Calculate the equivalent capacitance of the three series capacitors in Figure 12-1

Answers

Answer 1

The question is incomplete! Complete question along with answer and step by step explanation is provided below.

Question:

Calculate the equivalent capacitance of the three series capacitors in Figure 12-1

a) 0.01 μF

b) 0.58 μF

c) 0.060 μF

d) 0.8 μF

Answer:

The equivalent capacitance of the three series capacitors in Figure 12-1 is 0.060 μF

Therefore, the correct option is (c)

Explanation:

Please refer to the attached Figure 12-1 where three capacitors are connected in series.

We are asked to find out the equivalent capacitance of this circuit.

Recall that the equivalent capacitance in series is given by

[tex]$ \frac{1}{C_{eq}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}} $[/tex]

Where C₁, C₂, and C₃ are the individual capacitance connected in series.

C₁ = 0.1 μF

C₂ = 0.22 μF

C₃ = 0.47 μF

So the equivalent capacitance is

[tex]$ \frac{1}{C_{eq}} = \frac{1}{0.1} + \frac{1}{0.22} + \frac{1}{0.47} $[/tex]

[tex]$ \frac{1}{C_{eq}} = \frac{8620}{517} $[/tex]

[tex]$ C_{eq} = \frac{517}{8620} $[/tex]

[tex]$ C_{eq} = 0.0599 $[/tex]

Rounding off yields

[tex]$ C_{eq} = 0.060 \: \mu F $[/tex]

The equivalent capacitance of the three series capacitors in Figure 12-1 is 0.060 μF

Therefore, the correct option is (c)

Calculate The Equivalent Capacitance Of The Three Series Capacitors In Figure 12-1

Related Questions

An Ideal gas is being heated in a circular duct as while flowing over an electric heater of 130 kW. The diameter of duct is 500 mm. The gas enters the heating section of the duct at 100 kPa and 27 deg C with a volume flow rate of 15 m3/s. If heat is lost from the gas in the duct to the surroundings at a rate of 80 kW, Calculate the exit temperature of the gas in deg C. (Assume constant pressure, ideal gas, negligible change in kinetic and potential energies and constant specific heat; Cp =1000 J/kg K; R = 500 J/kg K)

Answers

Answer:

Exit temperature = 32°C

Explanation:

We are given;

Initial Pressure;P1 = 100 KPa

Cp =1000 J/kg.K = 1 KJ/kg.k

R = 500 J/kg.K = 0.5 Kj/Kg.k

Initial temperature;T1 = 27°C = 273 + 27K = 300 K

volume flow rate;V' = 15 m³/s

W = 130 Kw

Q = 80 Kw

Using ideal gas equation,

PV' = m'RT

Where m' is mass flow rate.

Thus;making m' the subject, we have;

m' = PV'/RT

So at inlet,

m' = P1•V1'/(R•T1)

m' = (100 × 15)/(0.5 × 300)

m' = 10 kg/s

From steady flow energy equation, we know that;

m'•h1 + Q = m'h2 + W

Dividing through by m', we have;

h1 + Q/m' = h2 + W/m'

h = Cp•T

Thus,

Cp•T1 + Q/m' = Cp•T2 + W/m'

Plugging in the relevant values, we have;

(1*300) - (80/10) = (1*T2) - (130/10)

Q and M negative because heat is being lost.

300 - 8 + 13 = T2

T2 = 305 K = 305 - 273 °C = 32 °C

Cathy works in a welding shop. While working one day, a pipe falls from scaffolding above and lands on her head, injuring her. Cathy complains to OSHA, but the company argues that because it has a "watch out for falling pipe" sign in the workplace that it gave fair warning. It also says that if Cathy wasn’t wearing a hardhat that she is responsible for her own injury. Which of the following is true?1. Common law rules could hold Cathy responsible for her own injury.2. Cathy’s employer may not be held liable for her injury if it fulfilled compliance and general duty requirements.3. OSHA rules can hold Cathy’s employer responsible for not maintaining a hazard-free workplace.4. More than one answer is correct.

