Calculate the value of cmp for c2~ at 25°c. What is the ratio of the number of molecules with a speed of 989 m s-1 to the number of molecules with this value of cmp?

Answers

Answer 1

The value of CMP for [tex]C_2H_2[/tex] at 25°C is 1109.29 m/s. The ratio of the number of molecules with a speed of 989 m/s to the number of molecules with this value of CMP is 1.108.

The CMP (most probable speed) is the speed at which the most number of molecules in a gas will be moving. It can be calculated using the following formula:

CMP = [tex]\sqrt{(2RT / M)}[/tex]

where:

R is the gas constant

T is the temperature in Kelvin

M is the molar mass of the gas

In this case, the temperature is 25°C, which is 298 K. The molar mass of C2H2 is 26.03 g/mol, so the CMP is:

Code snippet

CMP = [tex]\sqrt{2 * 8.314 * 298 / 26.03 * 1000 }[/tex]

        = 1109.29 m/s

The ratio of the number of molecules with a speed of 989 m/s to the number of molecules with the CMP is:

Code snippet

ratio = [tex]e^{(-(989^2 - 1109.29^2) / (2 * 1109.29^2))}[/tex]

        = 1.108

This means that there is a slightly higher number of molecules with a speed of 989 m/s than with the CMP.

To learn more about molar mass here brainly.com/question/31545539

#SPJ11


Related Questions

Ulva, Volvox, Spirogyra, Red algae, Plasmodial slime mold, Dinoflagellates, Stentor, Plasmodium, Trypanosoma, diatoms, Radiolaria, Euglena Brown algae

Answers

Ulva: Ulva is a genus of green algae commonly known as sea lettuce. It belongs to the phylum Chlorophyta and is found in marine environments.

Volvox: Volvox is a genus of green algae that forms spherical colonies. It is also classified under the phylum Chlorophyta.

Spirogyra: Spirogyra is a genus of filamentous green algae belonging to the phylum Chlorophyta. It consists of long, thread-like filaments that can form mats or masses in freshwater environments.

Red algae: Red algae, also known as Rhodophyta, are a diverse group of algae that are primarily found in marine environments. They can range in color from deep red to pink or purple.

Plasmodial slime mold: Plasmodial slime molds, or Myxomycetes, are a type of protist that exhibits characteristics of both fungi and protozoa. They are not true molds or fungi.

Dinoflagellates: Dinoflagellates are a diverse group of single-celled organisms that belong to the phylum Dinoflagellata. They are characterized by two flagella, one of which wraps around their body in a groove called the transverse groove.

Stentor: Stentor is a genus of trumpet-shaped, ciliated protozoa belonging to the phylum Ciliophora. They are commonly found in freshwater environments.

Plasmodium: Plasmodium is a genus of parasitic protozoa that causes malaria in humans. There are several species of Plasmodium, with P. falciparum being the most deadly.

Trypanosoma: Trypanosoma is a genus of parasitic protozoa that includes species causing diseases like African sleeping sickness and Chagas disease.

Diatoms: Diatoms are a type of algae that belong to the phylum Bacillariophyta. They are single-celled organisms enclosed in intricate cell walls made of silica, called frustules.

Radiolaria: Radiolaria are a group of marine protists that belong to the phylum Actinopoda. They are characterized by intricate, mineralized skeletons made of silica.

Euglena: Euglena is a genus of single-celled organisms that belong to the phylum Euglenozoa. They are found in freshwater environments and have a unique mix of animal-like and plant-like characteristics.

Brown algae: Brown algae, or Phaeophyta, are a large group of multicellular algae found primarily in marine environments. They can range in size from small, filamentous forms to large seaweeds, such as kelp.

know more about Volvox colonies here

https://brainly.com/question/1247813#

#SPJ11

You have previously used KMno4 in acid solution as strong oxidizing agent and Sncl 2 as good reducing agent At the right diagram galvanic cell involv ing these two reagents Clearly indicate (1 ) Your choice 0 f electrodes (2 ) ions in the solutions and (3 ) the behavior 0 f a]1 parts 0 f the cell in detail a5 YoU did for 343 Daniell cell

Answers

(a) Galvanic cell: Anode (oxidation):    Sn(s)  |  Sn2+(aq)  ||  Cl-(aq)

Cathode (reduction):  Pt(s)  |  MnO4-(aq), H+(aq)  ||  Mn2+(aq), H2O(l)

(b) Net ionic equations: Sn(s) + 2MnO4-(aq) + 16H+(aq) → Sn2+(aq) + 2Mn2+(aq) + 8H2O(l)  (c) Incomplete  (d)  If the MnO4- concentration is increased, the cell voltage will increase. If the Sn4+ concentration is increased, the cell voltage will have no effect.

a) In this galvanic cell, the anode consists of a solid tin (Sn) electrode immersed in a SnCl2 solution. The cathode consists of a platinum (Pt) electrode immersed in a KMnO4 and HCl solution. The double lines represent the salt bridge or a porous barrier that allows ion flow to maintain charge neutrality.

The solutions contain the following ions:

Anode half-cell: Sn2+ ions and Cl- ions from SnCl2 solution

Cathode half-cell: MnO4- ions, H+ ions, Mn2+ ions, and Cl- ions from the KMnO4 and HCl solution

The behavior of the parts of the cell is as follows:

Anode: Oxidation occurs at the anode, where Sn is oxidized to Sn2+ ions:

Sn(s) → Sn2+(aq) + 2e-

Cathode: Reduction occurs at the cathode, where MnO4- ions are reduced to Mn2+ ions in an acidic solution:

MnO4-(aq) + 8H+(aq) + 5e- → Mn2+(aq) + 4H2O(l)

b) Net ionic equations:

Anode half-reaction (oxidation):

Sn(s) → Sn2+(aq) + 2e-

Cathode half-reaction (reduction):

MnO4-(aq) + 8H+(aq) + 5e- → Mn2+(aq) + 4H2O(l)

Overall cell reaction:

Sn(s) + 2MnO4-(aq) + 16H+(aq) → Sn2+(aq) + 2Mn2+(aq) + 8H2O(l)

c) Calculation of the expected potential:

To calculate the potential of the cell, we need to know the standard reduction potentials (E°) for the half-reactions involved. Unfortunately, the standard reduction potentials for the specific half-reactions involving Sn and MnO4- in acid solution are not readily available.

d) If the MnO4- concentration is increased, the cell voltage will:

Increasing the concentration of MnO4- will increase the cell voltage because it is involved in the reduction half-reaction at the cathode. As the concentration of MnO4- increases, the driving force for the reduction reaction increases, resulting in an increase in the cell voltage.

If the Sn4+ concentration is increased, the cell voltage will:

Increasing the concentration of Sn4+ will have no direct effect on the cell voltage because Sn4+ is not directly involved in the half-reactions of the cell. The cell voltage is primarily determined by the reduction of MnO4- at the cathode.

