Answer:
x = 200.674
Step-by-step explanation:
tan∅ = opposite/adjacent
Step 1: Find length of z
tan70° = 119/z
ztan70° = 119
z = 119/tan70°
z = 43.3125
Step 2: Find length z + x (denoted as y)
tan26° = 119/y
ytan26° = 119
y = 119/tan26°
y = 243.986
Step 3: Find x
y - z = x
243.986 - 43.3125 = x
x = 200.674
Two sides of a triangle are 24 inches in length, what is the length of the third side
What is the value of the mean from the following set of data: 12,10, 11, 8, 6, 5, 3, 7, 9. Round to the nearest hundredth.
Answer:
7.88 or 7.9
Step-by-step explanation:
To find the mean, we need to do:
=> (12 + 10 + 11 + 8 + 6 + 5 + 3 + 7 + 9) / 9
=> 71/9
=> 7.88 or 7.9
I divided the sum of all numbers by 9 because we added 9 numbers.
An article contained the following observations on degree of polymerization for paper specimens for which viscosity times concentration fell in a certain middle range:
418 421 421 422 425 428 431 435 437
438 445 447 448 453 458 462 465
(c) Calculate a two-sided 95% confidence interval for true average degree of polymerization. (Round your answers to two decimal places.) Note that it is plausible that the given sample observations were selected from a normal distribution and there are no outliers.
(___ , ___)
Does the interval suggest that 441 is a plausible value for true average degree of polymerization?
Yes or No
Does the interval suggest that 451 is a plausible value?
Yes or No
Answer:
Step-by-step explanation:
Form a set of values we get
n = 17
And with the help of a calculator
μ₀ = 438,47
σ = 14,79
Normal Distribution is : N ( 438,47 ; 14,79 )
c)
CI = 95 % means α = 5 % α/2 = 2,5 % α/2 = 0,025
and as n < 30 we should use t-student distribution with n -1 degree of freedom df = 16. t score for 0,025 and 16 s from t-table 2,120
By definition:
CI = [ μ₀ ± t α/2 ; n-1 * σ/√n ]
CI = [ μ₀ ± 2,120* 14,79/√17 ]
CI = [ μ₀ ± 7,60 ]
CI = [ 438,47 ± 7,60 ]
CI = [ 430,87 ; 446,07 ]
95% confidence interval for true average degree of polymerization is [430.87 ; 446.07] and this interval suggest that 441 is a plausible value for true average degree of polymerization and also this interval does not suggest that 451 is a plausible value.
Given :
Sample = [ 418, 421, 421, 422, 425, 428, 431, 435, 437, 438, 445, 447, 448, 453, 458, 462, 465 ]95% confidence interval.The total number of values given is, n = 17
Mean, [tex]\mu_0=438.47[/tex]
Standard Deviation, [tex]\sigma = 14.79[/tex]
The normal distribution is given by: N (438.47 ; 14.79)
If Cl is 95% then [tex]\alpha[/tex] is 5% and [tex]\alpha /2[/tex] is 2.5%
[tex]\alpha /2 = 0.025[/tex]
Now, use t-statistics distribution with (n-1) degree of freedom df = 16
So, the t score for 0.025 and 16 s from t-table 2.120.
[tex]\rm Cl = [\mu_0 \pm t_{\alpha /2};(n-1)\times \dfrac{\sigma}{\sqrt{n} }][/tex]
[tex]\rm Cl = [\mu_0 \pm 2.120\times \dfrac{14.79}{\sqrt{17} }][/tex]
[tex]\rm Cl = [\mu_0 \pm 7.60][/tex]
Cl = [430.87 ; 446.07]
Yes, the interval suggests that 441 is a plausible value for true average degree of polymerization.
No, the interval does not suggest that 451 is a plausible value.
For more information, refer to the link given below;
https://brainly.com/question/2561151
PLS HELP:Find the side length, C.
Round to the nearest tenth.
