Answer:
See below
Explanation:
* Burning fire wood is given to be our first option. Now burning tends to be a property of wood, and it does effect the chemical compositions of it. Wood, in the presence of fire / oxygen, turns into ash and carbon dioxide.
* Decomposition is recognized as a chemical change, and heating copper carbonate is a perfect example of decomposition. When energy is added to this chemical process, the copper carbonate decomposes into copper oxide.
* Mixing sodium chloride solution and silver nitrate solution. When this reaction takes place, a white precipitate of AgCl is formed. And of course, this is a chemical reaction.
* When acids or bases come in contact with citric acid, the pH degree changes much. Due to this, carbon dioxide bubbles are formed.
* When eggs are fried they absorb the heat in the pan. Doing so the egg starts to curl a bit, resulting in the formation of new particles.
_______________________________________________________
I hope this gave you a start!
all compounds are neutral true or false
Answer:
Even all compounds are neutral.
Explanation:
Some of them exhibit polarity. Because of the difference in electron affinity of the constituent atoms, the shared electrons are pulled towards the atom with high affinity to electrons.
When an automobile engine starts, the metal parts immediately begin to absorb heat released during the combustion of gasoline. How much heat will be absorbed by a 165 kg iron engine block as the temperature rises from 15.7°C to 95.7°C? (The specific heat of iron is 0.489 J/g·°C.)
Answer:
H = 4,034,250 J
Explanation:
Mass, m = 165kg = 165,000g (Converting to grams)
Initial temperature = 15.7°C
Final temperature = 95.7°C
Temperature change, ΔT = 95.7 - 15.7 = 50°C
Specific heat capacity, c = 0.489 J/g·°C
Heat = ?
All the parameters are related with the equation below;
H = m * c * ΔT
H = 165000 * 0.489 * 50
H = 4,034,250 J
Do you think there is a limit to the size of Atoms scientist can make? prove with evidence.
Answer:
Yes, there is a limit to the size of atoms that scientists can make.
Explanation:
In the nucleus, atoms contain protons and neutrons. It is known that as the number of protons in the nucleus increases, the atom becomes unstable due to the repulsion of positively charged protons clumped together in the small space of the nucleus.
However, an attractive force exists between neutrons and protons which binds the nucleus together and minimizes repulsion between protons. Even neutrons have recently been found to slightly repel each other.
Several attempts made at synthesizing many very heavy elements lately have proved abortive because the elements only exist for a few fractions of a second owing to large repulsion between the particles in the nucleus.
This goes a long way to show that there is a limit to the number of protons and neutrons that can be assembled together to form a new nucleus. We cannot bring an unlimited number of nucleons together to form new atoms due to inter particle repulsive forces.
The partial Lewis structure that follows is for a hydrocarbon molecule. In the full Lewis structure, each carbon atom satisfies the octet rule, and there are no unshared electron pairs in the molecule. The carbon-carbon bonds are labeled 1, 2, and 3.
A) How many hydrogen atoms are in the molecule?
B) Rank the carbon-carbon bonds in order of increasing bond length.
C) Which carbon-carbon bond is the strongest one?
Answer:
A) How many hydrogen atoms are in the molecule?
In the presence of a strong base, the following reaction between (CH3)3CCl and OH- occurs: (CH3)3CCl + OH- → (CH3)3COH + Cl- Studies have suggested that the mechanism for the reaction takes place in 2 steps: Step 1) (CH3)3CCl → (CH3)3C+ + Cl- (slow) Step 2) (CH3)3C+ + OH- → (CH3)3COH (fast) What is the rate law expression for the overall reaction? Group of answer choices
Answer:
D. rate = k [(CH3)3CCl]
Explanation:
(CH3)3CCl + OH- → (CH3)3COH + Cl-
The mechanisms are;
Step 1)
(CH3)3CCl → (CH3)3C+ + Cl- (slow)
Step 2)
(CH3)3C+ + OH- → (CH3)3COH (fast)
In kinetics, the slowest step is the ratee determining step.