Learn more about galvanic cell here: https://brainly.com/question/29765093

#SPJ11

Complete question is:

"a) You have previously used KMNO4 in acid solution as a strong oxidizing agent and SnCl2 as a good reducing agent. Diagram a galvanic cell involving these two reagents. Clearly indicate (1) your choice of electrodes (2) ions in the solutions, and (3) the behavior of all parts of the cell in detail, as you did for the Daniell cell.

b) Write the net ionic equations for each electrode reaction and for the total cell reaction.

c) Calculate the potential to be expected if all ions are at 1 M concentration

d) If the MnO4- concentration is increased, the cell voltage will ______

If the Sn4+ concentration is increased, the cell voltage will ______

Please help, I'll give a thumbs up."

why must the n-butyl acetate product be rigorously dried prior to ir analysis.

Answers

The n-butyl acetate product must be rigorously dried prior to IR analysis to ensure accurate and reliable results.

IR (Infrared) spectroscopy is a widely used technique to analyze the chemical composition and molecular structure of organic compounds. It relies on the interaction between infrared radiation and the functional groups present in the compound. However, water molecules can interfere with the IR analysis and produce misleading or distorted spectra.

Water molecules have strong absorption bands in the IR region, which can overlap with the absorption bands of the functional groups in the n-butyl acetate product. This overlapping can lead to incorrect interpretations of the IR spectra and hinder the identification and characterization of the compound.

To avoid this interference, the n-butyl acetate product needs to be dried rigorously before IR analysis. Drying typically involves removing any residual water from the sample. This can be done through techniques such as heating under vacuum or using desiccants.

By ensuring that the n-butyl acetate product is thoroughly dried, any water-related interference in the IR spectra can be minimized or eliminated. This allows for accurate identification and analysis of the functional groups present in the compound, leading to reliable results and meaningful interpretations.

Rigorous drying of the n-butyl acetate product prior to IR analysis is necessary to eliminate any interference caused by water molecules. By removing water, the IR spectra obtained will accurately represent the functional groups present in the compound, ensuring reliable and meaningful analysis.

To know more about n-butyl acetate, visit

https://brainly.com/question/31561741

#SPJ11

w15 and w96, which are in the interior of carbonic anhydrase, are 21% and 29% modified respectively by

Answers

After photochemical modification by CCI₂CO₂H, the Trp residues in carbonic anhydrase undergo chemical changes. Specifically, Trp residues W15 and W96 located in the interior of carbonic anhydrase are modified by 21% and 29%, respectively.

The modification occurs when exposed to 10 mM CHCl₃ in Buffer A at 75°C, which denatures carbonic anhydrase while preserving its primary structure. The modified carbonic anhydrase retains full enzyme activity and has a net charge of -2.9 at pH 8.0.

In the given passage, the photochemical modification of Trp residues in carbonic anhydrase is discussed. The modification is carried out using CCI₂CO₂H (chloroacetic acid). Specifically,

Trp residues W15 and W96, which are located in the interior of carbonic anhydrase, are modified by 21% and 29%, respectively, when exposed to 10 mM CHCl₃ in Buffer A at 75°C. This temperature denatures the carbonic anhydrase enzyme but does not affect its primary structure.

The modified carbonic anhydrase retains its enzyme activity, which involves the conversion of CO₂ to H₂CO₃. Additionally, the modified enzyme maintains a net charge of -2.9 at pH 8.0, similar to the unmodified enzyme.

The passage also mentions that access to W15 in fully folded carbonic anhydrase is blocked by nearby His residues and one Lys residue. This suggests that the presence of these amino acid residues obstructs the interaction of CHCl₃ with W15.

Furthermore, the passage mentions the use of different buffers, namely Buffer A (50 mM NH₄HCO₃, pH 8.0) and Buffer B (50 mM NH₄CH₃CO₂, pH 6.5), for the experimental procedures.

To summarize, the photochemical modification of Trp residues in carbonic anhydrase using CCI₂CO₂H leads to specific changes in the Trp residues, particularly W15 and W96. The modification occurs under specific conditions of temperature and buffer composition, resulting in a partially modified enzyme with retained activity and charge.

The complete question is:

Two photochemical processes utilizing ultraviolet light (hv) at 20°C can chemically alter the aromatic side chain of Trp residues in proteins and peptides (Figure 1). has Buffer A (pH 8.0), CCI3CO2H (10 mm). A. Acidic NH ww B. Basic C. Hydrophobic D. Polar neutral OB. Indole NH ww Table 1 Trp side chain photochemical reactions with CHCl3 and CCI2CO2H Imidazole, O.A. Every change made to Trp involves the replacement of a hydrogen atom bound to a carbon anywhere on the indole ring. Table 1 displays the photochemical modification percentages of various Trp residues in carbonic anhydrase at 20°C. Table 1: Carbonic Anhydrase Reactant Buffer Photochemically Modified W4, W15, W96, W122, W190, W207, and W243 51% 0%

Learn more about temperature here:

https://brainly.com/question/23609325

#SPJ11

complete the balanced molecular chemical equation for the reaction below. if no reaction occurs, write nr after the reaction arrow. kbr(aq) +cacl2(aq)->

Answers

The balanced molecular chemical equation for the reaction between potassium bromide (KBr) and calcium chloride (CaCl2) is: 2KBr(aq) + CaCl2(aq) -> 2KCl(aq) + CaBr2(aq).

To balance the equation, we need to ensure that the number of atoms of each element is the same on both sides of the reaction arrow.

Given: KBr(aq) + CaCl2(aq) ->

The number of potassium (K) atoms on the left side is 1, while there are 2 chlorine (Cl) atoms on the right side due to CaCl2. To balance the K atoms, we need to add a coefficient of 2 in front of KBr: 2KBr(aq) + CaCl2(aq) ->

Now, the number of potassium (K) and chlorine (Cl) atoms is balanced.

Next, we look at the bromine (Br) and calcium (Ca) atoms. There is 2 bromine (Br) atoms on the left side and 1 calcium (Ca) atom on the right side. To balance the Br atoms, we need to add a coefficient of 2 in front of CaBr2: 2KBr(aq) + CaCl2(aq) -> 2KCl(aq) + CaBr2(aq)

Now, the equation is balanced with respect to the number of atoms on both sides.

The balanced molecular chemical equation for the reaction between potassium bromide (KBr) and calcium chloride (CaCl2) is: 2KBr(aq) + CaCl2(aq) -> 2KCl(aq) + CaBr2(aq).

To learn more about chemical equation click here: brainly.com/question/17234971

#SPJ11


what is a correct name of the following compound? question 20 options: 1-methyl-2-bromocyclohexane cis-1,2-bromomethylcyclohexane cis-1-bromo-2-methylcyclohexane trans-1-bromo-2-methylcyclohexane trans-1-methyl-2-bromocyclohexane

Answers

The correct name of the compound can be determined by examining the structure and applying the rules of IUPAC nomenclature. Let's analyze the structure given and assign the correct name based on the options provided.

