Calculate the speed of a proton that is accelerated from rest through an electric potential difference of 114 V. m/s (b) Calculate the speed of an electron that is accelerated through the same potential difference. m/s

Answers

Answer 1

Answer:

A) v = 148,242.72 m/s

B) v = 6,328,025.58 m/s

Explanation:

To solve this, we will equate electric potential to kinetic energy.

Formula for Electric potential is qV where q is charge and V is potential difference.

While formula for kinetic energy is ½mv² where m is mass and v is velocity

Thus;

qV = ½mv²

Let us make the velocity the formula;

v = √(2qV/m)

A) PROTON

Charge of proton has a constant value of 1.6 × 10^(-19) C

Mass of proton has a constant value of 1.66 × 10^(-27) kg

We are given that potential difference = 114 V.

So, v = √(2qV/m)

Thus; v = √(2*1.6 × 10^(-19)*114/(1.66 × 10^(-27)))

v = 148,242.72 m/s

B) ELECTRON

Charge of electron has a constant value of 1.6 × 10^(-19) C

Mass of electron has a constant value of 9.11 × 10^(-31) kg

v = √(2qV/m)

Thus;

v = √(2*1.6*10^(-19)*114)/(9.11 × 10^(-31)))

v = 6,328,025.58 m/s


Related Questions

A mercury barometer reads 745.0 mm on the roof of a building and 760.0 mm on the ground. Assuming a constant value of 1.29 kg/m3 for the density of air, determine the height of the building

Answers

Answer:

The height of the building is 158.140 meters.

Explanation:

A barometer is system that helps measuring atmospheric pressure. Manometric pressure is the difference between total and atmospheric pressures. Manometric pressure difference is directly proportional to fluid density and height difference. That is:

[tex]\Delta P \propto \rho \cdot \Delta h[/tex]

[tex]\Delta P = k \cdot \rho \cdot \Delta h[/tex]

Where:

[tex]\Delta P[/tex] - Manometric pressure difference, measured in kilopascals.

[tex]\rho[/tex] - Fluid density, measured in kilograms per cubic meter.

[tex]\Delta h[/tex] - Height difference, measured in meters.

Now, an equivalent height difference with a different fluid can be found by eliminating manometric pressure and proportionality constant:

[tex]\rho_{air} \cdot \Delta h_{air} = \rho_{Hg} \cdot \Delta h_{Hg}[/tex]

[tex]\Delta h_{air} = \frac{\rho_{Hg}}{\rho_{air}} \cdot \Delta h_{Hg}[/tex]

Where:

[tex]\Delta h_{air}[/tex] - Height difference of the air column, measured in meters.

[tex]\Delta h_{Hg}[/tex] - Height difference of the mercury column, measured in meters.

[tex]\rho_{air}[/tex] - Density of air, measured in kilograms per cubic meter.

[tex]\rho_{Hg}[/tex] - Density of mercury, measured in kilograms per cubic meter.

If [tex]\Delta h_{Hg} = 0.015\,m[/tex], [tex]\rho_{air} = 1.29\,\frac{kg}{m^{3}}[/tex] and [tex]\rho_{Hg} = 13600\,\frac{kg}{m^{3}}[/tex], the height difference of the air column is:

[tex]\Delta h_{air} = \frac{13600\,\frac{kg}{m^{3}} }{1.29\,\frac{kg}{m^{3}} }\times (0.015\,m)[/tex]

[tex]\Delta h_{air} = 158.140\,m[/tex]

The height of the building is 158.140 meters.

Answer:

158.13m

Explanation:

Force exerted over a unit area is called Pressure. Also, in a given column of air, the pressure(P) is given as the product of the density(ρ) of the air, the height(h) of the column of air and the acceleration due to gravity(g). i.e

P = ρhg

Let;

Pressure measured at the roof top =  ([tex]P_{R}[/tex])

Pressure measured at the ground level =  ([tex]P_{G}[/tex])

Pressure at the ground level = Pressure at the roof + Pressure at the column height of air.

[tex]P_{G}[/tex] = [tex]P_{R}[/tex] + P               ---------------(i)

(a) P = ρhg             -----------(***)

But;

ρ = density of air = 1.29kg/m³  

h = height of column of air = height of building

g = acceleration due to gravity = 10m/s²

Substitute these values into equation (***)

P = 1.29 x h x 10

P = 12.9h Pa

(b) [tex]P_{G}[/tex] =  ρ[tex]_{mercury}[/tex] x h[tex]_{(mercury)_{ground} }[/tex] x g ------------(*)

But;

ρ[tex]_{mercury}[/tex] = density of mercury = 13600kg/m³  

h[tex]_{(mercury)_{ground} }[/tex] = height of mercury on the ground = 760.0mm = 0.76m

g = acceleration due to gravity = 10m/s²

Substitute these values into equation (*)

[tex]P_{G}[/tex] =  13600 x 0.76 x 10

[tex]P_{G}[/tex] = 103360 Pa

(c) [tex]P_{R}[/tex] = ρ[tex]_{mercury}[/tex] x h[tex]_{(mercury)_{roof} }[/tex] x g       --------------(**)

But;

ρ[tex]_{mercury}[/tex] = density of mercury = 13600kg/m³  

h[tex]_{(mercury)_{roof} }[/tex] = height of mercury on the roof = 745.0mm = 0.745m

g = acceleration due to gravity = 10m/s²

Substitute these values into equation (**)

[tex]P_{R}[/tex]  =  13600 x 0.745 x 10

[tex]P_{R}[/tex]  = 101320 Pa

(d) Now that we know the values of P, [tex]P_{G}[/tex] and [tex]P_{R}[/tex] , let's substitute them into equation (i) as follows;

[tex]P_{G}[/tex] = [tex]P_{R}[/tex] + P  

103360 = 101320 + 12.9h

Solve for h;

12.9h = 103360 - 101320

12.9h = 2040

h = [tex]\frac{2040}{12.9}[/tex]

h = 158.13m

Therefore, the height of the building is 158.13m

A harmonic wave is traveling along a rope. It is observed that the oscillator that generates the wave completes 43.0 vibrations in 33.0 s. Also, a given maximum travels 424 cm along the rope in 15.0 s. What is the wavelength

Answers

Answer:

0.218

Explanation:

Given that

Total vibrations completed by the wave is 43 vibrations

Time taken to complete the vibrations is 33 seconds

Length of the wave is 424 cm = 4.24 m

to solve this problem, we first find the frequency.