Answers

Answer:1 common law

Explanation:

It also says that if Cathy wasn’t wearing a hardhat hat she is responsible for her own injury, more than one answer is correct.

What are OSHA rules?

In this case, if Cathy's employer completes compliance and general duty requirements then the organization may not be held liable and again, the law can generally hold Cathy responsible for the injuries as she was not wearing the proper kits for such work.

According to OSHA, Cathy’s employer may not be held liable for her injury if it fulfilled compliance and general duty requirements.

You are entitled to a secure workplace. To stop workers from being murdered or suffering other types of harm at work, the Occupational Safety and Health Act of 1970 (OSH Act) was passed. According to the legislation, companies are required to give their workers safe working environments.

Therefore, more than one answer is correct.

Learn more about OSHA, here:

https://brainly.com/question/13127795

#SPJ2

Engine oil (unused) flows at 1.81 x 10^-3 kg/s inside a 1-cm diameter tube that is heated electrically at a rate of 76 W/m. At a particular location where flow and heat transfer are fully developed, the wall temperature is 370K. Determine:

a. The oil mean temperature.
b. The centerline temperature.
c. The axial gradient of the mean temperature.
d. The heat transfer coefficient.

Answers

Answer:

(a)Tb = 330.12 K (b)Tc =304.73 K (c)19.81 K/m (d) h =60.65 W/m². K

Explanation:

Solution

Given that:

The mass flow rate of engine oil m = 1.81 x 10^-3 kg/s

Diameter of the tube, D = 1cm =0.01 m

Electrical heat rate, q =76 W/m

Wall Temperature, Ts = 370 K

Now,

From the properties table of engine oil we can deduce as follows:

thermal conductivity, k =0.139 W/m .K

Density, ρ = 854 kg/m³

Specific heat, cp = 2120 J/kg.K

(a) Thus

The wall heat flux is given as follows:

qs = q/πD

=76/π *0.01

= 2419.16 W/m²

Now

The oil mean temperature is given as follows:

Tb =Ts -11/24 (q.R/k) (R =D/2=0.01/2 = 0.005 m)

Tb =370 - 11/24 * (2419.16 * 0.005/0.139)

Tb = 330.12 K

(b) The center line temperature is given below:

Tc =Ts - 3/4 (qs.R/k)= 370 - 3/4 * ( 2419.16 * 0.005/0.139)

Tc =304.73 K

(c) The flow velocity is given as follows:

V = m/ρ (πR²)

Now,

The The axial gradient of the mean temperature is given below:

dTb/dx = 2 *qs/ρ *V*cp * R

=2 *qs/ρ*[m/ρ (πR²) *cp * R

=2 *qs/[m/(πR)*cp

dTb/dx = 2 * 2419.16/[1.81 x 10^-3/(π * 0.005)]* 2120

dTb/dx = 19.81 K/m

(d) The heat transfer coefficient is given below:

h =48/11 (k/D)

=48/11 (0.139/0.01)

h =60.65 W/m². K

You are installing network cabling and require a cable solution that provides the best resistance to EMI.Which of the following will you choose for this installation?

Answers

Answer: b. STP

Explanation:

Twisted Pair Cables are best used for network cabling but are usually prone to EMI (Electromagnetic Interference) which affects the electrical circuit negatively.

The best way to negate this effect is to use Shielding which will help the cable continue to function normally. This is where the Shielded Twisted Pair (STP) cable comes in.

As the name implies, it comes with a shield and that shield is made out of metal which can enable it conduct the Electromagnetic Interference to the ground. The Shielding however makes it more expensive and in need of more care during installation.

A very large thin plate is centered in a gap of width 0.06 m with a different oils of unknown viscosities above and below; one viscosity is twice the other. When the plate is pulled at a velocity of 0.3 m/s, the resulting force on one square meter of plate due to the viscous shear on both sides is 29 N. Assuming viscous flow and neglecting all end effects calculate the viscosities of the oils.