The compound is a cyclohexane ring substituted with a methyl group (CH3) and a bromine atom (Br). The methyl group is attached to carbon 1, and the bromine atom is attached to carbon 2.

Looking at the options provided:

1-methyl-2-bromocyclohexane: This name corresponds to the structure, as it correctly describes the methyl group at carbon 1 and the bromine atom at carbon 2.

cis-1,2-bromomethylcyclohexane: This name suggests the presence of a cis configuration, but the given structure does not have a cis relationship between the methyl group and the bromine atom.

cis-1-bromo-2-methylcyclohexane: Similar to the previous option, this name implies a cis configuration that is not present in the structure.

trans-1-bromo-2-methylcyclohexane: This name also suggests a trans configuration, which is not observed in the structure.

trans-1-methyl-2-bromocyclohexane: Similar to the previous option, this name implies a trans configuration that is not present in the structure.

Based on the analysis, the correct name for the given compound is 1-methyl-2-bromocyclohexane.

It's important to note that the IUPAC rules of nomenclature provide a systematic and standardized way to name organic compounds. These rules consider the arrangement of substituents, the numbering of carbon atoms, and the priority of functional groups. By following these rules, we can assign unique and unambiguous names to organic compounds.

learn more about structure here

https://brainly.com/question/33100618

#SPJ11

Which of the following is not a buffer system? carbonic acid-bicarbonate buffer system phosphate buffer system hydrovide buffer system protein buiffer system

Answers

Out of carbonic acid-bicarbonate buffer system,  phosphate buffer system ,hydrovide buffer system and  protein buffer system The hydrovide  is not a buffer system.

A buffer system is a solution that resists alterations in hydrogen ion concentration while acids or bases are added to it. Buffers help maintain the pH of a solution. Carbonic acid-bicarbonate buffer system, phosphate buffer system, and protein buffer system are examples of buffer systems. However, the hydrovide buffer system is not a buffer system.

The carbonic acid-bicarbonate buffer system is a buffer system that helps regulate the pH of blood. It is composed of carbonic acid (H2CO3) and bicarbonate (HCO3-). The pH of blood is tightly regulated, and any deviations from the normal pH range can have harmful effects on the body. Carbonic acid-bicarbonate buffer system helps to keep the pH within the normal range.

A protein buffer system is another buffer system that helps maintain the pH of a solution. Proteins are amphoteric in nature, meaning they can act as either an acid or a base, depending on the environment. As a result, proteins can function as a buffer in a solution. When the pH of a solution changes, proteins can either donate or accept hydrogen ions to maintain the pH within the normal range.

The phosphate buffer system is yet another buffer system that helps maintain the pH of a solution. It is composed of dihydrogen phosphate ion (H2PO4-) and monohydrogen phosphate ion (HPO42-). These two ions can either accept or donate hydrogen ions depending on the pH of the solution. This helps maintain the pH within the normal range.

To know more about pH, visit:

https://brainly.com/question/2288405

#SPJ11

calculate the number of moles of p atoms required to react with phosphorus to produce 4.76 g of p4o6. (molar mass p4o6 = 219.9 g/mol) the given and wanted should be written as:

Answers

The number of moles of p atoms required to react with phosphorus to produce 4.76 g of p4o6 is 0.086.

Mass of P4O6 = 4.76 g

Molar mass of P4O6 = 219.9 g/mol

To determine the number of moles of P atoms required, we need to consider the stoichiometry of the reaction and the molar ratio between P4O6 and P atoms in the compound.

The balanced chemical equation for the reaction between phosphorus (P4) and oxygen (O2) to form P4O6 is as follows:

P4 + 3O2 -> P4O6

From the equation, we can see that for every one molecule of P4O6, there are four P atoms. Therefore, the molar ratio between P4O6 and P atoms is 1:4.

Now, let's calculate the number of moles of P4O6:

Number of moles = Mass / Molar mass

Number of moles of P4O6 = 4.76 g / 219.9 g/mol

Next, we need to calculate the number of moles of P atoms. Since the molar ratio between P4O6 and P atoms is 1:4, the number of moles of P atoms will be four times the number of moles of P4O6.

Number of moles of P atoms = 4 * (4.76 g / 219.9 g/mol)

Now, we can calculate the number of moles of P atoms required:

Number of moles of P atoms required = 4 * (4.76 g / 219.9 g/mol)=0.086

Learn more about number of moles:

https://brainly.com/question/23991631

#SPJ11

which choice represents the conjugate base of the carbonic acid buffer system? question 4 options: hco3- h h2 co3 carbon dioxide water

Answers

The conjugate base of the carbonic acid buffer system is HCO3-.

A conjugate base is formed when an acid loses a proton (H+).

In the carbonic acid buffer system, carbonic acid (H2CO3) can donate a proton (H+) to form the bicarbonate ion (HCO3-).

The bicarbonate ion acts as the conjugate base of the system.

Conjugate bases are important in acid-base reactions. In these reactions, an acid donates a proton to a base, forming the conjugate base of the acid and the conjugate acid of the base. For example, the reaction of HCl with water produces the hydronium ion (H3O+) and the chloride ion.

The strength of an acid is determined by the strength of its conjugate base. A strong acid has a weak conjugate base, and a weak acid has a strong conjugate base. For example, HCl is a strong acid because its conjugate base, Cl-, is a weak base.

The other options are not conjugate bases of carbonic acid.

H is not an acid or a base, H2CO3 is the acid, CO2 is a gas, and water is a neutral molecule.

Therefore, the conjugate base of the carbonic acid buffer system is HCO3-.

To learn more about conjugate base :

https://brainly.com/question/28165713

#SPJ11

A sample is analyzed five times by the same method to give the following results: 4.54, 4.89, 5.23, 5.12, 4.70. What is the relative standard deviation (RSD) of the measurements? a. 17.1 Ob.0.286 OC 0.058 O d. 0.017

Answers

The relative standard deviation (RSD) of the measurements is 0.058.

Here are the steps on how to calculate the relative standard deviation (RSD) of the measurements:

Calculate the mean of the measurements.

mean = (4.54 + 4.89 + 5.23 + 5.12 + 4.70) / 5 = 4.93

Calculate the standard deviation of the measurements.

standard_deviation = sqrt(sum([(x - mean)**2 for x in measurements]) / len(measurements))

standard_deviation = sqrt((4.54 - 4.93)**2 + (4.89 - 4.93)**2 + (5.23 - 4.93)**2 + (5.12 - 4.93)**2 + (4.70 - 4.93)**2) / 5

standard_deviation = 0.286

Calculate the relative standard deviation (RSD) of the measurements.

RSD = standard_deviation / mean

RSD = 0.286 / 4.93 = 0.058

Therefore, the relative standard deviation (RSD) of the measurements is 0.058.