Frequency, F = 43 / 33 hz

Frequency, F = 1.3 hz

Also, we find the wave velocity. Which is gotten using the relation,

Wave velocity = 4.24 / 15

Wave velocity = 0.283 m/s

Now, to get our answer, we use the formula.

Frequency * Wavelength = Wave Velocity

Wavelength = Wave Velocity / Frequency

Wavelength = 0.283 / 1.3

Wavelength = 0.218

How does sodium (Na) becomes an ion?

Answers

Because electrons are negatively charged, the charge of an atom changes when electrons are gained or lost

A 12,000-N car is raised using a hydraulic lift, which consists of a U-tube with arms of unequal areas, filled with oil and capped at both ends with tight-fitting pistons. The wider arm of the U-tube has a radius of 18.0 cm and the narrower arm has a radius of 5.00 cm. The car rests on the piston on the wider arm of the U-tube. The pistons are initially at the same level. What is the initial force that must be applied to the

Answers

Answer:

F₂ = 925.92 N

Explanation:

In a hydraulic lift the normal stress applied to one arm must be equally transmitted to the other arm. Therefore,

σ₁ = σ₂

F₁/A₁ = F₂/A₂

F₂ = F₁ A₂/A₁

where,

F₂ = Initial force that must be applied to narrow arm = ?

F₁ = Load on Wider Arm to be raised = 12000 N

A₁ = Area of wider arm = πr₁² = π(18 cm)² = 324π cm²

A₂ = Area of narrow arm = πr₂² = π(5 cm)² = 25π cm²

Therefore,

F₂ = (12000 N)(25π cm²)/(324π cm²)

F₂ = 925.92 N

The magnet has an unchanging magnetic field: very strong near the magnet, and weak far from the magnet. How did the magnetic field through the coil change as the magnet fell toward it? How did the magnetic flux through the coil change as the magnet fell toward it?

Answers

Answer:

The magnetic field through the coil at first increases steadily up to its maximum value, and then decreases gradually to its minimum value.

Explanation:

At first, the magnet fall towards the coils;  inducing a gradually increasing magnetic field through the coil as it falls into the coil. At the instance when half the magnet coincides with the coil, the magnetic field magnitude on the coil is at its maximum value. When the magnet falls pass the coil towards the floor, the magnetic field then starts to decrease gradually from a strong magnitude to a weak magnitude.

This action creates a changing magnetic flux around the coil. The result is that an induced current is induced in the coil, and the induced current in the coil will flow in such a way as to oppose the action of the falling magnet. This is based on lenz law that states that the induced current acts in such a way as to oppose the motion or the action that produces it.

The electric potential of a charge distribution is given by the equation V(x) = 3x2y2 + yz3 - 2z3x, where x, y, z are measured in meters and V is measured in volts. Calculate the magnitude of the electric field vector at the position (x,y,z) = (1.0, 1.0, 1.0)

Answers

Answer:

The magnitude of the electric field is  [tex]|E| = 8.602 \ V/m[/tex]

Explanation:

From the question we are told that

    The electric potential is  [tex]V = 3x^2y^2 + yz^3 - 2z^3x[/tex]

Generally electric filed is mathematically represented as

          [tex]E = - [\frac{dV }{dx} i + \frac{dV}{dy} j + \frac{dV}{dz} \ k][/tex]

So

         [tex]E =- ( [6xy^2 - 2z^3] i + [6x^2y+ z^3]j + [3yz^2 -6xz^2])[/tex]

at (x,y,z) = (1.0, 1.0, 1.0)

        [tex]E = [6(1)(1)^2 - 2(1)^3] i + [6(1)^2(1)+ (1)^3]j + [6(1)(1)^2 -6(1)(1)^2][/tex]

        [tex]E =- ([4] i + [7]j + [-3])[/tex]

       [tex]E =-4i -7j + 3 k[/tex]

The magnitude of the electric field is  

        [tex]|E| = \sqrt{(-4)^2 + (-7)^2 + (3^2)}[/tex]

       [tex]|E| = 8.602 \ V/m[/tex]

4. How much force is required to stop a 60 kg person traveling at 30 m/s during a time of a)
5.0 seconds
b) 0.50 seconds
c) 0.05 seconds

Answers

Explanation:

F = ma, and a = Δv / Δt.

F = m Δv / Δt

Given: m = 60 kg and Δv = -30 m/s.

a) Δt = 5.0 s

F = (60 kg) (-30 m/s) / (5.0 s)

F = -360 N

b) Δt = 0.50 s

F = (60 kg) (-30 m/s) / (0.50 s)

F = -3600 N

c) Δt = 0.05 s

F = (60 kg) (-30 m/s) / (0.05 s)

F = -36000 N

360N, 3600N and 36000N forces are required to stop a 60 kg person traveling at 30 m/s during a time of a)5.0 seconds, b) 0.50 seconds, c)0.05 seconds respectively.

To find the force, we need to know about the mathematical formulation of force.

What is force?According to Newton's second law of motion, force is defined as mass times acceleration. Its SI unit is Newton (N).What is the mathematical formulation of force?

Mathematically, it is written as

F= m×a= m×(∆V/∆t)

What is the force needed to stop 60 kg person traveling at 30 m/s during a time of a)5.0 seconds, b) 0.50 seconds, c)0.05 seconds?

Here, initially the velocity of the person is 30m/s. But after applying the force, he came to rest. So his final velocity is 0 m/s. ∆V= 30m/s

When ∆t=5 seconds, F= 60×(30/5)=360N

When ∆t=0.5 seconds, F= 60×(30/0.5)=3600N

When ∆t=0.05 seconds, F= 60×(30/0.05)=36000N

Thus, we can conclude that 360N, 3600N and 36000N forces are required to stop a 60 kg person traveling at 30 m/s during a time of a)5.0 seconds, b) 0.50 seconds, c)0.05 seconds respectively.

Learn more about force here:

brainly.com/question/12785175

#SPJ2

Differences between regular and irregular

Answers

Answer:

Differences between regular and irregular objects are:

Regular object Those substances which have fixed geometrical shape are called regular objects.For example: Books,pencils etc.Irregular objectsThose substances which do not have fixed geometrical shape are called irregular object.For example: A piece of stone, pieces of broken glass etc.

Hope this helps...

Good luck on your assignment..