For a given reaction;
A → B + C, the rate law expression is given as;
rate = k [A]
In this problem, from step 1. The rate expression is;
rate = k [(CH3)3CCl]
Cl2 + F2 → ClF3, 5. How many moles of Cl2 are needed to react with 3.44 moles of F2? 6. How many grams of ClF3 form when 0.204 moles of F2 react with excess Cl2? 7. How many grams of ClF3 form from 130.0 grams of Cl2 when F2 is in excess? 8. How many grams of F2 are needed to react with 3.50 grams of Cl2?
Answer:
5) 1.147 moles Cl2
6) 12.57 grams ClF3
7) 339.10 grams ClF3
8) 5.63 grams F2
Explanation:
Step 1: Data given
Number of moles F2 = 3.44 moles
Molar mass F2 = 38.00 g/mol
Step 2: The balanced equation
Cl2 + 3F2 → 2ClF3
Step 3: Calculate moles F2
For 1 mol Cl2 we need 3 moles F2 to produce 2 moles ClF3
For 3.44 moles F2 we'll need 3.44/3 = 1.147 moles Cl2
Step 1: Data given
Number of moles F2 = 0.204 moles
Molar mass F2 = 38.00 g/mol
Molar mass ClF3 = 92.448 g/mol
Step 2: The balanced equation
Cl2 + 3F2 → 2ClF3
Step 3: Calculate moles ClF3
For 1 mol Cl2 we need 3 moles F2 to produce 2 moles ClF3
For 0.204 moles F2 we'll have 2/3 * 0.204 = 0.136 moles
Step 4: Calculate mass ClF3
Mass ClF3 = Moles ClF3 * molar mass ClF3
Mass ClF3 = 0.136 moles * 92.448 g/mol
Mass ClF3 = 12.57 grams ClF3
Step 1: Data given
Mass of Cl2 = 130.0 grams
Molar mass F2 = 38.00 g/mol
Molar mass ClF3 = 92.448 g/mol
Step 2: The balanced equation
Cl2 + 3F2 → 2ClF3
Step 3: Calculate moles Cl2
Moles Cl2 = mass Cl2 / molar mass Cl2
Moles Cl2 = 130.0 grams / 70.9 g/mol
Moles Cl2 = 1.834 moles
Step 4: Calculate moles
For 1 mol Cl2 we need 3 moles F2 to produce 2 moles ClF3
For 1.834 moles Cl2 e'll have 2*1.834 = 3.668 moles ClF3
Step 5: Calculate mass ClF3
Mass ClF3 = Moles ClF3 * molar mass ClF3
Mass ClF3 = 3.668 moles * 92.448 g/mol
Mass ClF3 = 339.10 grams ClF3
Step 1: Data given
Mass of Cl2 = 3.50 grams
Molar mass F2 = 38.00 g/mol
Molar mass ClF3 = 92.448 g/mol
Step 2: The balanced equation
Cl2 + 3F2 → 2ClF3
Step 3: Calculate moles Cl2
Moles Cl2 = Mass Cl2 / molar mass Cl2
Moles Cl2 = 3.50 grams / 70.9 g/mol
Moles Cl2 = 0.0494 moles
Step 4: Calculate moles F2
For 1 mol Cl2 we need 3 moles F2
For 0.0494 moles we need 3*0.0494 = 0.1482 moles
Step 5: Calculate mass F2
Mass F2 = moles F2 * molar mass F2
Mass F2 = 0.1482 moles * 38.00 g/mol
Mass F2 = 5.63 grams F2
Among three bases, X−, Y−, and Z−, the strongest one is Y−, and the weakest one is Z−. Rank their conjugate acids, HX, HY, and HZ, in order of decreasing strength. Rank the acids from strongest to weakest. To rank items as equivalent, overlap them.
Answer: HZ > HX > HY in order of decreasing strengths.
Explanation: Generally, the rule is that the stronger the acid, the weaker its conjugate base and vice versa; same rule applies for bases and their conjugate acids.
So the weakest base Z- would have the strongest conjugate acid. Consequently, the strongest base Y- would have the weakest conjugate acid.
I hope this was MORE helpful as this is the correct answer.
The ranking of the conjugate acids in order of decreasing strength (i.e from strongest to weakest) is; HZ < HX < HY
First we must know that the stronger a base is, the weaker is it's conjugate acid and the weaker a base is, the stronger is it's conjugate acid.