Answer:
[tex]\huge\boxed{c = 14.9}[/tex]
Step-by-step explanation:
Using Cosine Rule
[tex]c^2 = a^2 + b^2 -2abCosC[/tex]
Where a = 11 , b = 7 and C = 110
[tex]c^2 = (11)^2+(7)^2-2(11)(7)Cos 110[/tex]
[tex]c^2 = 121+49-154 (-0.34)\\c^2 = 170+52.7\\c^2 = 222.7[/tex]
Taking sqrt on both sides
c = 14.9
The hourly wage increase each employee receives each year depends on their number of years of service. Every three years of service means an increase of $0.50 per hour. So, employees that have been with the company for less than three years can expect to receive an increase of $0.50 per hour. Employees that have been with the company for at least three years, but less than six years can expect an increase of $1.00. Employees that have been with the company for at six years, but less than nine years, receive an increase of $1.50 per hour. And, employees of at least nine years, but less than twelve years receive an increase of $2.00. Write a function to represent this scenario.
Which graph represents this wage increase for x < 12?
Answer:
bhlhgewafhjffdgnhgreesdbjitbbbbhbfghjkkbiiuuhhhPLEASE ANSWER ASAP!!
How many cubic centimeters (
[tex] {cm}^{3} [/tex]
) are there in a 5 gallon jug of water?
Must show your work!!!
any unrelated answer will be reported
Answer:
[tex]\boxed{\sf A}[/tex]
Step-by-step explanation:
[tex]\sf 1 \ gallon = 3785.41 \ cm^3[/tex]
[tex]\sf 5 \ gallon = \ ? \ cm^3[/tex]
[tex]\sf Multiply \ the \ gallon \ value \ by \ 3785.41.[/tex]
[tex]5 \times 3785.41 = 18927.1[/tex]
[tex]\sf Approximate \ the \ value.[/tex]
[tex]18927.1 \approx 19000[/tex]
Mixture Problem A solution contains 15 milliliters of HCI
and 42 milliliters of water. If another solution is to have
the same concentration of HCl in water but is to contain
140 milliliters of water, how much HCI must it contain?
Answer:
Step-by-step explanation:
This is a straight proportion problem.
15/42 = x/140 Cross Multiply
15*140 = 42 * x
2100 = 42x Divide by 42
2100/42 = x
x = 50 ml of HCl will be needed.
Michelle is 7 years older than her sister Joan, and Joan is 3 years younger than their brother Ryan. If the sum of their ages is 64, how old is Joan?
16
22
18
19
Answer:
(C) 18
Step-by-step explanation:
We can create a systems of equations. Assuming [tex]m[/tex] is Michelle's age, [tex]j[/tex] is Joan's age, and [tex]r[/tex] is Ryan's age, the equations are:
[tex]m = j + 7[/tex]
[tex]j = r-3[/tex]
[tex]m+j+r = 64[/tex]
We can use substitution, since we know the "values" of m and j.
[tex](j+7)+(r-3)+r = 64\\(j+7)+(2r-3)=64\\2r + j + 4 = 64\\2r + j = 60\\\\[/tex]
[tex]r = 21, j = 18[/tex]
So we know that Joan is 18 years old.
Hope this helped!
Which is greater than 4?
(a) 5,
(b) -5,
(c) -1/2,
(d) -25.
(math and social studies) The two lines are messing me up and I'm not sure
Answer:
2009
Step-by-step explanation:
A deficit would be the least amount coming in (Revenues). and the most going out (Expenditures). So you look for the biggest gap. It appears the gap is largest in 2009.
If a right circular cone has radius 4 cm and slant height 5cm then what is its volume?
Answer:
V≈50.27cm³
Step-by-step explanation:
Using the formulas
V=πr2h
3
l=r2+h2
Solving forV
V=1
3πr2l2﹣r2=1
3·π·42·52﹣42≈50.26548cm³
2sin^2(2x) + 1 = 3sin(2x) Solve for x with exact answers. The domain is 0 ≤ x ≤ π
Answer:
x = π/12 and x = π/4.
Step-by-step explanation:
2sin^2(2x) + 1 = 3sin(2x)
2sin^2(2x) - 3sin(2x) + 1 = 0
(2sin(2x) - 1)(sin(2x) - 1) = 0
2sin(2x) - 1 = 0
2sin(2x) = 1
sin(2x) = 1/2
When there is a variable n = π/6, sin(π/6) = 1/2 [refer to the unit circle].
2x = π/6
x = π/12
sin(2x) - 1 = 0
sin(2x) = 1
When there is a variable n = π/2, sin(π/2) = 1 [refer to the unit circle].
2x = π/2
x = π/4
Hope this helps!
find the measure of c
Answer:
A. 149
Step-by-step explanation:
When a quadrilateral is inscribed in a circle, the sum of the opposite angles in the quadrilateral equal (180) degrees. Applying this theorem here, one can state the following:
c + 31 = 180
Inverse operations,
c + 31 = 180
c = 149
Thus, option (A) is the correct angles: ( c = 149°)
Find the missing term in the
geometric sequence.