Is the friction of the pendulum (catch mechanism, support axis, etc.) a random or systematic error? Will this source of error cause your calculated velocity to be less than or greater than the actual velocity?

Answers

Answer:

l these errors believe that the speed of the system is less than that calculated

Explanation:

When we carry out any measurement in addition to the magnitude, the sources of uncertainty must also be analyzed.

We can have random uncertainties, correspondin

g to momentary errors, for example early warps during medicine, parallax errors, errors in the starting and ending points of the movement; I mean every possible random error. This error is the one that is analyzed and calculated in the statistical equations

There is another source of error, the systematic ones, these are much more complicated, they can be an error in the pendulum length, friction in the pendulum movement mechanism, deformities in the support systems, this errors are not analyzed by the statistic, in general They discover by looking at the results and comparing with the tabulated or real ones.

 

tith the explanation we see that the errors described are systematic.

In general these errors believe that the speed of the system is less than that calculated

The elastic energy stored in your tendons can contribute up to 35 % of your energy needs when running. Sports scientists have studied the change in length of the knee extensor tendon in sprinters and nonathletes. They find (on average) that the sprinters' tendons stretch 43 mm , while nonathletes' stretch only 32 mm .What is the difference in maximum stored energy between the sprinters and the nonathlethes?

Answers

Complete Question:

The elastic energy stored in your tendons can contribute up to 35 % of your energy needs when running. Sports scientists have studied the change in length of the knee extensor tendon in sprinters and nonathletes. They find (on average) that the sprinters' tendons stretch 43 mm , while nonathletes' stretch only 32 mm . The spring constant for the tendon is the same for both groups, [tex]31 {\rm {N}/{mm}}[/tex]. What is the difference in maximum stored energy between the sprinters and the nonathlethes?

Answer:

[tex]\triangle E = 12.79 J[/tex]

Explanation:

Sprinters' tendons stretch, [tex]x_s = 43 mm = 0.043 m[/tex]

Non athletes' stretch, [tex]x_n = 32 mm = 0.032 m[/tex]

Spring constant for the two groups, k = 31 N/mm = 3100 N/m

Maximum Energy stored in the sprinter, [tex]E_s = 0.5kx_s^2[/tex]

Maximum energy stored in the non athletes, [tex]E_m = 0.5kx_n^2[/tex]

Difference in maximum stored energy between the sprinters and the non-athlethes:

[tex]\triangle E = E_s - E_n = 0.5k(x_s^2 - x_n^2)\\\triangle E = 0.5*3100* (0.043^2 - 0.032^2)\\\triangle E = 0.5*31000*0.000825\\\triangle E = 12.79 J[/tex]

What do behaviorism and cognitive psychology have in common?

O Both rely on the scientific method.

Both attempt to explain human behavior.

Both note the differences between human and animal behavior

Behaviorism focuses on actions only.

Answers

Answer:

Both attempt to explain human behavior

Explanation:

Psychology is generally regarded as the science of human behavior. Behaviourism is the psychological theory which holds that behaviour can be fully understood in terms of conditioning, without actually considering thoughts or feelings. The theory holds that psychological disorders can be aptly handled by simply altering the behavioural patterns of the individual. It involves the study of stimulus and responses.

Cognitive psychology attempts to decipher what is going on in people's minds. That is, it looks at the mind as a processor of information. Hence we can define cognitive psychology as the study of the internal mental processes. This according to behaviorists, cannot be studied in measurable terms as in behaviourism (stimulus response approach) even though mental processes are known to influence human behavior significantly.

Hence, both behaviourism and cognitive psychology attempt to study human behavior from different perspectives.

according to newtons second law of motion, what is equal to the acceleration of an object

Answers

Answer: According to Newtons second Law of motion ;

F = ma (Force  equals  mass multiplied by acceleration.)

The acceleration is directly proportional to the net force; the net force equals mass times acceleration; the acceleration in the same direction as the net force; an acceleration is produced by a net force

Explanation:

Professional baseball player Nolan Ryan could pitch a baseball at approximately 160.0 km/h. At that average velocity, how long (in s) did it take a ball thrown by Ryan to reach home plate, which is 18.4 m from the pitcher's mound

Answers

Answer:

t = 0.414s

Explanation:

In order to calculate the time that the ball takes to reach home plate, you assume that the speed of the ball is constant, and you use the following formula:

[tex]t=\frac{d}{v}[/tex]         (1)

d: distance to the plate = 18.4m

v: speed of the ball = 160.0km/h

You first convert the units of the sped of the ball to appropriate units (m/s)

[tex]160.0\frac{km}{h}*\frac{1h}{3600s}*\frac{1000m}{1km}=44.44\frac{m}{s}[/tex]

Then, you replace the values of the speed v and distance s in the equation (1):

[tex]t=\frac{18.4m}{44.44m/s}=0.414s[/tex]

THe ball takes 0.414s to reach the home plate

The Pauli exclusion principle states that Question 1 options: the wavelength of a photon of light times its frequency is equal to the speed of light. no two electrons in the same atom can have the same set of four quantum numbers. both the position of an electron and its momentum cannot be known simultaneously very accurately. the wavelength and mass of a subatomic particle are related by . an electron can have either particle character or wave character.

Answers

Answer:

no two electrons in the same atom can have the same set of four quantum numbers

Explanation:

Pauli 's Theory of Exclusion specifies that for all four of its quantum numbers, neither two electrons in the same atom can have similar value.

In a different way, we can say that no more than two electrons can take up the identical orbital, and two electrons must have adversely spin in the identical orbital

Therefore the second option is correct

In a hydraulic lift, if the pressure exerted on the liquid by one piston is increased by 100 N/m2 , how much additional weight can the other piston slowly lift if its cross sectional area is 25 m2

Answers

Answer:

The additional weight and mass needed for lifting the other piston slowly is 2500 N and 254.92 kg, respectively.

Explanation:

By means of the Pascal's Principle, the hydraulic lift can be modelled by the following two equations:

Hydraulic Lift - Before change

[tex]P = \frac{F}{A}[/tex]

Hydraulic Lift - After change

[tex]P + \Delta P = \frac{F + \Delta F}{A}[/tex]

Where:

[tex]P[/tex] - Hydrostatic pressure, measured in pascals.

[tex]\Delta P[/tex] - Change in hydrostatic pressure, measured in pascals.

[tex]A[/tex] - Cross sectional area of the hydraulic lift, measured in square meters.

