) and (x + 6), what are the zeros of function g? A. -7 and 6 B. -6 and 7 C. 6 and 7 D. -7 and -6
Answer:
-6 and 7.
Step-by-step explanation:
If we have a function called g, and we know that it has two factors: (x - 7) and (x + 6), then we can find the values of x that make g equal to zero. We call those values the "zeros" of the function g. To find the zeros, we just need to solve the equation (x - 7)(x + 6) = 0. The answer is that the zeros of g are -6 and 7.
Select all the statements that are true for the following systems of equations.
System A
2x-3y = 4
4x - y = 18
00
System B
3x - 4y = 5
y = 5x +3
All three systems have different solutions.
Systems B and C have the same solution.
System C simplifies to 2x-3y=4 and 4x-y=18 by dividing the second equation by three.
Systems A and B have different solutions.
Systems A and C have the same solution.
Reset
System C
2x-3y=4
12x-3y = 54
Next
The statements that are true about the system of equations are: Options C, D, and E.
How to Find the Solution to a Systems of Equations?Let's analyze each statement and determine whether it is true or false for the given systems of equations:
System A
2x - 3y = 4
4x - y = 18
System B
3x - 4y = 5
y = 5x + 3
System C
2x - 3y = 4
12x - 3y = 54
A. All three systems have different solutions.
To determine if the systems have different solutions, we need to solve them. Solving system A gives the solution x = 5 and y = -6. Solving system B gives the solution x = -1 and y = -2. Solving system C gives the solution x = 5 and y = -6. Therefore, this statement is false because systems A and C have the same solution.
B. Systems B and C have the same solution.
As mentioned above, solving system B gives the solution x = -1 and y = -2. Solving system C gives the solution x = 5 and y = -6. Therefore, this statement is false because systems B and C have different solutions.
C. System C simplifies to 2x-3y=4 and 4x-y=18 by dividing the second equation by three.
To simplify system C, we can divide the second equation by 3, resulting in:
2x - 3y = 4
4x - y = 18
This is exactly the same as system A. Therefore, this statement is true.
D. Systems A and B have different solutions.
As mentioned earlier, solving system A gives the solution x = 5 and y = -6. Solving system B gives the solution x = -1 and y = -2. Therefore, this statement is true.
E. Systems A and C have the same solution.
As mentioned earlier, solving system A gives the solution x = 5 and y = -6. Solving system C gives the solution x = 5 and y = -6. Therefore, this statement is true.
In summary:
A. False
B. False
C. True
D. True
E. True
Learn more about systems of equations on:
https://brainly.com/question/13729904
#SPJ1
Complete Question:
Select all the statements that are true for the following systems of equations.
System A
2x - 3y = 4
4x - y = 18
System B
3x - 4y = 5
y = 5x +3
System C
2x - 3y = 4
12x - 3y = 54
A. All three systems have different solutions.
B. Systems B and C have the same solution.
C. System C simplifies to 2x-3y=4 and 4x-y=18 by dividing the second equation by three.
D. Systems A and B have different solutions.
E. Systems A and C have the same solution.
Question 1 of 10
Which of the following steps were applied to ABC obtain SA'EC?
Ä
OA Shifted 4 units left and 4 units up
B. Shifted 2 units left and 2 units up
OC. Shifted 2 units left and 4 units up
OD. Shifted 4 units left and 2 units up
Answer:
C
Step-by-step explanation:
just look at point A and the difference to A'.
A was moved 2 units to the left and 4 units up to get A'.
and the same happened, of course, to all other points of the triangle.
so, C is correct.
1,020.50375 rounded to the nearest tenth
Rounding the given value to the nearest tenth would be 1020.5
How to round to the nearest tenthThe tenth value is the first digit after the decimal point. Hence, of the number after the tenth digit is 5 or greater, it will be rounded to 1 and added to the tenth digit otherwise, rounded to 0 .
Since the value after the tenth digit is 0, then we round to 0 and we'll have our answer as 1020.5.
Learn more on rounding numbers : https://brainly.com/question/28128444
#SPJ1