Answers

Answer:

The viscosities of the oils are 0.967 Pa.s and 1.933 Pa.s

Explanation:

Assuming the two oils are Newtonian fluids.

From Newton's law of viscosity for Newtonian fluids, we know that the shear stress is proportional to the velocity gradient with the viscosity serving as the constant of proportionality.

τ = μ (∂v/∂y)

There are oils above and below the plate, so we can write this expression for the both cases.

τ₁ = μ₁ (∂v/∂y)

τ₂ = μ₂ (∂v/∂y)

dv = 0.3 m/s

dy = (0.06/2) = 0.03 m (the plate is centered in a gap of width 0.06 m)

τ₁ = μ₁ (0.3/0.03) = 10μ₁

τ₂ = μ₂ (0.3/0.03) = 10μ₂

But the shear stress on the plate is given as 29 N per square meter.

τ = 29 N/m²

But this stress is a sum of stress due to both shear stress above and below the plate

τ = τ₁ + τ₂ = 10μ₁ + 10μ₂ = 29

But it is also given that one viscosity is twice the other

μ₁ = 2μ₂

10μ₁ + 10μ₂ = 29

10(2μ₂) + 10μ₂ = 29

30μ₂ = 29

μ₂ = (29/30) = 0.967 Pa.s

μ₁ = 2μ₂ = 2 × 0.967 = 1.933 Pa.s

Hope this Helps!!!

Given the circuit at the right in which the following values are used: R1 = 20 kΩ, R2 = 12 kΩ, C = 10 µ F, and ε = 25 V. You close the switch at t = 0. Find (a) the current in R1 and R2 at t=0, (b) the voltage across R1 after a long time. (Careful with this one.)

Answers

Answer:

a.) I = 7.8 × 10^-4 A

b.) V(20) = 9.3 × 10^-43 V

Explanation:

Given that the

R1 = 20 kΩ,

R2 = 12 kΩ,

C = 10 µ F, and

ε = 25 V.

R1 and R2 are in series with each other.

Let us first find the equivalent resistance R

R = R1 + R2

R = 20 + 12 = 32 kΩ

At t = 0, V = 25v

From ohms law, V = IR

Make current I the subject of formula

I = V/R

I = 25/32 × 10^3

I = 7.8 × 10^-4 A

b.) The voltage across R1 after a long time can be achieved by using the formula

V(t) = Voe^- (t/RC)

V(t) = 25e^- t/20000 × 10×10^-6

V(t) = 25e^- t/0.2

After a very long time. Let assume t = 20s. Then

V(20) = 25e^- 20/0.2

V(20) = 25e^-100

V(20) = 25 × 3.72 × 10^-44

V(20) = 9.3 × 10^-43 V

Using models helps scientists conduct research. How else can research using models save lives?

Answers

Answer: find the answer in the explanation.

Explanation:

Some of the methods of science are hypothesis, observations and experiments.

Scientific research and findings cut across many areas and field of life. Field like engineering, astronomy and medicine e.t.c

Using models in research is another great method in which researchers and scientists can master a process of a system and predict how it works.

Wilbur and Orville Wright wouldn't have died if the first airplane built by these two wonderful brothers was first researched by using models and simulations before embarking on a test.

Modelling in science involves calculations by using many mathematical methods and equations and also by using many laws of Physics. In this present age, many of these are computerised.

In space science, it will save lives, time and money to first model and simulate if any new thing is discovered in astronomy rather than people going to the space by risking their lives.

Also in medicine, drugs and many medical equipment cannot be tested by using people. This may lead to chaos and loss of lives.

So research using models in astronomy, medicine, engineering and many aspects of science and technology can indeed save lives.

A horizontal turbine takes in steam with an enthalpy of h = 2.80 MJ/kg at 45 m/s. A steam-water mixture exits the turbine with an enthalpy of h = 1.55 MJ/kg at 20 m/s. If the heat loss to the surroundings from the turbine is 300 J/s, determine the power the fluid supplies to the turbine. The mass flow rate is 0.85 kg/s.