[tex]F[/tex] - Hydrostatic force, measured in newtons.

[tex]\Delta F[/tex] - Change in hydrostatic force, measured in newtons.

The additional weight is obtained after some algebraic handling and the replacing of all inputs:

[tex]\frac{F}{A} + \Delta P = \frac{F}{A} + \frac{\Delta F}{A}[/tex]

[tex]\Delta P = \frac{\Delta F}{A}[/tex]

[tex]\Delta F = A\cdot \Delta P[/tex]

Given that [tex]\Delta P = 100\,Pa[/tex] and [tex]A = 25\,m^{2}[/tex], the additional weight is:

[tex]\Delta F = (25\,m^{2})\cdot (100\,Pa)[/tex]

[tex]\Delta F = 2500\,N[/tex]

The additional mass needed for the additional weight is:

[tex]\Delta m = \frac{\Delta F}{g}[/tex]

Where:

[tex]\Delta F[/tex] - Additional weight, measured in newtons.

[tex]\Delta m[/tex] - Additional mass, measured in kilograms.

[tex]g[/tex] - Gravitational constant, measured in meters per square second.

If [tex]\Delta F = 2500\,N[/tex] and [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], then:

[tex]\Delta m = \frac{2500\,N}{9.807\,\frac{m}{s^{2}} }[/tex]

[tex]\Delta m = 254.92\,kg[/tex]

The additional weight and mass needed for lifting the other piston slowly is 2500 N and 254.92 kg, respectively.

Two large rectangular aluminum plates of area 180 cm2 face each other with a separation of 3 mm between them. The plates are charged with equal amount of opposite charges, ±17 µC. The charges on the plates face each other. Find the flux (in N · m2/C) through a circle of radius 3.3 cm between the plates when the normal to the circle makes an angle of 4° with a line perpendicular to the plates. Note that this angle can also be given as 180° + 4°. N · m2/C

Answers

Answer:

Φ = 361872 N.m^2 / C

Explanation:

Given:-

- The area of the two plates, [tex]A_p = 180 cm^2[/tex]

- The charge on each plate, [tex]q = 17 * 10^-^6 C[/tex]

- Permittivity of free space, [tex]e_o = 8.85 * 10^-^1^2 \frac{C^2}{N.m^2}[/tex]

- The radius for the flux region, [tex]r = 3.3 cm[/tex]

- The angle between normal to region and perpendicular to plates, θ = 4°

Find:-

Find the flux (in N · m2/C) through a circle of radius 3.3 cm between the plates.

Solution:-

- First we will determine the area of the region ( Ar ) by using the formula for the area of a circle as follows. The region has a radius of r = 3.3 cm:

                             [tex]A_r = \pi *r^2\\\\A_r = \pi *(0.033)^2\\\\A_r = 0.00342 m^2[/tex]

- The charge density ( σ ) would be considered to be uniform for both plates. It is expressed as the ratio of the charge ( q ) on each plate and its area ( A_p ):

                           σ = [tex]\frac{q}{A_p} = \frac{17*10^-^6}{0.018} \\[/tex]

                           σ = 0.00094 C / m^2

- We will assume the electric field due to the positive charged plate ( E+ ) / negative charged plate ( E- ) to be equivalent to the electric field ( E ) of an infinitely large charged plate with uniform charge density.

                         [tex]E+ = E- = \frac{sigma}{2*e_o} \\\\[/tex]

- The electric field experienced by a region between two infinitely long charged plates with uniform charge density is the resultant effect of both plates. So from the principle of super-position we have the following net uniform electric field ( E_net ) between the two plates:

                        [tex]E_n_e_t = (E+) + ( E-)\\\\E_n_e_t = \frac{0.00094}{8.85*10^-^1^2} \\\\E_n_e_t = 106214689.26553 \frac{N}{C} \\[/tex]

- From the Gauss-Law the flux ( Φ ) through a region under uniform electric field ( E_net ) at an angle of ( θ ) is:

                        Φ = E_net * Ar * cos ( θ )

                        Φ = (106214689.26553) * (0.00342) * cos ( 5 )

                        Φ = 361872 N.m^2 / C

A rocket car on a horizontal rail has an initial mass of 2500 kg and an additional fuel mass of 1000 kg. At time t0 the rocket motor is ignited and the rocket burns fuel at a rate of 95 kg/s. The exit speed of the exhaust gas relative to the rocket is 2900 m/s. Neglecting drag and friction forces, determine the acceleration and the velocity of the car at time t = 10 s. Plot the acceleration and velocity from time t0 to t = 10 s.

Answers

Answer: Acceleration of the car at time = 10 sec is 108 [tex]m/s^{2}[/tex] and velocity of the car at time t = 10 sec is 918.34 m/s.

Explanation:

The expression used will be as follows.

[tex]M\frac{dv}{dt} = u\frac{dM}{dt}[/tex]

[tex]\int_{t_{o}}^{t_{f}} \frac{dv}{dt} dt = u\int_{t_{o}}^{t_{f}} \frac{1}{M} \frac{dM}{dt} dt[/tex]

       = [tex]u\int_{M_{o}}^{M_{f}} \frac{dM}{M}[/tex]

[tex]v_{f} - v_{o} = u ln \frac{M_{f}}{M_{o}}[/tex]

[tex]v_{o} = 0[/tex]

As, [tex]v_{f} = u ln (\frac{M_{f}}{M_{o}})[/tex]

u = -2900 m/s

[tex]M_{f} = M_{o} - m \times t_{f}[/tex]

           = [tex]2500 kg + 1000 kg - 95 kg \times t_{f}s[/tex]

           = [tex](3500 - 95t_{f})s[/tex]

[tex]v_{f} = -2900 ln(\frac{3500 - 95 t_{f}}{3500}) m/s[/tex]

Also, we know that

     a = [tex]\frac{dv_{f}}{dt_{f}} = \frac{u}{M} \frac{dM}{dt}[/tex]

        = [tex]\frac{u}{3500 - 95 t} \times (-95) m/s^{2}[/tex]

        = [tex]\frac{95 \times 2900}{3500 - 95t} m/s^{2}[/tex]

At t = 10 sec,

[tex]v_{f}[/tex] = 918.34 m/s

and,   a = 108 [tex]m/s^{2}[/tex]

The probability of nuclear fusion is greatly enhanced when the appropriate nuclei are brought close together, but their mutual coulomb repulsion must be overcome. This can be done using the kinetic energy of high temperature gas ions or by accelerating the nuclei toward one another.