Therefore, the order of decreasing strength of the conjugate acid is; HZ < HX < HY
Read more:
https://brainly.com/question/23917439
need helpp asapp please
Answer:
B. None of these
Explanation:
Sulfur has less ionization energy than phosphorus because sulfur has a pair of electron in its 3p subshell that increases electron repulsion in sulfur and sulfur electrons can easily remove from its sub-level.
While, there are no electron pairs in 3p subshell of phosphorus, therefore it requires more energy to remove an electron from 3p subshell.
Hence, the reason is electron repulsion and the correct answer is B.
The reason for the dramatic decline in the number of measles cases from the 1960s to 2010 in the United States was because the vaccine
Answer:
It was because the vaccine generated actively acquired immunity, that is, inoculation of a portion of the measles virus so that the body forms the antibodies for a second contact and thus can destroy it without triggering the pathology.
Explanation:
Vaccines are methods of active acquired immunity since the antibody is not passively inoculated, it is manufactured by the body with a physiological process once part of the virus is inoculated.
The measles virus most of all affected the lives of infants or newborn children with severe rashes and high fevers that led to death.
When the following molecular equation is balanced using the smallest possible integer coefficients, the values of these coefficients are:
sulfur dioxide (g) + water (l) __________sulfurous acid (H2SO3) (g) + water (I)
Answer:
Sulfur dioxide + 2 ( water ) -----> sulfurous acid + water /
SO2 + 2 ( H2O ) -----> H2SO3 + H2O
Explanation:
This formula may not be right. Sulfur dioxide tends to react with water to produce sulfurous acid as per it's formula, but then again that chemical reaction need not be balanced. However, I will solve for either case here -
Sulfur dioxide + water -----> sulfurous acid,
Sulfur dioxide + water -----> sulfurous acid + water
_______________________________________________________
As I mentioned before, Sulfur dioxide + water -----> sulfurous acid is a chemical reaction that need not balancing as the number of each element present on the reactant and product side are the same. To help, let me rewrite this reaction -
SO2 + H2O -----> H2SO3,
Reactant | Product
Sulfur = 1, Sulfur = 1,
Oxygen = 3, Oxygen = 3,
Hydrogen = 2 Hydrogen = 2
And hence the equation is already balanced. Now let us consider the case we supposedly have at hand - Sulfur dioxide + water -----> sulfurous acid + water. Take a look at the attachment below;
A solid is dissolved in a liquid, and over time a solid forms again. How can
you confirm the type of change that took place?
A. Testing the new solid to show that its properties are the same as
the starting solid would confirm that a physical change took
place.
B. The solid dissolving in a liquid is confirmation that a chemical
change took place.
C. The solid forming from the liquid is confirmation that a physical
change took place.
D. Showing that the total mass of the solid and liquid changed would
confirm that a chemical change took place.
A certain mass of carbon reacts with 9.53 g of oxygen to form carbon monoxide. ________ grams of oxygen would react with that same mass of carbon to form carbon dioxide, according to the law of multiple proportions.
Answer: 9.53 *2= 19.06
Explanation:
The law of multiple proportions states that if two elements combines to form more than one compound the ratio of masses of the second element which combines to the fixed mass of the first element will always be the ratios of the small whole numbers.
in case of carbon monoxide, mass of carbon will be the same of mass of oxygen.
But in case of carbon dioxide, if carbon is 9.53 units then oxygen will be twice as that of carbon.
CO2, so 9.53*2= 19.06 grams of oxygen will combine with 9.53 grams of carbon to form carbon dioxide.
What is an ion?
A. An atom that has lost or gained 1 or more electrons
O B. An atom that has lost or gained 1 or more neutrons
O C. An atom that has lost or gained 1 or more protons
D. An atom that differs in mass from another atom of the same
element
Answer:
An ion is an atom that has lost or gained one or more electrons.
Explanation:
Ions are positively or negatively charged atoms of elements. This is because they can give, take, or share electrons with other elements to encourage the formation of chemical bonds.
Protons are what decide the chemical identity of the element. So, for example, if an atom has 11 protons, we know that will be a Sodium (Na) atom. A loss or gain of protons completely changes the chemical identity of the element and it will then become another element.
Electrons are what give an atom a neutral electrical charge (if that atom has the number of protons and neutrons normally described for the element - otherwise, a discrepancy or gain in neutrons is referred to as an isotope and declares that ions have nothing to do with the mass of an element).