To learn more about standard deviation :

https://brainly.com/question/475676

#SPJ11

which of the following monomers is least likely to undergo cationic polymerization? propylene isobutylene vinyl acetate styrene methyl acrylate

Answers

Among the given monomers, vinyl acetate is least likely to undergo cationic polymerization.

Cationic polymerization is a type of polymerization reaction that involves the formation of a polymer by the sequential addition of cationic species.

In this process, the monomer molecules react with positively charged species, such as carbocations, to form the polymer chain.

Vinyl acetate (CH3COOCH=CH2) is a monomer that contains an ester functional group.

Cationic polymerization typically requires the presence of a reactive functional group, such as a carbon-carbon double bond or a carbon-oxygen double bond.

However, the ester functional group in vinyl acetate is less reactive towards cationic polymerization compared to other functional groups.

On the other hand, propylene (CH3CH=CH2), isobutylene (CH2=C(CH3)2), styrene (C6H5CH=CH2), and methyl acrylate (CH2=CHCOOCH3) all contain carbon-carbon double bonds that can readily undergo cationic polymerization.

These monomers are more likely to participate in cationic polymerization reactions because of the presence of a reactive carbon-carbon double bond.

In summary, among the given monomers, vinyl acetate is least likely to undergo cationic polymerization due to the presence of the ester functional group, while the other monomers are more suitable for cationic polymerization reactions because of the presence of carbon-carbon double bonds.

Learn more about cationic polymerization at: https://brainly.com/question/29726222

#SPJ11

propose a structure for a compound with the molecular formula c4h6o2 that is consistent with the following proton nmr spectrum.

Answers

The compound with the molecular formula [tex]C_4H_6O_2[/tex] that is consistent with the following proton NMR spectrum is methyl acrylate.

The NMR spectrum shows four peaks, which indicates that there are four types of protons in the compound.

The peaks at 0.92 and 1.23 ppm are singlets, which means that they are not coupled to any other protons. These protons are most likely the methyl ([tex]CH_3[/tex]) protons.

The peak at 1.54 ppm is a quartet, which means that it is coupled to three other protons. This proton is most likely the methylene ([tex]CH_2[/tex]) proton that is adjacent to the ester group.

The peak at 1.75 ppm is a doublet of doublets, which means that it is coupled to two other protons. This proton is most likely the methylene ([tex]CH_2[/tex]) proton that is not adjacent to the ester group.

The presence of an ester group is confirmed by the strong peak at 1781 cm-1 in the IR spectrum.

Therefore, the compound with the molecular formula C4H6O2 that is consistent with the following proton NMR spectrum is methyl acrylate.

To learn more about NMR spectrum here brainly.com/question/33417321
#SPJ11

Predict whether aqueous solutions of the following compounds are acidic, basic, or neutral.
KI CrBr3·6H2O Na2SO4
Select one:
a. KI: acidic CrBr3·6H2O: neutral Na2SO4: basic
b. KI: neutral CrBr3·6H2O: acidic Na2SO4: basic
c. KI: neutral CrBr3·6H2O: basic Na2SO4: acidic
d. KI: basic CrBr3·6H2O: acidic Na2SO4: neutral

Answers

The correct answer is d. KI: basic, CrBr3·6H2O: acidic, Na2SO4: neutral.

KI (potassium iodide) is a salt that dissociates into K⁺ and I⁻ ions in water.

The I⁻ ion is the conjugate base of a weak acid (HI), which can hydrolyze in water to produce hydroxide ions (OH⁻).

Therefore, the aqueous solution of KI is basic.

CrBr3·6H2O (chromium(III) bromide hexahydrate) is a compound that contains hydrated chromium ions (Cr³⁺) and bromide ions (Br⁻).

The hydrated chromium(III) ions can undergo hydrolysis, releasing H⁺ ions into the solution and making it acidic.

Na2SO4 (sodium sulfate) is a salt that dissociates into Na⁺ and SO₄²⁻ ions in water.

Neither of these ions will significantly affect the pH of the solution, resulting in a neutral solution.

Therefore, the correct answer is d. KI: basic, CrBr3·6H2O: acidic, Na2SO4: neutral.

Learn more about aqueous solution from this link:

https://brainly.com/question/19587902

#SPJ11

which of the molecules, if any, have no polar bonds and a net dipole? bf3 ch4 none of the molecules have no polar bonds and a net dipole. h2o co2 ch2f2

Answers

The molecule among the given options that has no polar bonds and a net dipole is CH4. Polar bonds are covalent bonds between two atoms with a difference in electronegativity.

An electronegative atom, such as nitrogen, oxygen, or fluorine, has a greater affinity for electrons than a less electronegative atom, such as hydrogen or carbon. The sharing of electrons in such covalent bonds is unequal, resulting in polar bonds. CH4 or methane is a tetrahedral molecule with four carbon-hydrogen single covalent bonds. The molecule's four carbon-hydrogen bonds are evenly dispersed in space, resulting in a tetrahedral shape without any lone pair of electrons.

CH4 is a non-polar molecule because of its symmetrical tetrahedral shape. The bond dipoles cancel out, resulting in a net dipole moment of zero. As a result, CH4 has no polar bonds but still has a net dipole moment. Finally, it is proved that among the given options, CH4 is the only molecule that has no polar bonds and a net dipole.

More on polar bonds: https://brainly.com/question/29224615

#SPJ11

for a mixture of 13.91g of naoh and 58.41g of nacl, what is the mole fraction of naoh in the mixture? the molar mass of naoh is 40.01 g/mol and of nacl, 58.44 g/mol.

Answers

The mole fraction is the ratio of the moles of a substance to the total number of moles in the solution. The mole fraction of NaOH in the mixture of 13.91 g NaOH and 58.41 g NaCl can be calculated as follows:First, calculate the number of moles of each substance present in the mixture.

Moles of NaOH = Mass of NaOH / Molar mass of NaOH= 13.91 g / 40.01 g/mol= 0.347 molMoles of NaCl = Mass of NaCl / Molar mass of NaCl= 58.41 g / 58.44 g/mol= 0.9995 molThe total number of moles in the mixture is:Total moles = Moles of NaOH + Moles of NaCl= 0.347 mol + 0.9995 mol

= 1.3465 molThe mole fraction of NaOH is:Mole fraction of NaOH = Moles of NaOH / Total moles= 0.347 mol / 1.3465 mol= 0.2574 Therefore, the mole fraction of NaOH in the mixture is 0.2574.

To know more about fraction visit:

https://brainly.com/question/10354322

#SPJ11

what+is+the+mole+fraction,+,+of+solute+and+the+molality,++(or+),+for+an+aqueous+solution+that+is+10.0%+naoh+by+mass?

Answers

:Mole fraction is defined as the ratio of the number of moles of a solute to the total number of moles of the solution. Molality is defined as the number of moles of solute per kilogram of solvent.