Answers

Answer:

The power that fluid supplies to the turbine is 1752.825 kilowatts.

Explanation:

A turbine is a device that works usually at steady state. Given that heat losses exists and changes in kinetic energy are not negligible, the following expression allows us to determine the power supplied by the fluid to the turbine by the First Law of Thermodynamics:

[tex]-\dot Q_{loss} - \dot W_{out} + \dot m \cdot \left[(h_{in}-h_{out}) + \frac{1}{2}\cdot (v_{in}^{2}-v_{out}^{2}) \right] = 0[/tex]

Output power is cleared:

[tex]\dot W_{out} = -\dot Q_{loss} + \dot m \cdot \left[(h_{in}-h_{out})+\frac{1}{2}\cdot (v_{in}^{2}-v_{out}^{2}) \right][/tex]

If [tex]\dot Q_{loss} = 0.3\,kW[/tex], [tex]\dot m = 0.85\,\frac{kg}{s}[/tex], [tex]h_{in} = 2800\,\frac{kJ}{kg}[/tex], [tex]h_{out} = 1550\,\frac{kJ}{kg}[/tex], [tex]v_{in} = 45\,\frac{m}{s}[/tex] and [tex]v_{out} = 20\,\frac{m}{s}[/tex], then:

[tex]\dot W_{out} = -0.3\,kW + \left(0.85\,\frac{kg}{s} \right)\cdot \left\{\left(2800\,\frac{kJ}{kg}-1550\,\frac{kJ}{kg} \right)+\frac{1}{2}\cdot \left[\left(45\,\frac{m}{s} \right)^{2}-\left(20\,\frac{m}{s} \right)^{2}\right] \right\}[/tex]

[tex]\dot W_{out} = 1752.825\,kW[/tex]

The power that fluid supplies to the turbine is 1752.825 kilowatts.

An undersea research chamber is spherical with an external diameter of 3.50 mm . The mass of the chamber, when occupied, is 21700 kg. It is anchored to the sea bottom by a cable. Find the followings

Required:
a. The buoyant force on the chamber.
b. The tension in the cable?

Answers

Answer:

a. The buoyant force on the chamber is 220029.6 N

b. The tension in the cable is 7369.6 N

Explanation:

The diameter of the sphere cannot be in millimeter (mm), if the chamber must occupy a big mass as 21700kg

Given;

diameter of the sphere, d = 3.50 m

radius of the sphere, r = 1.75 mm = 1.75 m

mass of the chamber, m = 21700 kg

density of water, ρ = 1000 kg/m³

(a)

Buoyant force is the weight of water displaced, which is calculated as;

Fb = ρvg

where;

v is the volume of sphere, calculated as;

[tex]V = \frac{4}{3} \pi r^3\\\\V = \frac{4}{3} \pi (1.75)^3\\\\V = 22.452 \ m^3[/tex]

Fb = 1000 x 22.452 x 9.8

Fb = 220029.6 N

(b)

The tension in the cable will be calculated as;

T = Fb - mg

T = 220029.6 N - (21700 x 9.8)

T =  220029.6 N - 212660 N

T = 7369.6 N

Consider a refrigerator that consumes 400 W of electric power when it is running. If the refrigerator runs only one-quarter of the time and the unit cost of electricity is $0.13/kWh, what is the electricity cost of this refrigerator per month (30 days)

Answers

Answer:

Electricity cost = $9.36

Explanation:

Given:

Electric power = 400 W = 0.4 KW

Unit cost of electricity = $0.13/kWh

Overall time = 1/4 (30 days) (24 hours) = 180 hours

Find:

Electricity cost

Computation:

Electricity cost = Electric power  x Unit cost of electricity x Overall time

Electricity cost = 0.4 x $0.13 x 180

Electricity cost = $9.36

Given:

Electric power = 400 W = 0.4 KW

Over all Time  = 30(1/4) = 7.5 days

Unit cost of electricity = $0.13/kWh

Find:

Electricity cost.