Required:
a. Calculate the potential energy of two singly charged nuclei separated by 1.00×10^−12m
b. At what temperature will atoms of a gas have an average kinetic energy equal to this needed electrical potential energy?

Answers

Answer:

a

  [tex]PE = 2.3 *10^{-16} \ J[/tex]

b

 [tex]T = 1.1 *10^{7} \ K[/tex]

Explanation:

From the question we are told that

      The distance of separation is  [tex]d = 1.00 *10^{-12} \ m[/tex]

Generally the electric potential energy can be mathematically represented as

            [tex]PE = \frac{k * q_1 q_2 }{d}[/tex]

Given that in a nuclei the only charged particle is the proton who charge is

     [tex]p = 1.60 *10^{-19} \ C[/tex]

Hence

     [tex]q_1 = q_2 = 1.60 *10 ^{-19} \ C[/tex]

And k is the coulomb constant with values   [tex]k = 9*10^{9} \ kg\cdot m^3\cdot s^{-4}\cdot A^2.N/A2[/tex]

      So we have that

       [tex]PE = \frac{9*10^9 * (1.60 *10^{-19})^2}{ 1.00*10^{-12}}[/tex]

      [tex]PE = 2.3 *10^{-16} \ J[/tex]

The relationship between the electrical potential energy and the temperature is mathematically represented as

         [tex]PE = \frac{3}{2} kT[/tex]

Here  k is  the Boltzmann's constant with value  [tex]k = 1.38*10^{-23} JK^{-1}[/tex]

   making T the subject

       [tex]T = \frac{2}{3} * \frac{PE}{k}[/tex]

substituting values

      [tex]T = \frac{2}{3} * \frac{2.30 *10^{-16}}{ 1.38 *10^{-23}}[/tex]

     [tex]T = 1.1 *10^{7} \ K[/tex]

 

A double slit illuminated with light of wavelength 588 nm forms a diffraction pattern on a screen 11.0 cm away. The slit separation is 2464 nm. What is the distance between the third and fourth bright fringes away from the central fringe

Answers

Answer:

[tex]y_{4}-y_{3}=35.22-11.27=23.95 \mathrm{cm}[/tex]

Explanation:

Given that

Wavelength [tex]\lambda=588 \mathrm{nm}[/tex]

slit separation [tex]\mathrm{d}=2464 \mathrm{nm}[/tex]

slit screen distance [tex]\mathrm{D}=11 \mathrm{cm}[/tex]

We know that for double slit the maxima condition is that

[tex]\operatorname{dsin} \theta=m \lambda[/tex]

[tex]\sin \theta=\frac{m \lambda}{d}[/tex]

[tex]\theta=\sin ^{-1}\left(\frac{\mathrm{m} \lambda}{\mathrm{d}}\right)[/tex]

For small angle approximation, [tex]\sin \theta \approx \tan \theta \approx \theta[/tex]

[tex]\tan \theta=\frac{y_{m}}{D}[/tex]

[tex]y_{m}=D \times \tan \left[\sin ^{-1}\left(\frac{m \lambda}{d}\right)\right][/tex]

Now [tex]y_{4}[/tex] [tex]y_{4}=D \times \tan \left[\sin ^{-1}\left(\frac{4 \lambda}{d}\right)\right]=11 \times \tan \left[\sin ^{-1}\left(\frac{4 \times 588 \mathrm{nm}}{2464 \mathrm{nm}}\right)\right]=35.22 \mathrm{cm}[/tex]

Again [tex]y_{3}=D \times \tan \left[\sin ^{-1}\left(\frac{3 \lambda}{d}\right)\right]=11 \times \tan \left[\sin ^{-1}\left(\frac{3 \times 588 \mathrm{nm}}{2464 \mathrm{nm}}\right)\right]=11.27 \mathrm{cm}[/tex]

Hence [tex]y_{4}-y_{3}=35.22-11.27=23.95 \mathrm{cm}[/tex]

A uniformly charged sphere has a potential on its surface of 450 V. At a radial distance of 8.1 m from this surface, the potential is 150 V. What is the radius of the sphere

Answers

Answer:

The radius of the sphere is 4.05 m

Explanation:

Given;

potential at surface, [tex]V_s[/tex] = 450 V

potential at radial distance, [tex]V_r[/tex] = 150

radial distance, l = 8.1 m

Apply Coulomb's law of electrostatic force;

[tex]V = \frac{KQ}{r} \\\\V_s = \frac{KQ}{r} \\\\V_r = \frac{KQ}{r+ l}[/tex]

[tex]450 = \frac{KQ}{r} ------equation (i)\\\\150 = \frac{KQ}{r+8.1} ------equation (ii)\\\\divide \ equation (i)\ by \ equation \ (ii)\\\\\frac{450}{150} = (\frac{KQ}{r} )*(\frac{r+8.1}{KQ} )\\\\3 = \frac{r+8.1}{r} \\\\3r = r + 8.1\\\\2r = 8.1\\\\r = \frac{8.1}{2} \\\\r = 4.05 \ m[/tex]

Therefore, the radius of the sphere is 4.05 m

In the slap shot video, and the professor said that the puck experienced "an average force of 100 pounds" which we now know is 445 Newtons of average force. The duration of this collision is .02 seconds. Calculate the Impulse in this puck/stick collision. The mass of the puck is .175 kg.

Answers

Answer:

 I = 89 N s

Explanation:

Momentum is a concept that tells us how much the amount of movement of a system changes, it is described by the expression

     

      I = ∫ F dt = F_average   t

where F is the force and t is the time

let's calculate

      I = 445  0.2

      I = 89 N s

A spherical balloon is made from a material whose mass is 4.30 kg. The thickness of the material is negligible compared to the 1.54-m radius of the balloon. The balloon is filled with helium (He) at a temperature of 289 K and just floats in air, neither rising nor falling. The density of the surrounding air is 1.19 kg/m3. Find the absolute pressure of the helium gas.