13,[ ? ],208
Answer:
110.5
Step-by-step explanation:
208=13+(3-1)d
208=13+2d
-13. -13
195=2d
÷2. ÷2
97.5=d. (d means difference)
13(first term)+97.5=110.5
Answer: 676
Step-by-step explanation: r/13=208/r
r²=2704
r=52
13x52=676
[tex] \frac{2}{4} + 5 \times 36 + 2 \frac{6}{3 } = [/tex]
what is answer
Step-by-step explanation:
[tex] \frac{2}{4} + 5 \times 36 + 2 \frac{6}{3} [/tex]
[tex] = \frac{1}{2} + 180 + 2 \times \frac{2}{1} [/tex]
[tex] = \frac{1}{2} + 180 + 4[/tex]
[tex] = \frac{1 + 360 + 8}{2} [/tex]
[tex] = \frac{369}{2} [/tex]
[tex] = 184 \frac{1}{2} \: or \: 184.5(ans)[/tex]
normal population has a mean of 63 and a standard deviation of 13. You select a random sample of 25. Compute the probability that the sample mean is: (Round your z values to 2 decimal places and final answers to 4 decimal places): Greater than 65.
Answer:
0.2207
Step-by-step explanation:
Here, we want to find the probability that the sample mean is greater than 25.
What we use here is the z-scores statistic
Mathematically;
z-score = (x-mean)/SD/√n
From the question;
x = 65, mean = 63, SD = 13 and n = 25
Plugging these values in the z-score equation, we have
Z-score = (65-63)/13/√25 = 2/13/5 = 0.77
So the probability we want to calculate is ;
P(z > 0.77)
This can be obtained from the standard normal distribution table
Thus;
P(z > 0.77) = 0.22065 which is 0.2207 to 4 d.p
Which of the following best describes
Answer:
Central Angle
Step-by-step explanation:
Obtuse Angle is over 90 but under 180.
Central angle is like a acute angle.
The owner of a deli gathered data about the number of flavored bagels and plain bagels sold during the first hour of business for several days. He organized the data in a scatter plot, with x representing the number of flavored bagels and y representing the number of plain bagels sold. Then he used a graphing tool to find the equation of the line of best fit: y = 1.731x + 6.697. Based on the line of best fit, approximately how many flavored bagels can the deli expect to sell during an hour when 50 plain bagels are sold?
Answer:
Approximately 25 flavored bagels.
Step-by-step explanation:
The scatter plot is a graph on cartesian plane where;
y-axis represents the number of plain bagels sold.
x-axis representing the number of flavored bagels sold.
The equation of the straight line on the graph is;
y = 1.731x + 6.697
The graph formed is as attached below.
The slope of the graph means that for every 1 flavored bagel sold, 1.731 plain bagels are sold within one hour.
When y = 50 ;
50 = 1.731x + 6.697
x = [tex]\frac{50 - 6.697}{1.731}[/tex] = 25.01617562 ≈ 25 flavored bagels.
Answer:
25
Step-by-step explanation:
Combine like terms to simplify the expression: 2/5k - 3/5 +1/10k
━━━━━━━☆☆━━━━━━━
▹ Answer
1/2k - 3/5
▹ Step-by-Step Explanation
2/5k - 3/5 + 1/10k
Collect like terms:
2/5k + 1/10k = 1/2
Final Answer:
1/2k - 3/5
Hope this helps!
CloutAnswers ❁
━━━━━━━☆☆━━━━━━━
Answer:
1/2k - 3/5
Step-by-step explanation:
Hey there!
Well the only fraction needed to combine are,
2/5 and 1/10.
To add them we need to make 2/5 have a denominator of 10.
To do that we multiply 5 by 2.
5*2 = 10
What happens to the denominator happens to the denominator.
2*2 = 4
Fraction - 4/10
4/10 + 1/10 = 5/10
5/10
simplified
1/2
1/2k - 3/5
Hope this helps :)
A political candidate has asked his/her assistant to conduct a poll to determine the percentage of people in the community that supports him/her. If the candidate wants a 10% margin of error at a 95% confidence level, what size of sample is needed
Answer:
The desired sample size is 97.
Step-by-step explanation:
Assume that 50% people in the community that supports the political candidate.