Computation:

Electricity cost = Electric power x Unit cost of electricity x Over all Time

Electricity cost = 0.4 x 0.13 x 7.5

Electricity cost = $

An airplane flies from San Francisco to Washington DC at an air speed of 800 km/hr. Assume Washington is due east of San Francisco at a distance of 6000 km. Use a Cartesian system of coordinates centered at San Francisco with Washington in the positive x-direction. At cruising altitude, there is a cross wind blowing from north to south of 100 km/hr.

Required:
a. What must be the direction of flight for the plane to actually arrive in Washington?
b. What is the speed in the San Francisco to Washington direction?
c. How long does it take to cover this distance?
d. What is the time difference compared to no crosswind?

Answers

Answer:

A.) 7.13 degree north east

B.) 806.23 km/h

C.) 7.44 hours

D.) 0.06 hours

Explanation:

Assume Washington is due east of San Francisco and Francisco with Washington in the positive x-direction

Also, the cross wind is blowing from north to south of 100 km/hr in y coordinate direction.

A.) Using Cartesian system of coordinates, the direction of flight for the plane to actually arrive in Washington can be calculated by using the formula

Tan Ø = y/x

Substitute y = 100 km/h and x = 800km/h

Tan Ø = 100/800

Tan Ø = 0.125

Ø = Tan^-1(0. 125)

Ø = 7.13 degrees north east.

Therefore, the direction of flight for the plane to actually arrive in Washington is 7.13 degree north east

B.) The speed in the San Francisco to Washington direction can be achieved by using pythagorean theorem

Speed = sqrt ( 800^2 + 100^2)

Speed = sqrt (650000)

Speed = 806.23 km/h

C.) Let us use the speed formula

Speed = distance / time

Substitute the speed and distance into the formula

806.23 = 6000/ time

Make Time the subject of formula

Time = 6000/806.23

Time = 7.44 hours

D.) If there is no cross wind,

Time = 6000/800

Time = 7.5 hour

Time difference = 7.5 - 7.44

Time difference = 0.06 hours

A tubular reactor has been sized to obtain 98% conversion and to process 0.03 m^3/s. The reaction is a first-order irreversible isomerization. The reactor is 3 m long, with a cross- sectional area of 25 dm^2. After being built, a pulse tracer test on the reactor gave the following data: tm = 10 s and σ2 = 65 s2. What conversion can be expected in the real reactor?

Answers

Answer:

The conversion in the real reactor is = 88%

Explanation:

conversion = 98% = 0.98

process rate = 0.03 m^3/s

length of reactor = 3 m

cross sectional area of reactor = 25 dm^2

pulse tracer test results on the reactor :

mean residence time ( tm) = 10 s and variance (∝2) = 65 s^2

note:  space time (t) =

t = [tex]\frac{A*L}{Vo}[/tex]   Vo = flow metric flow rate , L = length of reactor , A = cross sectional area of the reactor

therefore (t) = [tex]\frac{25*3*10^{-2} }{0.03}[/tex] = 25 s

since the reaction is in first order

X = 1 - [tex]e^{-kt}[/tex]

[tex]e^{-kt}[/tex] = 1 - X

kt = In [tex]\frac{1}{1-X}[/tex]

k = In [tex]\frac{1}{1-X}[/tex] / t  

X = 98% = 0.98 (conversion in PFR ) insert the value into the above equation then  

K = 0.156 [tex]s^{-1}[/tex]

Calculating Da for a closed vessel

; Da = tk

      = 25 * 0.156 = 3.9

calculate Peclet number Per using this equation

0.65 = [tex]\frac{2}{Per} - \frac{2}{Per^2} ( 1 - e^{-per})[/tex]

therefore

[tex]\frac{2}{Per} - \frac{2}{Per^2} (1 - e^{-per}) - 0.65 = 0[/tex]

solving the Non-linear equation above( Per = 1.5 )

Attached is the Remaining part of the solution

When the transportation of natural gas in a pipeline is not feasible for economic reasons, it is first liquefied using nonconventional refrigeration techniques and then transported in super-insulated tanks. In a natural gas liquefaction plant, the liquefied natural gas (LNG) enters a cryogenic turbine at 30 bar and –160°C at a rate of 20 kg/s and leaves at 3 bar. If 120 kW power is produced by the turbine, determine the efficiency of the turbine. Take the density of LNG to be 423.8 kg/m3.