It can be calculated as follows:Given:Mass percent of NaOH = 10%Mass of solution = 1 kgLet the mass of NaOH be m, then the mass of water will be (1 - m).Number of moles of NaOH = Mass of NaOH / Molar mass of NaOH= m / 40Number of moles of water = Mass of water / Molar mass of water= (1 - m) / 18Mole fraction of NaOH, XNaOH= moles of NaOH / total number of moles in the solution= m / 40 / (m / 40 + (1 - m) / 18)Molality of NaOH, m = moles of NaOH / mass of water in kg= m / (1 - m)

To calculate the mole fraction and molality of an aqueous solution containing 10% NaOH by mass, we first need to determine the number of moles of NaOH and water in the solution. This can be done using the mass percent of NaOH and the total mass of the solution.We assume that the total mass of the solution is 1 kg. Therefore, the mass of NaOH in the solution is 0.1 kg (since the mass percent of NaOH is 10%), and the mass of water is 0.9 kg (since the total mass of the solution is 1 kg).Next, we use the molar masses of NaOH and water to calculate the number of moles of each. The molar mass of NaOH is 40 g/mol, and the molar mass of water is 18 g/mol. Therefore, the number of moles of NaOH in the solution is 0.1 kg / 40 g/mol = 0.0025 mol, and the number of moles of water in the solution is 0.9 kg / 18 g/mol = 0.05 mol.The mole fraction of NaOH in the solution is the ratio of the number of moles of NaOH to the total number of moles in the solution. Therefore, XNaOH = 0.0025 mol / (0.0025 mol + 0.05 mol) = 0.047.The molality of NaOH in the solution is the number of moles of NaOH per kilogram of water. Therefore, m = 0.0025 mol / 0.9 kg = 0.0028 mol/kg.

To know more about mole visit;

https://brainly.com/question/31285244

#SPJ11

The rocksalt structure, the FCC metal structure and the BCC metal structure all have close packed directions. List the FAMILY of close packed directions for each structure.

Answers

Rocksalt Structure: No close-packed directions.

FCC Metal Structure: [111] family of close-packed directions.

BCC Metal Structure: [110] family of close-packed directions.

The rock salt structure has a face-centered cubic (FCC) arrangement of both cations and anions. In this structure, there are no close-packed directions because the ions are arranged in a simple cubic pattern. Consider the [100], [010], and [001] directions as the primary directions of the rock salt structure.

In an FCC metal structure, the close-packed directions are represented by the [111] family. The [111] direction is the densest and corresponds to the stacking of atoms along the body diagonal of the cube. The [111] family includes directions such as [111], [1-11], [11-1], [1-1-1], [-111], [-1-11], [-11-1], and [-1-1-1].

In a BCC metal structure, the close-packed directions are represented by the [110] family. The [110] direction is the densest and corresponds to the stacking of atoms along the cube edge diagonal. The [110] family includes directions such as [110], [1-10], [-110], and [-1-10].

To learn more about the Rocksalt Structure, follow the link:

https://brainly.com/question/30467674

#SPJ4

using the distance formula, find out what is the approximate distance between the actual and esti-mated locations. a. 120.13 m b. 306.17 m c. 499.59 m d. 700.15 m

Answers

Without this information, we cannot calculate the distance between the two locations. We cannot determine which answer choice is correct.

To answer this question, we need to know the actual coordinates and the estimated coordinates.

We can use the distance formula to find the approximate distance between the actual and estimated locations. The distance formula is:

distance = √[(x₂ - x₁)² + (y₂ - y₁)²]

Where (x₁, y₁) are the coordinates of the actual location and (x₂, y₂) are the coordinates of the estimated location.

Using the distance formula, we can calculate the approximate distance between the actual and estimated locations. However, we are not given the coordinates of the actual and estimated locations.

Without this information, we cannot calculate the distance between the two locations.

Therefore, we cannot determine which answer choice is correct.'

To know more about distance, visit:

https://brainly.com/question/13034462

#SPJ11

what is the effect on boiling point when two immiscble liquids are boiled

Answers

Boiling two immiscible liquids together results in a mixture with a boiling point that falls between the boiling points of the individual liquids. It tends to be closer to the boiling point of the liquid with the higher boiling point.

When two immiscible liquids are boiled together, the boiling point of the mixture is generally between the boiling points of the individual liquids. The boiling point of the mixture tends to be closer to the boiling point of the liquid with the higher boiling point.

This phenomenon can be explained by Raoult's law, which states that the vapor pressure of a component in a liquid mixture is proportional to its mole fraction in the mixture. When two immiscible liquids are combined, their vapor pressures do not mix together. Instead, each liquid maintains its own vapor pressure and boils independently.

During the boiling process, the liquid with the lower boiling point will vaporize and form vapor above the mixture. This vapor exerts a partial pressure, which contributes to the total vapor pressure of the system. As the temperature increases, the liquid with the higher boiling point begins to vaporize as well.

The boiling point of the mixture will be closer to the boiling point of the liquid with the higher boiling point because its vapor pressure is generally lower. The liquid with the higher boiling point requires more heat energy to reach its boiling point and form vapor. Therefore, the boiling point of the mixture is influenced more by the liquid with the higher boiling point.

It is important to note that the specific boiling point of the mixture depends on the composition and ratio of the immiscible liquids. Additionally, if the two liquids have significant interactions or chemical reactions when mixed, the boiling point may be altered accordingly.

To learn more about immiscible liquids, Visit:

https://brainly.com/question/1514252

#SPJ11

ammonia is produced using the haber process. calculate the mass of ammonia produced when 35.0g of nitrogen reacts with 12.5 g of hydrogen

Answers

The balanced chemical equation of the Haber process is:

N2 + 3H2 → 2NH3

To calculate the mass of ammonia produced when 35.0g of nitrogen reacts with 12.5 g of hydrogen using the Haber process, we need to find the limiting reactant first.

Limiting reactant is the reactant which gets completely consumed in a chemical reaction, limiting the amount of product produced. Therefore, we must calculate the moles of each reactant using their molar masses and compare them to find the limiting reactant.

For nitrogen, the molar mass = 28 g/mol

Number of moles of nitrogen = 35.0 g / 28 g/mol = 1.25 mol

For hydrogen, the molar mass = 2 g/mol

Number of moles of hydrogen = 12.5 g / 2 g/mol = 6.25 mol

From the above calculations, it can be observed that hydrogen is in excess as it produces more moles of NH3. Thus, nitrogen is the limiting reactant.

Using the balanced chemical equation, the number of moles of NH3 produced can be calculated.

Number of moles of NH3 = (1.25 mol N2) × (2 mol NH3/1 mol N2) = 2.50 mol NH3Now,

to find the mass of NH3 produced, we can use its molar mass which is 17 g/mol.Mass of NH3 produced = (2.50 mol NH3) × (17 g/mol) = 42.5 g

Therefore, the mass of ammonia produced when 35.0g of nitrogen reacts with 12.5 g of hydrogen using the Haber process is 42.5 g.