Answers

Answer:

P = 5.97 × 10^(5) Pa

Explanation:

We are given;

Mass of balloon;m_b = 4.3 kg

Radius;r = 1.54 m

Temperature;T = 289 K

Density;ρ = 1.19 kg/m³

We know that, density = mass/volume

So, mass = Volume x Density

We also know that Force = mg

Thus;

F = mg = Vρg

Where m = mass of balloon(m_b) + mass of helium (m_he)

So,

(m_b + m_he)g = Vρg

g will cancel out to give;

(m_b + m_he) = Vρ - - - eq1

Since a sphere shaped balloon, Volume(V) = (4/3)πr³

V = (4/3)π(1.54)³

V = 15.3 m³

Plugging relevant values into equation 1,we have;

(3 + m_he) = 15.3 × 1.19

m_he = 18.207 - 3

m_he = 15.207 kg = 15207 g

Molecular weight of helium gas is 4 g/mol

Thus, Number of moles of helium gas is ; no. of moles = 15207/4 ≈ 3802 moles

From ideal gas equation, we know that;

P = nRT/V

Where,

P is absolute pressure

n is number of moles

R is the gas constant and has a value lf 8.314 J/mol.k

T is temperature

V is volume

Plugging in the relevant values, we have;

P = (3802 × 8.314 × 289)/15.3

P = 597074.53 Pa

P = 5.97 × 10^(5) Pa

If vector C is added to vector D, the result is a third vector that is perpendicular to D and has a magnitude equal to 3D. What is the ratio of the magnitude of C to that of D?
a) 1.3
b) 1.6
c) 1.8
d) 2.2
e) 3.2

Answers

Answer:

(e) 3.2

Explanation:

We are given that vector C and D.

Let R be the magnitude of C+D.

According to question

R=3D

We have to find the ratio of the magnitude of C to that of D.

By using right triangle property

[tex]C^2=R^2+D^2[/tex]

[tex]C^2=(3D)^2+D^2[/tex]

[tex]C^2=9D^2+D^2[/tex]

[tex]C^2=10D^2[/tex]

[tex]C=\sqrt{10D^2}=3.2D[/tex]

[tex]\frac{C}{D}=3.2[/tex]

Hence, the ratio of the magnitude of C to that of D=3.2

(e) 3.2

A 2.0-kg object moving at 5.0 m/s collides with and sticks to an 8.0-kg object initially at rest. Determine the kinetic energy lost by the system as a result of this collision.

Answers

Answer:

20 J

Explanation:

From the question, since there is a lost in kinetic energy, Then the collision is an inelastic collision.

m'u'+mu = V(m+m')........... Equation 1

Where m' = mass of the moving object, m = mass of the stick, u' = initial velocity of the moving object, initial velocity of the stick, V = common velocity after collision.

make V the subject of the equation above

V = (m'u'+mu)/(m+m')............. Equation 2

Given: m' = 2 kg, m = 8 kg, u' = 5 m/s, u = 0 m/s (at rest).

Substitute into equation 2

V = [(2×5)+(8×0)]/(2+8)

V = 10/10

V = 1 m/s.

Lost in kinetic energy = Total kinetic energy before collision- total kinetic energy after collision

Total kinetic energy before collision = 1/2(2)(5²) = 25 J

Total kinetic energy after collision = 1/2(2)(1²) +1/2(8)(1²) = 1+4 = 5 J

Lost in kinetic energy = 25-5 = 20 J

The collision is inelastic collision. As a result of collision the kinetic energy lost by the given system is 20 J.

Since there is a lost in kinetic energy, the collision is inelastic collision.  

m'u'+mu = V(m+m')

[tex]\bold {V =\dfrac { (m'u'+mu)}{(m+m')} }[/tex]  

Where

m' = mass of the moving object = 2 kg

m = mass of the stick = 8 kg,

u' = initial velocity of the moving object = 5 m/s

V = common velocity after collision= ?    

u = 0 m/s (at rest).

put the values in the formula,  

[tex]\bold {V = \dfrac {(2\times 5)+(8\times 0)}{(2+8)}}\\\\\bold {V = \dfrac {10}{10}}\\\\\bold {V = 1\\ m/s.}[/tex]

 

  kinetic energy before collision

[tex]\bold { = \dfrac 1{2} (2)(5^2) = 25 J}[/tex]  

kinetic energy after collision

[tex]\bold { = \dfrac 12(2)(1^2) + \dfrac 12(8)(1^2) = 5\ J}[/tex]  

Lost in kinetic energy = 25-5 = 20 J

Therefore, As a result of collision the kinetic energy lost by the given system is 20 J.

To know more about Kinetic energy,

https://brainly.com/question/12669551

7. A ball of mass m makes a head-on elastic collision with a second ball (at rest) and rebounds with a speed equal to 0.450 its original speed. What is the mass of the second ball

Answers

Answer:

mass of the second ball is 0.379m

Explanation:

Given;

mass of first ball = m

let initial velocity of first ball = u₁

let final velocity of first ball  = v₁ = 0.45u₁

let the mass of the second ball = m₂

initial velocity of the second ball, u₂ = 0

let the final velocity of the second ball = v₂

Apply the principle of conservation of linear momentum;

mu₁ + m₂u₂ = mv₁ + m₂v₂

mu₁  +  0  = 0.45u₁m + m₂v₂

mu₁  = 0.45u₁m + m₂v₂ -------- equation (i)

Velocity for elastic collision in one dimension;

u₁ + v₁ = u₂ + v₂

u₁ + 0.45u₁ = 0 + v₂

1.45u₁ = v₂ (final velocity of the second ball)

Substitute in v₂ into equation (i)

mu₁  = 0.45u₁m + m₂(1.45u₁)

mu₁ = 0.45u₁m + 1.45m₂u₁

mu₁ - 0.45u₁m = 1.45m₂u₁

0.55mu₁ = 1.45m₂u₁

divide both sides by u₁

0.55m = 1.45m₂

m₂ = 0.55m / 1.45

m₂ = 0.379m

Therefore, mass of the second ball is 0.379m (where m is mass of the first ball)

The mass of the second ball is 0.379m and this can be determined by conserving the momentum.

Given :

A ball of mass 'm' makes a head-on elastic collision with a second ball (at rest) and rebounds with a speed equal to 0.450 its original speed.

In order to determine the mass of the second ball, apply conservation of linear momentum.

[tex]\rm m_1u_1+m_2u_2=m_1v_1+m_2v_2[/tex]

where [tex]m_1[/tex] is the mass of the first ball, [tex]m_2[/tex] is the mass of the second ball, [tex]u_1[/tex] is the initial velocity of the first ball, [tex]u_2[/tex] is the initial velocity of the second ball, [tex]\rm v_1[/tex] is the final velocity of the first ball, and [tex]\rm v_2[/tex] is the final velocity of the second ball.