Answers

Answer:

the   isentropic efficiency of turbine is 99.65%

Explanation:

Given that:

Mass flow rate of LNG  m = 20 kg/s

The pressure at the inlet [tex]P_1 =30 \ bar[/tex]  = 3000 kPa

turbine temperature at the inlet [tex]T_1 = -160^0C[/tex] = ( -160+273)K = 113K

The pressure at the turbine exit [tex]P_2 = 3 bar[/tex] = 300 kPa

Power produced by the turbine  W = 120 kW

Density of LNG [tex]\rho = 423.8 \ kg/m^3[/tex]

The formula for the workdone by an ideal turbine can be expressed by:

[tex]W_{ideal} = \int\limits^2_1 {V} \, dP[/tex]

[tex]W_{ideal} ={V} \int\limits^2_1 \, dP[/tex]

[tex]W_{ideal} ={V} [P]^2_{1}[/tex]

[tex]W_{ideal} ={V} [P_1-P_2][/tex]

We all know that density = mass * volume i.e [tex]\rho= m*V[/tex]

Then ;

[tex]V = \dfrac{m}{\rho}[/tex]

replacing it into the above previous derived formula; we have:

[tex]W_{ideal} ={ \dfrac{m}{\rho}} [P_1-P_2][/tex]

[tex]W_{ideal} ={ \dfrac{20}{423.8}} [3000-300][/tex]

[tex]W_{ideal} ={ \dfrac{20}{423.8}} [2700][/tex]

[tex]W_{ideal} =0.04719*[2700][/tex]

[tex]W_{ideal} =127.42 kW[/tex]

However ; the isentropic efficiency of turbine is given by the relation:

[tex]n_{isen} =\dfrac{W}{W_{ideal}}[/tex]

[tex]n_{isen} =\dfrac{120}{120.42}[/tex]

[tex]n_{isen} =0.9965[/tex]

[tex]n_{isen} =[/tex] 99.65%

Therefore, the   isentropic efficiency of turbine is 99.65%

for an electromotive force to be induced across a vertical loop from the field of an infinite length line of fixed current in the z axis the loop must be moving to?​

Answers

Answer:

The correct answer to the following question will be "[tex]a_{x}[/tex] or [tex]a_{y}[/tex]".

Explanation:

Since along that same z-axis none electromagnetic field would be triggered as being in the same orientation loop movement of them across different line portions would allow some caused emf/voltage to be canceled. And the only logical choice seems to be either x or y-axes.The magnetic field of fluctuation should indeed be changed and changed across both X as well as Y directions.

So that the above is the appropriate choice.

Steam is contained in a closed rigid container which has a volume of 2 initially the the pressure and the temperature is the remeraturedrops as a result of heat transfer to the surroundings. Determine
a) the temperature at which condensation first occurs, in °C,
b) the fraction of the total mass that has condensed when the pressure reaches 0.5 bar.
c) What is the volume, in m3, occupied by saturated liquid at the final state?

Answers

The given question is incomplete. The complete question is as follows.

Steam is contained in a closed rigid container with a volume of 1 m3. Initially, the pressure and temperature of the steam are 10 bar and 500°C, respectively. The temperature drops as a result of heat transfer to the surroundings. Determine

(a) the temperature at which condensation first occurs, in [tex]^{o}C[/tex],

(b) the fraction of the total mass that has condensed when the pressure reaches 0.5 bar.

(c) What is the volume, in [tex]m^{3}[/tex], occupied by saturated liquid at the final state?