With this information, you can realize that neutrons and protons have nothing to do with ions and you can confirm that ions are atoms that have lost or gained one or more electrons.
The amount of calcium in a 15.0-g sample was determined by converting the calcium to calcium oxalate, CaC2O4. The CaC2O4 weighed 40.3 g. What is the percent of calcium in the original sample
Answer:
128 gram of CaC2O4 contains 40 gram of Calcium
40.3 gram of CaC2O4 cotnains = 40*40.3/128 = 12.59 gram of Calcium
out of 15 gram 12.59 gram is Calcaim that means around 50% of orginal sample has Calcium
an auto of an element has 17 protons in its nucleus.a) write the electronic configuration of the atom.b)to what period and group does the element belong
Answer:
i hope it will help you
Explanation:
electronic configuration 1s²,2s,²2p^6,3s²3p^6,4s^1
as it has one electron in its valence shell so it is the member of group 1A(ALKALI METALS) and the number of shells is 4 so it is in period 4
Convert 150 K to degrees C.
Answer:
K = 150, C = - 123.15°
Explanation:
Kelvin = Celcius + 273.15 / 0 Kelvin = - 273.14 C
_____________________________________
Thus,
150 K = Celcius + 273.15,
150 - 273.15 = C,
C = -123.15 degrees
Solution, C = - 123.15°
Answer:
C=-123.15
Explanation:
This is easy
The lock-and-key model and the induced-fit model are two models of enzyme action explaining both the specificity and the catalytic activity of enzymes. Following are several statements concerning enzyme and substrate interaction. Indicate whether each statement is part of the lock-and-key model, the induced-fit model, or is common to both models.
a. Enzyme conformation changes when it binds the substrate so the active site fits the substrate.
b. Substrate binds to the enzyme at the active site, forming an enzyme-substrate complex.
c. Enzyme active site has a rigid structure complementary
d. Substrate binds to the enzyme through noncovalent interactions
Answer:
The lock-and-key model:
c. Enzyme active site has a rigid structure complementary
The induced-fit model:
a. Enzyme conformation changes when it binds the substrate so the active site fits the substrate.
Common to both The lock-and-key model and The induced-fit model:
b. Substrate binds to the enzyme at the active site, forming an enzyme-substrate complex.
d. Substrate binds to the enzyme through non-covalent interactions
Explanation:
Generally, the catalytic power of enzymes are due to transient covalent bonds formed between an enzyme's catalytic functional group and a substrate as well as non-covalent interactions between substrate and enzyme which lowers the activation energy of the reaction. This applies to both the lock-and-key model as well as induced-fit mode of enzyme catalysis.
The lock and key model of enzyme catalysis and specificity proposes that enzymes are structurally complementary to their substrates such that they fit like a lock and key. This complementary nature of the enzyme and its substrates ensures that only a substrate that is complementary to the enzyme's active site can bind to it for catalysis to proceed. this is known as the specificity of an enzyme to a particular substrate.
The induced-fit mode proposes that binding of substrate to the active site of an enzyme induces conformational changes in the enzyme which better positions various functional groups on the enzyme into the proper position to catalyse the reaction.
A weather balloon is inflated to a volume of 27.6 L at a pressure of 755 mmHg and a temperature of 29.9 ∘C. The balloon rises in the atmosphere to an altitude where the pressure is 385 mmHg and the temperature is -14.1 ∘C. Assuming the balloon can freely expand, calculate the volume of the balloon at this altitude.
Answer: The volume of the balloon at this altitude is 46.3 L
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law
The combined gas equation is,
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1[/tex] = initial pressure of gas = 755 mm Hg
[tex]P_2[/tex] = final pressure of gas (at STP) = 385 mm Hg
[tex]V_1[/tex] = initial volume of gas = 27.6 L
[tex]V_2[/tex] = final volume of gas = ?
[tex]T_1[/tex] = initial temperature of gas = [tex]29.9^0C=(29.9+273)K=302.9K[/tex]
[tex]T_2[/tex] = final temperature of gas = [tex]-14.1^0C=((-14.1)+273)K=258.9K[/tex]
Putting all the values we get:
[tex]\frac{755\times 27.6}{302.9}=\frac{385\times V_2}{258.9}[/tex]
[tex]V_2=46.3L[/tex]
Thus the volume of the balloon at this altitude is 46.3 L
When 1-iodo-1-methylcyclohexane is treated with NaOCH2CH3 as the base, the more highly substituted alkene product predominates. When KOC(CH3)3 is used as the base, the less highly substituted alkene predominates. Give the structures of the two products and offer an explanation.