Now, substitute the known terms in the above formula.

[tex]\rm mu_1+0=0.45u_1m+m_2v_2[/tex]

[tex]\rm mu_1=0.45u_1m+m_2v_2[/tex]   ----  (1)

For elastic collision, the velocity is given by:

[tex]\rm v_1+u_1=v_2+u_2[/tex]

[tex]\rm 0.45u_1+u_1=0+v_2[/tex]

[tex]\rm v_2 = 1.45u_1[/tex]

Now, substitute the value of [tex]\rm v_2[/tex] in the equation (1).

[tex]\rm mu_1=0.45u_1m+1.45u_1m_2[/tex]

[tex]\rm 0.55mu_1=1.45m_2u_1[/tex]

[tex]\rm m_2=0.379m[/tex]

So, the mass of the second ball is 0.379m.

For more information, refer to the link given below:

https://brainly.com/question/19689434

A 26 kg child is coasting at 2.0 m/s over flat ground in a 5.0 kg wagon. The child drops a 1.5 kg ball from the side of the wagon. What is the final speed (in m/s) of the child and wagon

Answers

Answer:

Final speed = 2.067 m/s

Explanation:

We are told that the child weighs 26 kg.

Also, that the wagon weighs 5kg.

Thus,initial mass of the child and wagon with ball is;

m_i = 26 + 5 = 31 kg.

Also, we are told that the child now dropped 1.5 kg ball from the wagon. So,

Final mass is;

m_f = 26 + 5 - 1 = 30 kg

Now, from conservation of linear momentum, we know that;

Initial momentum = final momentum

Thus;

m_i * v_i = m_f * v_f

Where v_i is initial velocity and v_f is final velocity.

Making v_f the subject, we have;

v_f = (m_i * v_i)/m_f

We are given that initial velocity v_i = 2 m/s

Plugging in the relevant values, we have;

v_f = (31 * 2)/30

v_f = 2.067 m/s

6. A plane due to fly from Montreal to Edmonton required refueling. Because the fuel gauge on the aircraft was not working, a mechanic used a dipstick to determine that 7682 L of fuel were left on the plane. The plane required 22,300 kg of fuel to make the trip. In order to determine the volume of fuel required during the refueling, the pilot asked for the density of the fuel so he could convert a volume of fuel to a mass of fuel. The mechanic provided a factor of 1.77. Assuming that this factor was in metric units (kg/L), the pilot calculated the volume to be added as 4916 L. This volume of fuel was added and the plane subsequently ran out of fuel, but landed safely by gliding into Gimli Airport near Winnipeg. The error arose because the factor 1.77 was in units of pounds per liter (lbs/L). How many liters of fuel should have been added

Answers

Answer:

The amount of liters of fuel should have been added is  20093 L

Explanation:

Given that;

a mechanic used a dipstick to determine that 7682 L of fuel were left on the plane

i.e the volume of fuel left in the plane = 7682 L

Required fuel to make  a trip = 22,300 kg of fuel

Also from the question; we are being told that in order for the pilot to determine the volume ; he asked for the density of the fuel and the mechanic said 1.77.

This volume of fuel was added and the plane subsequently ran out of fuel, but landed safely by gliding into Gimli Airport near Winnipeg. The error arose because the factor 1.77 was in units of pounds per liter (lbs/L).

Now; we can understand that the density of the fuel was 1.77 pound /litre.

SO , let convert 1.77 pound /litre to kg/Litre;

we all know that

1 pound = 0.4536 kg

1.77 pound/litre  = x kg

If we cross multiply ; we will have:

1.77 pound/litre  × 0.4536 kg = 1 pound × x kg

x kg = (1.77 pound/litre  × 0.4536 kg) /1 pound

x = 0.802872 kg/litre

[tex]\mathbf{Density = \dfrac{mass}{volume}}[/tex]

where ;

mass =  22,300 kg of fuel

volume = unknown ???

density = 0.802872 kg/litre

making volume the subject of the formula from above; we have:

[tex]\mathbf{volume = \dfrac{mass}{Density}}[/tex]

[tex]\mathbf{volume = 22300 \ kg \ of \ fuel *\dfrac{1 \ litre }{0.802872 \ kg \ of \ fuel}}[/tex]

volume = 27775.28672 litre

volume [tex]\approx[/tex] 27775 L

Let not forget that we are being told as well that the volume of fuel left in the plane = 7682 L

Now;

The amount of liters of fuel should have been added is: =  27775 L - 7682 L

The amount of liters of fuel should have been added is  20093 L

The smallest shift you can reliably measure on the screen is about 0.2 grid units. This shift corresponds to the precision of positions measured with the best Earth-based optical telescopes. If you cannot measure an angle smaller than this, what is the maximum distance at which a star can be located and still have a measurable parallax

Answers

Answer:

The distance is  [tex]d = 1.5 *10^{15} \ km[/tex]

Explanation:

From the question we are told that

        The smallest shift is [tex]d = 0.2 \ grid \ units[/tex]

Generally a grid unit is  [tex]\frac{1}{10}[/tex] of  an arcsec

  This implies that  0.2 grid unit is  [tex]k = \frac{0.2}{10} = 0.02 \ arc sec[/tex]

The maximum distance at which a star can be located and still have a measurable parallax is mathematically represented as

           [tex]d = \frac{1}{k}[/tex]

substituting values

           [tex]d = \frac{1}{0.02}[/tex]

           [tex]d = 50 \ parsec[/tex]

Note  [tex]1 \ parsec \ \to 3.26 \ light \ year \ \to 3.086*10^{13} \ km[/tex]

So  [tex]d = 50 * 3.08 *10^{13}[/tex]

     [tex]d = 1.5 *10^{15} \ km[/tex]

A ball is thrown straight up from the edge of the roof of a building. A second ball is dropped from the roof 1.0 s later. You may ignore air resistance. If the height of the building is 20 m, what must the initial speed be of the first ball if both balls are to hit the ground at the same time

Answers

Answer:

4.9 m/s

Hope this helps! ;)

Explanation:

A 56.0 g ball of copper has a net charge of 2.10 μC. What fraction of the copper’s electrons has been removed? (Each copper atom has 29 protons, and copper has an atomic mass of 63.5.)