Learn more about Haber process:

https://brainly.com/question/21867752

#SPJ11

calculate the molality of a solution formed by adding 9.00 g nh4cl to 13.2 g of water

Answers

The molality of the solution formed by adding 9.00 g of NH4Cl to 13.2 g of water is approximately 12.74 mol/kg.

To calculate the molality (m) of a solution, we need to determine the number of moles of solute (NH4Cl) and the mass of the solvent (water).

Mass of NH4Cl = 9.00 g

Mass of water = 13.2 g

Step 1: Calculate the number of moles of NH4Cl.

The molar mass of NH4Cl is 53.49 g/mol.

Number of moles of NH4Cl = mass / molar mass

Number of moles of NH4Cl = 9.00 g / 53.49 g/mol

Number of moles of NH4Cl ≈ 0.1682 mol

Step 2: Calculate the molality.

Molality (m) is defined as the number of moles of solute per kilogram of solvent.

Mass of water needs to be converted to kilograms.

Mass of water = 13.2 g = 0.0132 kg

Molality (m) = moles of solute / mass of solvent (in kg)

Molality (m) = 0.1682 mol / 0.0132 kg

Molality (m) ≈ 12.74 mol/kg

Therefore, the molality of the solution formed by adding 9.00 g of NH4Cl to 13.2 g of water is approximately 12.74 mol/kg.

Learn more about molality:

https://brainly.com/question/14770448

#SPJ11

What is the IUPAC name for the compound shown? Step 1: How many carbons are in the longest chain in the structure? Step 1: Identify the number of carbons in the longest chain Step 2: Identify the base name of the molecule. carbons Step 3: Number the longest chain. Step 4: Identily substituents. Step 5: Order the substituents. Step 6: Add the substituent locants or numbering. Step 7: Put it all together and give the IUPAC name. Step 4: Identify the substituents in the molecule. A. How many methyl substituents are in the compound? What is the IUPAC name for the compound shown? Step 1: Identify the number of carbons in the longest chain Step 2: Identify the base name of the molecule. Step 3: Number the longest chain. Step 4: Identify substituents. Step 5: Order the substituents. B. What pretix is needed for the methyl substituents? Step 6: Add the substituent locants or numbering. Step 7: Put it all together and give the IUPAC name. C. What are the remaining substituents? propyl pentyl butyl ethyl .

Answers

The compound shown has a six-carbon longest chain, which makes it a hexane.

To determine the IUPAC name, we follow the steps of naming organic compounds:

Step 1: Identify the number of carbons in the longest chain: The longest chain in the compound has six carbons.

Step 2: Identify the base name of the molecule: The base name is "hexane."

Step 3: Number the longest chain: Assign a number to each carbon atom in the longest chain. In this case, numbering from left to right, we have:

Step 4: Identify substituents: In this compound, there are no substituents.

Step 5: Order the substituents: N/A

Step 6: Add the substituent locants or numbering: N/A

Step 7: Put it all together and give the IUPAC name: Since there are no substituents, the IUPAC name for the compound is simply "hexane."

Regarding the additional question (part B) about the prefix needed for methyl substituents, there are no methyl substituents present in the compound.

In conclusion, the compound shown is named "hexane" according to the IUPAC nomenclature rules.

To know more about IUPAC Name visit-

brainly.com/question/31569537

#SPJ11

a certain reaction has an activation energy of 34.34 kj/mol. at what kelvin temperature will the reaction proceed 3.00 times faster than it did at 357 k?

Answers

The reaction will proceed 3.00 times faster than it did at 357 K when the temperature is approximately 419.3 K.

To determine the temperature at which the reaction will proceed 3.00 times faster, we can use the Arrhenius equation, which relates the rate constant (k) of a reaction to the temperature (T) and the activation energy (Ea):

k = A * exp(-Ea / (R * T))

Where:

k is the rate constant

A is the pre-exponential factor (frequency factor)

Ea is the activation energy

R is the gas constant (8.314 J/(mol*K))

T is the temperature in Kelvin

Given that the reaction at 357 K has a certain rate constant, let's call it k1. We want to find the temperature at which the reaction proceeds 3.00 times faster, which corresponds to a rate constant 3.00 times larger than k1.

Let's call this new rate constant k2.

k2 = 3.00 * k1

We can rewrite the Arrhenius equation for k1 and k2:

k1 = A * exp(-Ea / (R * T1))

k2 = A * exp(-Ea / (R * T2))

Dividing the equations:

k2 / k1 = (A * exp(-Ea / (R * T2))) / (A * exp(-Ea / (R * T1)))

Since A cancels out:

3.00 = exp(-Ea / (R * T2)) / exp(-Ea / (R * T1))

Taking the natural logarithm (ln) of both sides:

ln(3.00) = -Ea / (R * T2) + Ea / (R * T1)

Rearranging the equation:

ln(3.00) = Ea / (R * T1) - Ea / (R * T2)

Now we can solve for T2:

ln(3.00) = Ea / (R * T1) - Ea / (R * T2)

Ea / (R * T2) = Ea / (R * T1) - ln(3.00)

Ea / (R * T2) = Ea / (R * T1) - ln(3.00)

1 / T2 = 1 / T1 - ln(3.00) / (R * Ea)

Now we can substitute the values:

T1 = 357 K

Ea = 34.34 kJ/mol (convert to J/mol)

R = 8.314 J/(mol*K)

T2 = 1 / (1 / T1 - ln(3.00) / (R * Ea))

Plugging in the values:

T2 = 1 / (1 / 357 K - ln(3.00) / (8.314 J/(mol*K) * 34.34 kJ/mol))

T2 ≈ 419.3 K

Therefore, the reaction will proceed 3.00 times faster than it did at 357 K when the temperature is approximately 419.3 K.

learn more about reaction here

https://brainly.com/question/30464598

#SPJ11

when the pressure of an equilibrium mixture of so2, o2, and so3 is halved at constant temperature, what is the effect on kp? 2so2(g) o2(g) ⇌ 2so3(g)

Answers

When the pressure of an equilibrium mixture of SO2, O2, and SO3 is halved at constant temperature, the equilibrium constant, Kp, will increase by a factor of 2.

The equilibrium constant is a function of the partial pressures of the reactants and products, and when the pressure is halved, the partial pressures of the reactants and products will also be halved. However, the equilibrium constant is not a function of the absolute pressure, so when the pressure is doubled, the equilibrium constant will not change.

In the reaction : 2SO2(g) + O2(g) ⇌ 2SO3(g)

The equilibrium constant, Kp, can be expressed as follows:

Kp = (P^2_SO3)/(P_SO2^2 * P_O2)

where P is the partial pressure of the gas.