Answer:
See explanation
Explanation:
In this case, we have 2 types of reactions. [tex]CH_3CH_2ONa[/tex] is a strong base but only has 2 carbons therefore we will have less steric hindrance in this base. So, the base can remove hydrogens that are bonded on carbons 1 or 6, therefore, we will have a more substituted alkene (1-methylcyclohex-1-ene).
For the [tex]KOC(CH_3)_3[/tex] we have more steric hindrance. So, we can remove only the hydrogens from carbon 7 and we will produce a less substituted alkene (methylenecyclohexane).
See figure 1
I hope it helps!
Benny Beaver wants to determine what dyesare present in his favorite sports drink. He analyzesa sample witha UV-visiblespectrophotometer and sees absorbance peaks at 415.2nm and 519.6nm. What colordyesare present in his drink
Answer:
At 415.2nm and 519.6nm, the dyes observed by the instrument are violet and green respectively.
Explanation:
In the electromagentic spectrum, visible wavelengths cover a range from approximately 400 to 800 nm. The colours of the spectrum range from red to violet (Red, Orange, Yellow, Green, Blue, Indigo and violet: a.k.a ROGBIV), in order of decreasing wavelength.
I hope this explanation would suffice.
A certain lightbulb containing argon at 1.20 atm and 18°C is
heated to 85°C at constant volume. Calculate its final pressure
(in atm).
Answer:
certain lightbulb containing argon at 1.20 atm and 18 0 C is heated to 85 0 C at constant volume. What is the final pressure of argon in the lightbulb (in atm)? P 1 T 1 P 2 T 2 ... Ideal Gas Equation 5.4 Charles' law: V T (at constant n and P ) ... Consider a case in which two gases, A and B , are in a container of volume V.
Explanation:
For each of the following pairs of elements
(1C and N2) (1Ar and Br2)
pick the atom with
a. more favorable (exothermic) electron affinity.
b. higher ionization energy.
c. larger size.
How do you even go about do this?
Explanation:
Electron affinity is defined as the energy released by the addition of an electron to any gaseous atom. Electron affinity of an atom depends on the electronic configuration.
a).The carbon has vacant p-orbital and nitrogen has half-filled configuration which is more stable. Therefore, one electron can be easily added to carbon whereas nitrogen having more stable configuration releases more amount of energy on adding one electron. Therefore, nitrogen has more electron affinity than carbon.
The bromine has vacant p-orbital whereas argon has filled orbital which is most stable. Therefore, one electron can be easily added to bromine whereas argon having more stable configuration releases more amount of energy on adding one electron.Therefore, argon has more electron affinity than bromine.
Answer:
1. a. C; b. N; c. C; 2. a. Br; b. Ar; c. Br
Explanation:
Use your Periodic Table and follow the trends in atomic properties (Fig. 1).
Electron affinity increases from left to right and from bottom to top.
The elements with the most exothermic EA are at the upper right corner
Exceptions are the noble gases (group 18) and the pnictogens (group 18).
The elements of Group 18 have a complete octet and have no tendency to accept electrons.
The elements of Group 15 have half-filled p subshells. They are more stable than the elements immediately preceding them, so they are less exothermic when adding an electron.
Ionization energy increases from left to right and from bottom to top.
The atoms with the highest IE are at the upper right corner.
Atomic size increases from right to left and from bottom to top.
The largest atoms are on the lower-left corner.
1. C vs N
(a) EA: C. N is a Group 15 element
(b) IE: N. N is further to the right.
(c) Size: C. C is further to the left.
2. Ar vs Br
(a) EA: Br. Ar is a noble gas.
(b) IE: Ar. Ar is further to the right.
(c) Size: Br. Br is nearer to the bottom.