It is provided that the candidate wants a 10% margin of error (MOE) at a 95% confidence level.
The confidence interval for the population proportion is:
[tex]CI=\hat p\pm z_{\alpha/2}\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
Then the margin of error is:
[tex]MOE= z_{\alpha/2}\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
Compute the critical value of z as follows:
[tex]z_{\alpha/2}=z_{0.05/2}=z_{0.025}=1.96[/tex]
*Use a z-table.
Compute the sample size as follows:
[tex]MOE= z_{\alpha/2}\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
[tex]n=[\frac{z_{\alpha/2}\times \sqrt{\hat p(1-\hat p)} }{MOE}]^{2}[/tex]
[tex]=[\frac{1.96\times \sqrt{0.50(1-0.50)} }{0.10}^{2}\\\\=[9.8]^{2}\\\\=96.04\\\\\approx 97[/tex]
Thus, the desired sample size is 97.
Complete the table for the given rule.
Rule: y is 0.75 greater than x
x y
0
3
9
The complete table is
x y
0 0.75
3 3.75
9 9.75
What is equation?An equation is a mathematical statement that is made up of two expressions connected by an equal sign.
What is substitution?Substitution means putting numbers in place of letters to calculate the value of an expression or equation.
According to the given question.
We have values of x.
Also, one rule that y is 0.75 greater than x.
So, we have a equation for finding the value of y i.e.
[tex]y = x + 0.75..(i)[/tex]
For finding the value of y
At x = 0, substitute x = 0 in equation (i)
[tex]y = 0 + 0.75\\\implies y = 0.75[/tex]
At x = 3, substitute x = 3 in equation (i)
[tex]y = 3+0.75\\\implies y = 3.75[/tex]
At x = 9, substitute x = 9 in equation (i)
[tex]y = 9+0.75\\\implies y = 9.75[/tex]
Hence, the complete table is
x y
0 0.75
3 3.75
9 9.75
Find out more information about equation and substitution here:
https://brainly.com/question/10852714
#SPJ2
Find the smallest positive integer that satisfies both of the following equations: = 3 (mod4) and = 5 (mod6)
Answer:
x=3mod4
Means that when x is divided by 4 it gives an unknown integer and a remainder of 3.
x/4 = Z + 3/4
Z= (x-3)/4
Where Z is the integer
x=5 mod6
x/6 = Y + 5/6
Y = (x-5)/6
Where Y is the integer
Z-Y must be an integer on equal to zero
(x-3)/4 - (x-5)/6
3(x-3)/12 - 2(x-5)/12
(3x-9-2x+10)/12
(x+1)/12
If it is equal to 0
x=-1. But x should be positive
If it is equal to 1
x=11
Hence the smallest possible number is 11
Derivatives concept:
Equation of the secant line and tangent to a curve.
Let the function [tex]f(x)=2x^{2}+1[/tex] and its graph be:
(In both graphs (activity A and B) all the corresponding development must be carried out to arrive at the requested equation)
9514 1404 393
Answer:
A. y = -2x +13
B. y = 8x -7
Step-by-step explanation:
A. We can read the y-intercept of the secant line from the graph. It is 13.
The slope can also be read from the graph, but we choose to use the slope formula:
m = (y2 -y1)/(x2 -x1)
m = (19 -9)/(-3 -2) = 10/-5 = -2
Then the slope-intercept formula for the line is ...
y = mx + b . . . . . . line of slope m and y-intercept b
y = -2x +13
__
B. The vertex of the given parabola is (0, 1). We notice that when x=1 (1 unit right of the vertex), y = 3 (2 units up from the vertex). This tells us the vertical scale factor of the parabola is 2. That means the vertex form equation is ...
y = a(x -h)^2 +k . . . . . . . . vertex (h, k), scale factor 'a'
y = 2(x-0)^2 +1 . . . . . . . use known values for (h, k)
y = 2x^2 +1
The derivative of this is ...
y' = 4x
So, at x=2, the given point A, the slope of the tangent line is ...
m = y' = 4(2) = 8
We have a point and the slope, so we can write the point-slope form of the equation for the tangent line:
y -9 = 8(x -2)
Rearranging to slope-intercept form, this is ...
y = 8x -7
__
Additional comment
You can also read the slope of the tangent line from the graph. The line also goes through the point (1, 1), so has a rise of 8 for a run of 1. The y-intercept can be found from ...
b = y -mx = 9 -8(2) = -7
This lets you write the equation of the tangent line directly from the graph.