If the pressure is halved, then the partial pressures of the reactants and products will also be halved. This will cause the value of Kp to increase by a factor of 2.

For example, if the initial pressure of SO2 is 1 atm, the initial pressure of O2 is 0.5 atm, and the initial pressure of SO3 is 0 atm, then the value of Kp will be equal to:

Kp = (0^2)/(1^2 * 0.5) = 0

If the pressure is halved, then the partial pressures of SO2 and O2 will be 0.5 atm, and the partial pressure of SO3 will still be 0 atm. This will cause the value of Kp to increase to :

Kp = (0^2)/(0.5^2 * 0.5) = 4

As you can see, the value of Kp has increased by a factor of 2.

To learn more about equilibrium constant :

https://brainly.com/question/3159758

#SPJ11

write the balanced complete ionic equation for the reaction when (nh₄)₃po₄ and na₂so₄ are mixed in aqueous solution. if no reaction occurs, simply write only nr.

Answers

The balanced complete ionic equation for the reaction when (NH₄)₃PO₄ and Na₂SO₄ are mixed in aqueous solution is as follows; 2(NH₄)₃PO₄(aq) + 3Na₂SO₄(aq) → 2Na₃PO₄(aq) + 3(NH₄)₂SO₄(aq).

What is a ionic equation?

Ionic equation is a chemical equation in which the electrolytes in aqueous solution are expressed as dissociated ions.

Usually, this is a salt dissolved in water, where the ionic species are followed by (aq) in the equation to indicate they are in aqueous solution.

According to this question, ammonium phosphate reacts with sodium sulphate as follows;

2(NH₄)₃PO₄(aq) + 3Na₂SO₄(aq) → 2Na₃PO₄(aq) + 3(NH₄)₂SO₄(aq)

Learn more about ionic equation at: https://brainly.com/question/29299745

#SPJ1

what is the net ionic equation for the following reaction? 2koh (aq) h2so4 (aq) ⇒ k2so4 2h2o nr 2h (aq) 2oh- (aq) --> 2h2o (l) oh- (aq) hso4- (aq) --> 2k (aq) h2o (l) none of the above

Answers

The given chemical equation is, 2KOH(aq) + H2SO4(aq) → K2SO4 + 2H2O(aq) + nrIt is necessary to write the given chemical equation in the molecular form to get the main answer. The complete balanced molecular chemical equation for the given reaction is;2KOH(aq) + H2SO4(aq) → K2SO4 + 2H2O(aq)In order to obtain the net ionic equation, first, we need to find the state of each element given in the chemical equation.

The given chemical equation is,2KOH(aq) + H2SO4(aq) → K2SO4 + 2H2O(aq)KOH(aq) and H2SO4(aq) are both strong electrolytes, which means that they are completely ionized in the aqueous solution. Now, let's write the dissociation reaction for KOH(aq) and H2SO4(aq).KOH (aq) → K+(aq) + OH-(aq)H2SO4 (aq) → 2H+(aq) + SO4-2(aq)The reaction shows that KOH dissociates into potassium ions, K+(aq), and hydroxide ions, OH-(aq), while H2SO4 dissociates into hydrogen ions, H+(aq), and sulfate ions,

SO4-2(aq).Now, we need to balance the ionic equation by following the rules given below:(i) Cancel out the spectator ions which are present on both sides of the equation.(ii) Write the remaining ions separately as a product.In the given reaction, K+(aq) and SO4-2(aq) are the spectator ions as they are present on both sides of the equation. Therefore, they are canceled out. The balanced net ionic equation is:H+ (aq) + OH- (aq) → H2O(l)OH-(aq) and HSO4-(aq) are the reactants in the net ionic equation.The net ionic equation is 2H+ (aq) + SO4-2(aq) + 2OH- (aq) → 2H2O(l)The answer is "2H+ (aq) + SO4-2(aq) + 2OH- (aq) → 2H2O(l)".

TO know more about that molecular visit:

https://brainly.com/question/156574

#SPJ11

Calculate the number of iron atoms in 6.98 x 10-3 grams of iron. 09.37 x 1028 atoms 03.92 x 1019 atoms 3.24 x 1023 atoms 07.53 x 1019 atoms

Answers

The number of iron atoms in 6.98 x 10^-3 grams of iron can be calculated using the concept of moles and Avogadro's number. The formula for calculating the number of atoms is:

Number of atoms = (Mass of sample / Molar mass) * Avogadro's number

The molar mass of iron (Fe) is 55.845 g/mol. By substituting the given mass of iron into the formula, we can determine the number of iron atoms.

In the options provided, 3.24 x 10^23 atoms is the correct answer.

To calculate the number of atoms, we divide the mass of the sample by the molar mass of iron to obtain the number of moles. Then, we multiply the number of moles by Avogadro's number, which represents the number of atoms in one mole of a substance.

For the given mass of iron (6.98 x 10^-3 grams) and molar mass of iron (55.845 g/mol), we can calculate the number of moles:

Number of moles = (Mass of sample / Molar mass)

              = (6.98 x 10^-3 g / 55.845 g/mol)

              ≈ 1.25 x 10^-4 mol

Next, we multiply the number of moles by Avogadro's number (6.022 x 10^23 atoms/mol) to obtain the number of atoms:

Number of atoms = (Number of moles) * (Avogadro's number)

              ≈ (1.25 x 10^-4 mol) * (6.022 x 10^23 atoms/mol)

              ≈ 7.5275 x 10^19 atoms

Therefore, the correct answer is 7.53 x 10^19 atoms.

To learn more about Avogadro's number; -brainly.com/question/28812626

#SPJ11

NaOCI to be used in an experiment is available as a 5.5% w/v solution. If the reaction requires 250 mg NaOCI, how much of the 5.5% solution do you need to add?

Answers

The volume of NaOCI solution required to give 250 mg of NaOCI is 4.545 ml.

Given that NaOCI to be used in an experiment is available as a 5.5% w/v solution.

If the reaction requires 250 mg NaOCI, we are to calculate the volume of 5.5% NaOCI solution required to give 250 mg of NaOCI.

W/V solution means grams of solute per 100 ml of solution.

Volume of NaOCI solution required = amount of NaOCI required / concentration of NaOCI

Amount of NaOCI required = 250 mg

Concentration of NaOCI = 5.5% w/v = 5.5 g of NaOCI per 100 ml of solution.=> 5.5 g of NaOCI = 5500 mg of NaOCI per 100 ml of solution.

Therefore, concentration of NaOCI = 5500/100 = 55 mg/ml

Volume of NaOCI solution required to give 250 mg of NaOCI = 250/55 ml= 4.545 ml.

The volume of NaOCI solution required to give 250 mg of NaOCI is 4.545 ml.

Learn more about concentration

brainly.com/question/30862855

#SPJ11

A bar of gold has the following dimensions: 14 cm×8 cm×4 cm Calculate the volume of this bar of gold in both cm3 and mL. Write your answers to the ones place

Answers

The volume of the gold bar pf dimension 14 cm×8 cm×4 cm is 448 cm³ and 448 mL or 0.448 L.