What is the coefficient for oxygen in the balanced equation? C 5H 12 + ? O2 → ? CO2 + ? H2O. 2 4 5 6 8
Answer:
8
Explanation:
When you balance the entire equation, you should get:
C5H12 + 8O2 ---> 5CO2 + 6H2O
1. Determine whether the following hydroxide ion concentrations ([OH−]) correspond to acidic, basic, or neutral solutions by estimating their corresponding hydronium ion concentrations ([H3O+] using the ion product constant of water (Kw).
Kw = [H3O+][OH−] = [1×10−7 M][1×10−7 M] = 1×10−14 M
Hydronium ion concentration [H3O+] Solution condition
Greater than 1×10−7 M Acidic
Equal to 1×10−7 M Neutral
Less than 1×10−7 M Basic
Drag the appropriate items to their respective bins.
1. [OH−] = 6×10−12 M
2. [OH−] = 9×10−9 M
3. [OH−] = 8×10−10 M
4. [OH−] = 7×10−13 M
5. [OH−] = 2×10−2 M
6. [OH−] = 9×10−4 M
7. [OH−] = 5×10−5 M
8. [OH−] = 1×10−7 M
A. Acidic
B. Neutral
C. Basic
2. A solution has [H3O+] = 5.2×10−5M . Use the ion product constant of water
Kw=[H3O+][OH−]
to find the [OH−] of the solution.
3. A solution has [OH−] = 2.7×10−2M . Use the ion product constant of water
Kw=[H3O+][OH−]
to find the [H3O+] of the solution.
Answer:
Question 1.
1. [OH−] = 6×10−12 M is less than 1 * 10⁻⁷, therefore is acidic.
2. [OH−] = 9×10−9 M is less than 1 * 10⁻⁷, therefore is acidic.
3. [OH−] = 8×10−10 M is less than 1 * 10⁻⁷, therefore is acidic.
4. [OH−] = 7×10−13 M is less than 1 * 10⁻⁷, therefore is acidic.
5. [OH−] = 2×10−2 M is greater than 1 * 10⁻⁷, therefore is basic.
6. [OH−] = 9×10−4 M is greater than 1 * 10⁻⁷, therefore is basic.
7. [OH−] = 5×10−5 M is greater than 1 * 10⁻⁷, therefore is basic.
8. [OH−] = 1×10−7 M is equal to 1 * 10⁻⁷, therefore is neutral
Question 2:
[OH⁻] = 1.92 * 10⁻⁸ M
Question 3:
[H₃O⁺] = 3.70 * 10⁻¹¹ M
Explanation:
The ion product constant of water Kw = [H₃O⁺][OH⁻] = 1 * 10⁻¹⁴ M² is a constant which gives the product of the concentrations of hydronium and hydroxide ions of dissociated pure water. The concentrations of the two ions are both equal to 1 * 10⁻⁷ in pure water.
A solution that has [OH⁻] greater than 1 * 10⁻⁷ is basic while one with [OH⁻] less than 1 * 10⁻⁷ is acidic.
1. [OH−] = 6×10−12 M is less than 1 * 10⁻⁷, therefore is acidic.
2. [OH−] = 9×10−9 M is less than 1 * 10⁻⁷, therefore is acidic.
3. [OH−] = 8×10−10 M is less than 1 * 10⁻⁷, therefore is acidic.
4. [OH−] = 7×10−13 M is less than 1 * 10⁻⁷, therefore is acidic.
5. [OH−] = 2×10−2 M is greater than 1 * 10⁻⁷, therefore is basic.
6. [OH−] = 9×10−4 M is greater than 1 * 10⁻⁷, therefore is basic.
7. [OH−] = 5×10−5 M is greater than 1 * 10⁻⁷, therefore is basic.
8. [OH−] = 1×10−7 M is equal to 1 * 10⁻⁷, therefore is neutral
Question 2:
Kw = [H₃O⁺][OH⁻] = 1 * 10⁻¹⁴ M²
[H₃O⁺][OH⁻] = 1 * 10⁻¹⁴ M²
[OH⁻] = 1 * 10⁻¹⁴ M²/ [H₃O⁺]
[OH⁻] = 1 * 10⁻¹⁴ M²/5.2*10⁻⁵ M
[OH⁻] = 1.92 * 10⁻⁸ M
Question 3:
Kw = [H₃O⁺][OH⁻] = 1 * 10⁻¹⁴ M²
[H₃O⁺][OH⁻] = 1 * 10⁻¹⁴
[H₃O⁺] = 1 * 10⁻¹⁴ M²/ [OH⁻]
[H₃O⁺] = 1 * 10⁻¹⁴ M²/ 2.7 * 10⁻² M
[H₃O⁺] = 3.70 * 10⁻¹¹ M
What is the law of conservation and what happens when two substances at different temperatures come into contact.