Explanation:

Using the property tables

  [tex]T_{1} = 500^{o}C[/tex],    [tex]P_{1}[/tex] = 10 bar

  [tex]v_{1} = 0.354 m^{3}/kg[/tex]

(a) During the process, specific volume remains constant.

  [tex]v_{g} = v_{1} = 0.354 m^{3}/kg[/tex]

  T = [tex](150 - 160)^{o}C[/tex]

Using inter-polation we get,

      T = [tex]154.71^{o}C[/tex]

The temperature at which condensation first occurs is [tex]154.71^{o}C[/tex].

(b) When the system will reach at state 3 according to the table at 0.5 bar then

  [tex]v_{f} = 1.030 \times 10^{-3} m^{3}/kg[/tex]

  [tex]v_{g} = 3.24 m^{3} kg[/tex]

Let us assume "x" be the gravity if stream

   [tex]v_{1} = v_{f} + x_{3}(v_{g} - v_{f})[/tex]

   [tex]x_{3} = \frac{v_{1} - v_{f}}{v_{g} - v_{f}}[/tex]

               = [tex]\frac{0.3540 - 0.00103}{3.240 - 0.00103}[/tex]

               = 0.109

At state 3, the fraction of total mass condensed is as follows.

  [tex](1 - x_{5})[/tex] = 1 -  0.109

                = 0.891

The fraction of the total mass that has condensed when the pressure reaches 0.5 bar is 0.891.

(c) Hence, total mass of the system is calculated as follows.

     m = [tex]\frac{v}{v_{1}}[/tex]

         = [tex]\frac{1}{0.354}[/tex]

         = 2.825 kg

Therefore, at final state the total volume occupied by saturated liquid is as follows.

     [tex]v_{ws} = m \times v_{f}[/tex]

                 = [tex]2.825 \times 0.00103[/tex]

                 = [tex]2.9 \times 10^{-3} m^{3}[/tex]

The volume occupied by saturated liquid at the final state is [tex]2.9 \times 10^{-3} m^{3}[/tex].

Q: Draw shear and bending moment diagram for the beam shown in
the figure. EI= constant






Answers

Answer:

Explanation:

Please

The benefit of using the generalized enthalpy departure chart prepared by using PR and TR as the parameters instead of P and T is that the single chart can be used for all gases instead of a single particular gas.

a. True
b. False

Answers

The answer is: a. True

If you've wondered about the flushing of toilets on the upper floors of city skyscrapers, how do you suppose the plumbing is designed so that there is not an enormous impact of sewage arriving at the basement level?

Answers

Answer:

The plumbing is designed to reduce the impact of pressure forces due to the height of skyscrapers. This is achieves by narrowing down the pipe down to the basement, using pipes with thicker walls down the basement, and allowing vents; to prevent clogging of the pipes.

Explanation:

Pressure increases with depth and density. In skyscrapers, a huge problem arises due to the very tall height of most skyscrapers. Also, sewage slug coming down has an increased density when compared to that of water, and these two factors can't be manipulated. The only option is to manipulate the pipe design. Pipes in skyscrapers are narrowed down with height, to reduce accumulation at the bottom basement before going to the sewage tank. Standard vents are provided along the pipes, to prevent clogging of the pipes, and pipes with thicker walls are used as you go down the basement of the skyscraper, to withstand the pressure of the sewage coming down the pipes.

A 2.75-kN tensile load is applied to a test coupon made from 1.6-mm flat steel plate (E = 200 GPa, ν = 0.30). Determine the resulting change in (a) the 50-mm gage length, (b) the width of portion AB of the test coupon, (c) the thickness of portion AB, (d) the cross- sectional area of portion AB.

Answers

Answer:

I have attached the diagram for this question below. Consult it for better understanding.