Answers

Answer:

The fraction of the cooper's electrons that is removed is [tex]8.5222\times 10^{-11}[/tex].

Explanation:

An electron has a mass of [tex]9.1 \times 10^{-31}\,kg[/tex] and a charge of [tex]-1.6 \times 10^{-19}\,C[/tex]. Based on the Principle of Charge Conservation, [tex]-2.10\times 10^{-6}\,C[/tex] in electrons must be removed in order to create a positive net charge. The amount of removed electrons is found after dividing remove charge by the charge of a electron:

[tex]n_{R} = \frac{-2.10\times 10^{-6}\,C}{-1.6 \times 10^{-19}\,C}[/tex]

[tex]n_{R} = 1.3125 \times 10^{13}\,electrons[/tex]

The number of atoms in 56 gram cooper ball is determined by the Avogadro's Law:

[tex]n_A = \frac{m_{ball}}{M_{Cu}}\cdot N_{A}[/tex]

Where:

[tex]m_{ball}[/tex] - Mass of the ball, measured in kilograms.

[tex]M_{Cu}[/tex] - Atomic mass of cooper, measured in grams per mole.

[tex]N_{A}[/tex] - Avogradro's Number, measured in atoms per mole.

If [tex]m_{ball} = 56\,g[/tex], [tex]M_{Cu} = 63.5\,\frac{g}{mol}[/tex] and [tex]N_{A} = 6.022\times 10^{23}\,\frac{atoms}{mol}[/tex], the number of atoms is:

[tex]n_{A} = \left(\frac{56\,g}{63.5\,\frac{g}{mol} } \right)\cdot \left(6.022\times 10^{23}\,\frac{atoms}{mol} \right)[/tex]

[tex]n_{A} = 5.3107\times 10^{23}\,atoms[/tex]

As there are 29 protons per each atom of cooper, there are 29 electrons per atom. Hence, the number of electrons in cooper is:

[tex]n_{E} = \left(29\,\frac{electrons}{atom} \right)\cdot (5.3107\times 10^{23}\,atoms)[/tex]

[tex]n_{E} = 1.5401\times 10^{23}\,electrons[/tex]

The fraction of the cooper's electrons that is removed is the ratio of removed electrons to total amount of electrons when net charge is zero:

[tex]x = \frac{n_{R}}{n_{E}}[/tex]

[tex]x = \frac{1.3125\times 10^{13}\,electrons}{1.5401\times 10^{23}\,electrons}[/tex]

[tex]x = 8.5222 \times 10^{-11}[/tex]

The fraction of the cooper's electrons that is removed is [tex]8.5222\times 10^{-11}[/tex].

Other Questions
The owner of Limp Pines Resort wanted to know the average age of its clients. A random sample of 25 tourists is taken. It shows a mean age of 46 years with a standard deviation of 5 years. The width of a 98 percent confidence interval for the true mean client age is approximately:_______.A. 2.492 years. B. 1.711 years. C. 2.326 years. D. 2.797 years. Which Enlightenment idea is reflected in the Declaration of Independence? A transformer has 500 turns of the primary winding and 10 turns of the secondary winding. a) Determine the secondary voltage if the secondary circuit is open and the primary voltage is 120 V write an equation to find the value of x: How do animals get rid of excessive nitrogen? How was the fight for voting rights during the Civil Rights movement a continuation of the fight from reconstruction? 2/3 divided by 3/4 and for answer of 8/9. Which statement is true Please helppp brainlist thanks Judy Blume's career as an American writer spans four decades and includes many literary awards. She is most famous for her novels geared toward pre-teens. One notable example is Tales of a Fourth-Grade Nothing. However, Blume also has had success writing for an adult audience. Three of her novels for adults reached the New York Times best-seller list. In a 2008 interview Blume remarked, "I have so many stories left to tell!" By that time she had written nearly 30 novels. Judy Blume an exceptionally talented and productive American author. Which of the following lists represents text evidence pieces that all support the main idea in this paragraph? Four decades, many awards, best known for pre-teen novels Many awards, can write for multiple audiences, 30 novels Tales of a Fourth-Grade Nothing, best-seller list, interview American writer, Tales of a Fourth-Grade Nothing, 30 novels Taste molecules are unique because different molecules trigger _______ in the nose and mouth A bridge connecting two cities separated by a lake has a length of 5.651 mi.Use the table of facts to find the length of the bridge in yards.Round your answer to the nearest tenth. Supriya has a pre-paid electricity connection at home. On a sultry Sunday afternoon, she checks that she only has 9 left in the balance. She wants to use the air conditioner (AC), rated at 1.2 kW. The price of electricity is 10 /unit in her area. How long can she run the AC before her balance is over and the power runs out? The amount of earnings distributed to stockholders can be found in the income statement. Sally's Choice sells season memberships for $200 each. During January 2017, 60 season memberships were sold. As of March 31, 2017, $3,000 of season membership fees had been collected from customers. The season runs for four months starting March 1, 2017. Which one of the following is an amount reported on the financial statements for the period ending March 31, 2017? Unearned membership revenue of $3,000 Unearned membership revenue of $9,000 Accounts receivable of $3,000 Membership revenue of $9,000 False What is this poem about The Winds of Fate The ratio of the number of Andys seashells to the number of Bens seashell is 4:9. Andy has 100 seashells. How many seashells does Ben have? One kind of plant has only blue flowers and white flowers. According to a genetic model, the offsprings of a certain cross have a 0.75 chance to be blue-flowering, and a 0.25 chance to be white-flowering, independently of one another. Two hundred seeds of such a cross are raised, and 142 turn out to be blue-flowering. We are interested in determining whether the data are consistent with the model or, alternatively, the chance to be blue-flowering is smaller than 0.75. For this question, find the appropriate test statistic. Recorded here are the germination times (in days) for ten randomly chosen seeds of a new type of bean. See Attached Excel for Data. Assume that the population germination time is normally distributed. Find the 99% confidence interval for the mean germination time. What is the percent of nitrogen in dinitrogen pentoxide?A 74.1B 62.8C 44.4D 25.9 If h(x) = x - 7 and g(x) = x2, which expression is equivalent to (gn (5)? how does the fact that a parallelogram has rotational symmetry demonstrates that opposite side of a parallelogram are congruent ? A pharmacy claims that the average medication costs $32, but it could differ by as much as $8. Write an absolute value inequality to determine the range of medication costs at this pharmacy.u