Answer:
- Both energy and matter cannot be neither created nor destroyed.
- An equilibrium temperature will be reached.
Explanation:
Hello,
In this case, the law of conservation is applied to both matter and energy, and it states that both energy and matter cannot be neither created nor destroyed. Specifically, in chemical reactions, it states that in closed systems, the mass of the reactants equals the mass of the products even when the number of moles change. Moreover, for energy, if two substances at different temperatures come into contact, the hot one will cool down and the cold one will heat up until an equilibrium temperature so the energy lost by the hot one is gained by the cold one, which accounts for the transformation of energy.
Best regards.
What is the net ionic equation of the reaction of MgSO4 with Ba(NO3)2 ?
Answer:
Ba(+2)(aq) + SO4(-2)(aq) -----> BaSO4(s)
Explanation:
Take a look at the attachment below;
A sample of chlorine gas starting at 686 mm Hg is placed under a pressure of 991 mm Hg and reduced to a volume of 507.6 mL. What was the initial volume of the chlorine gas container if the process was performed at constant temperature
Answer:
The initial volume of the chlorine gas [tex]V1=733.28mL[/tex]
Explanation:
Given:
P1= 686mmHg
P2= 991mmHg
V2= 5076mL
V1=?
According to Boyle's law which states that at a constant temperature, the pressure on a gas increases as it's volume decreases.
It can be expressed as : P1V1 = P2V2
Where P1 is the initial pressure
P2= final pressure
V1= initial volume
V2 = final volume
[tex]V1= (P2V2)/P1[/tex]
V1= (991mmHg*507.6mL)/686mmHg
V1=503031.6/686
[tex]V1=733.28mL[/tex]
Therefore, The initial volume of the chlorine gas [tex]V1=733.28mL[/tex]
AMMONIUM CARBONATE
5. How many grams of nitrogen (N) are in a mass of ammonium carbonate that contains
1.23x10^23 carbon atoms?
Answer:
Zero
Explanation:
Hello,
The question require us to calculate the mass of nitrogen present in aluminium carbonate.
This can easily be calculated using Avogadro's number as a constant with some minor calculations but however in this case, we can't because there's no single atom of nitrogen present in aluminium carbonate hence we can't calculate the mass of nitrogen present in it.
Chemical formula of aluminium carbonate = Al₂(CO₃)₃.
From the above chemical formula, we can see that there's no single atom of nitrogen present in the formula hence the mass of nitrogen present in aluminium carbonate that contains 1.23×10²³ carbon atoms is zero.
what type of matter is toluene
Answer:
is an organic chemical conpond
With methyl, ethyl, or cyclopentyl halides as your organic starting materials and using any needed solvents or inorganic reagents, outline syntheses of each of the following. More than one step may be necessary and you need not repeat steps carried out in earlier parts of this problem. (a) CH3I (b) I (c) CH3OH (d) OH (e) CH3SH (f) SH (g) CH3CN (h) CN (i) CH3OCH3 (j) OMe
Answer:
In the attachment you can find all the possible chemical reactions.
Some reaction can not be obtained by using alkyl halides because halides are weak leaving group which can leave compound during reaction easily but hydroxyl groups is a strong nucleophile which can not leave compound easily. So we can obtain alcohol from ethyl bromide, but we can not obtain hydroxyl ion from ethyl bromide.
Explanation:
The methyl of ethyl halides as the organic starting materials are using the needed solvents or the inorganic reagents. These can be not repeated in steps that arrive out in earlier parts.
The reaction can not be taken by the use of alkyl halides as the halides are the weakest leaving group which leave the compound during reaction easily.the hydroxyl group is the strong nucleophile that cannot leave the compound easily. Thus we can get alcohol from the ethyl bromide, but we can not obtain the hydroxyl ion from the ethyl bromide.Learn more about the methyl or the cyclopentyl.
brainly.com/question/12621202