That is, the parameters of both lines can be read from the graph, so there is very little "development" required.
how much would it cost to buy 100 shares in ODX group Inc and 300 shares
Complete Question
The complete question is shown on the first uploaded image
Answer:
The cost to buy 100 shares in ODX group Inc and 300 shares peer Comms Lts is
[tex]C = \$ 775[/tex]
Step-by-step explanation:
From the chat we that the cost of 100 ODX shares is [tex]\$175[/tex]
The cost of 100 peer Comms Lts is [tex]\$ 200[/tex]
Hence the cost 300 peer Comms Lts is [tex]k = 3 * 200 = \$ 600[/tex]
Now the cost of 100 shares in ODX group Inc and 300 shares of peer Comms Lts is mathematically evaluated as
[tex]C = 175 + 600[/tex]
[tex]C = \$ 775[/tex]
The cost to buy 100 shares in ODX group Inc and 300 shares in peer comm LTD is $775.
Given in question the graph here is missing.
We have to calculate the total cost of 100 shares in ODX group Inc and 300 shares in peer comms limited in year 5.
From the graph it is clear that, the x axis shows the no. of year and y axis shows the cost of 100 shares for each type.
From graph, the cost of 100 shares of ODX group in year 5 is $175.
And the cost of 100 shares of peer comm Ltd in year 5 is $ 200.
So the total cost of 300 shares of peer comm Ltd in 5 year is $([tex]200\times3[/tex]) or $600.
Now final cost of 100 shares in ODX group Inc and 300 share in peer comm Ltd is [tex]($600+$175)[/tex] dollars.
Hence the cost to buy 100 shares in ODX group Inc and 300 shares in peer comm LTD is $775.
For more details on graph follow the link:
https://brainly.com/question/14375099
Question 20
<
>
The height y (in feet) of a ball thrown by a child is
1
y = 22 + 4x + 5
12
where x is the horizontal distance in feet from the point at which the ball is thrown.
(a) How high is the ball when it leaves the child's hand?
feet
(b) What is the maximum height of the ball?
feet
(C) How far from the child does the ball strike the ground?
feet
Question Help: Message instructor
Submit Question
Answer:
y=4x+13.....................................
g A slot machine has three slots; each will show a cherry, a lemon, a star, or a bar when spun. The player wins if all three slots show the same three items. a. How many simple events are in the sample space
Answer:
64
Step-by-step explanation:
Let us consider E_abc to be the event that a, b and c appear on the first, second and third slot of the spin machine.
Now, we are told that each slot has 4 possibilities which are a cherry, a lemon, a star, or a bar when spun.
Thus, from mn rule in probability, the total number of simple events in the sample space is = 4³ = 64
-5 + 3 and also what is 1/4 of 24
What is the answer i am struggling
Answer:
-5+3=-2
1/4 of 24 = 6
Step-by-step explanation:
Assist Please
show work
Answer:
the profit is $8
Step-by-step explanation:
so Susan started with 0, lost 11, equals -11
earned 18, =7
lost 7, =0
earned 8, =$8 for the final answer
An aluminum bar 4 feet long weighs 24 pounds. What is the weight of a similar bar that is 3 feet 3 inches long? WILL MARK BL
Answer:
19.5 pounds
Step-by-step explanation:
1 foot = 12 inches
3 inches = 3/12 = 0.25 feet
3 feet 3 inches = 3.25 feet
then:
24 pounds is 4 feet
A pounds is 3.25 feet
A = 24*3.25/4
A = 19.5 pounds
Answer:
19.50 pounds
Step-by-step explanation:
1 foot = 12 inches
3 inches = 3/12 = 0.25 feet
3 feet 3 inches = 3.25 feet
then:
24 pounds is 4 feet
A pounds is 3.25 feet
A = 24*3.25/4
A = 19.50 pounds
Problem 1. (1 point) A steel ball weighing 128 pounds is suspended from a spring. This stretches the spring 128101 feet. The ball is started in motion from the equilibrium position with a downward velocity of 2 feet per second. The air resistance (in pounds) of the moving ball numerically equals 4 times its velocity (in feet per second) . Suppose that after t seconds the ball is y feet below its rest position. Find y in terms of t. (Note that this means that the positive direction for y is down.)
Answer:
seeed
Step-by-step] explanation:
ddd~!`