The volume of a rectangular prism is calculated by multiplying the length, width, and height. In this case, the length is 14 cm, the width is 8 cm, and the height is 4 cm. To calculate the volume of the gold bar, we use the formula V = l × w × h, where l, w, and h represent the length, width, and height of the bar, respectively. Plugging in the given dimensions, we have V = 14 cm × 8 cm × 4 cm = 448 cm³. Since 1 cm³ is equivalent to 1 mL, the volume of the gold bar is also 448 mL.

The volume of the gold bar, calculated using its given dimensions, is 448 cm³ and 448 mL. This volume represents the amount of space occupied by the gold bar.

Learn more about volume here:

https://brainly.com/question/29796637

#SPJ11

Balance the following equations for reactions occurring in an acidic solution:
IO3- + AsO3-3 ---> I- + AsO4-3

Answers

the balanced equation for the reaction is as follows:IO3− + AsO33− + 4H+ → I− + AsO43− + H2O.

The given equation is as follows:IO3− + AsO33− → I− + AsO43− (acidic solution)

When we balance the given equation, we get:IO3− + AsO33− → I− + AsO43−(a) Balancing the As atoms on both sides of the equation: The equation contains one As atom on each side.

balanced equation:IO3− + AsO33− → I− + AsO43−(b) Balancing the I atoms on both sides of the equation:

There is only one I atom on each side. balanced equation:IO3− + AsO33− → I− + AsO43−(c) Balancing the O atoms on both sides of the equation:

There are 9 O atoms on the left-hand side and 10 on the right-hand side.

To balance this, we add 1 water molecule to the left-hand side. balanced equation:IO3− + AsO33− + H2O → I− + AsO43−(d) Balancing the H atoms on both sides of the equation:

There are 6 H atoms on the right-hand side and only 2 on the left-hand side.

To balance this, we add 4 H+ ions to the left-hand side. balanced equation:IO3− + AsO33− + 4H+ → I− + AsO43− + H2O

Therefore, the balanced equation for the reaction is as follows:IO3− + AsO33− + 4H+ → I− + AsO43− + H2O.

learn more about balanced equation here

https://brainly.com/question/11904811

#SPJ11

Other Questions
b. assume instead that the stock had a fair market value of $19,950 (rather than $33,250) when it was donated to the american red cross. what is donna's charitable contribution deduction? professional groups enhance the practice of memebers throughtraining Which supporting service member frequents the dental office to provide the dentist with information concerning the specific company's products? a client is to receive a fecal microbiota transplantation tomorrow (fmt). what action by the nurse is best? Assuming that the required power for cruising an airplane with a total weight of 200 kgf and a cruising speed of 15 m / s is 1 kW, obtain the following values. The air density is constant at 1.25 kg / m^3 regardless of altitude.1) Find the required power for the above airplane to fly ascending at a speed of 15 m / s at an ascending angle of 3.2) When the above airplane travels on a concrete runway with = 0.02 with constant thrust while maintaining a horizontal state from a state where it is stationary on the ground, the drag coefficient CD and lift coefficient CL of the entire aircraft are constant regardless of speed. If so, find the thrust required to reach 15 m / s in one minute from rest. Also, find the distance traveled to reach 15 m / s. For the beam cross section shown below, an applied anticlockwise torque of 30,000 Nmm is applied, but no other forces. a 911 d b By doing an equal twist analysis, we know that q = 2.5 x q11 The dimensions are: a = 104 mm b= 299 mm C= 81 mm d=62 mm Calculate the value of 11 Enter your answer as N/mm, to 3 significant figures, but without the units. You have an error margin of 3%. select the logical expression that is equivalent to:xy(p(x)q(x,y)) question 17 options: xy(p(x)q(x,y)) yx(p(x)q(x,y)) yx(p(x)q(x,y)) xy(p(x)q(x,y)) Question 3 1 pts A diet provides a total of 2,000 kcalories of which 50% of the energy is from carbohydrates and 30% from protein. How many grams (to the nearest whole number) of fat are contained in the diet? O 84 g 100 g 24 g 44 g O 64 g Instructions: given the following coordinates complete the reflection transformation. a(-5,2) b(-1,5) c(0,3) transformation: complete the double reflection over the lines x = 1 followed by x = 3. a" b" c" ecozones on a mountain are essentially climate zones that change with elevation. which of these climate factors is the least affected by changes in elevation? group of answer choices terrain precipitation temperature seasonal patterns which term defines the tax rate that applies to the next dollar of taxable income earned? group of answer choices marginal total residual deductible average A fluid is said to be ideal, if it is (a) incompressible (b)inviscous (c) viscous and incompressible (d) inviscous andcompressible (e) inviscous and incompressible. Find the volume of the sphere or hemisphere. Round to the nearest tenth.hemisphere: diameter =21.8cm Add coefficients to the reaction summary to show the net results of glycolysis. glucose +aADP+bPi+cNAD+x pyruvate +yATP+zNADH You do not need to add the water and hydrogen ions necessary to balance the overall reaction. a= b= c= x= y= z= Draw the structure of pyruvate at pH7.4. A 15 mm diameter steel bar has a forged surface with the ultimate strength Su = 1100 MPa and the yield strength Sy = 715 MPa. a) Esti- mate the S-N curve and the family of constant life fatigue curves for axial load. Estimate the fatigue life for 4x10 cycles. b) Determine the fatigue strength corresponding to 10 cycles and to 4x10 cycles for the case of zero- to-maximum (rather than completely reversed) load fluctuations for bending and no yielding Calculate the concentration of nitrate ion when dissolving 25.0 g of cobalt(II) nitrate Co(NO3)2 in 0.50 L aqueous solution. [MM CO(NO3)2 = 182.95 g/mol] When Isaiah was cleaning up his room, he found four types of items: shoes, puzzle pieces, trading cards and teddy bears - First Isaiah put all of the shoes, puzzle pieces and trading cards together in a pile, and found there were 51 items. - Then he put just the shoes, trading cards and teddy bears together in a pile, and found there were 46 items. - Then he put just the puzzle pieces, trading cards and teddy bears together in a pile, and found there were 49 items. - Finally, he put just the shoes, puzzle pieces and teddy bears together in a pile, and found there were 52 items. How many of each kind of object did Isaiah find in his room? 2 a) Using exact values, show that 1+cot 2=csc 2 for =45 . b) Prove the identity in part a directly from sin 2+cos 2=1 for =45 [4+1mark While determining which antibiotics are best to treat ulcers caused by helicobacter pylori, the drugs used in the experiment are called the________. Vanguard and Fidelity are two low-cost mutual fund families that offer Roth IRAs. Stick to them or another mutual fund family that features low costs and expenses. Question 2 options: True False