Find the cross sectional area AB:

A = (1.6mm)(12mm) = 19.2 mm² = 19.2 × 10⁻⁶m

Forces is given by:

F = 2.75 × 10³ N

Horizontal Stress can be found by:

σ (x) = F/A

σ (x) = 2.75 × 10³ / 19.2 × 10⁻⁶m

σ (x) = 143.23 × 10⁶ Pa

Horizontal Strain can be found by:

ε (x) = σ (x)/ E

ε (x) = 143.23 × 10⁶ / 200 × 10⁹

ε (x) = 716.15 × 10⁻⁶

Find Vertical Strain:

ε (y) = -v · ε (y)

ε (y) = -(0.3)(716.15 × 10⁻⁶)

ε (y) = -214.84 × 10⁻⁶

PART (a)

For L = 0.05m

Change (x) = L · ε (x)

Change (x) = 35.808 × 10⁻⁶m

PART (b)

For W = 0.012m

Change (y) = W · ε (y)

Change (y) = -2.5781 × 10⁻⁶m

PART(c)

For t= 0.0016m

Change (z) = t · ε (z)

where

ε (z) = ε (y) ,so

Change (z) = t · ε (y)

Change (z) = -343.74 × 10⁻⁹m

PART (d)

A = A(final) - A(initial)

A = -8.25 × 10⁻⁹m²

(Consult second picture given below for understanding how to calculate area)

The resulting change in the 50-mm gauge length; the width of portion AB of the test coupon; the thickness of portion AB; the cross- sectional area of portion AB are respectively; Δx = 35.808 × 10⁻⁶ m; Δy = -2.5781 × 10⁻⁶m; Δ_z = -343.74 × 10⁻⁹m; A = -8.25 × 10⁻⁹m²

What is the stress and strain in the plate?

Let us first find the cross sectional area of AB from the image attached;

A = (1.6mm)(12mm) = 19.2 mm² = 19.2 × 10⁻⁶m

We are given;

Tensile Load; F = 2.75 kN = 2.75 × 10³ N

Horizontal Stress is calculated from the formula;

σₓ = F/A

σₓ = (2.75 × 10³)/(19.2 × 10⁻⁶)m

σₓ = 143.23 × 10⁶ Pa

Horizontal Strain is calculated from;

εₓ = σₓ/E

We are given E = 200 GPa = 200 × 10⁹ Pa

Thus;

εₓ = (143.23 × 10⁶)/(200 × 10⁹)

εₓ = 716.15 × 10⁻⁶

Formula for Vertical Strain is;

ε_y = -ν * εₓ

We are given ν = 0.30. Thus;

ε_y  = -(0.3) * (716.15 × 10⁻⁶)

ε_y  = -214.84 × 10⁻⁶

A) We are given;

Gauge Length; L = 0.05m

Change in gauge length is gotten from;

Δx = L * εₓ

Δx = 0.05 × 716.15 × 10⁻⁶

Δx = 35.808 × 10⁻⁶ m

B) From the attached diagram, the width is;

W = 0.012m

Change in width is;

Δy = W * ε_y

Δy = 0.012 * -214.84 × 10⁻⁶

Δy = -2.5781 × 10⁻⁶m

C) We are given;

Thickness of plate; t = 1.6 mm = 0.0016m

Change in thickness;

Δ_z = t * ε_z

where;

ε_z = ε_y

Thus;

Δ_z = t * ε_y

Δ_z = 0.0016 * -214.84 × 10⁻⁶

Δ_z = -343.74 × 10⁻⁹m

D) The change in cross sectional area is gotten from;

ΔA = A_final - A_initial

From calculating the areas, we have;

A = -8.25 × 10⁻⁹ m²

Read more about stress and strain in steel plates at; https://brainly.com/question/1591712

Eight switches are connected to PORTB and eight LEDs are connected to PORTA. We would like to monitor the first two least significant bits of PORTB (use masking technique). Whenever both of these bits are set, switch all LEDs of Port A on for one second. Assume that the name of the delay subroutine is DELAY. You do not need to write the code for the delay procedure.

Answers

Answer:

In this example, the delay procedure is given below in the explanation section

Explanation:

Solution

The delay procedure is given below:

LDS # $4000 // load initial memory

LDAA #$FF

STAA  DDRA

LDAA #$00 //load address

STAA DDRB

THERE LDAA PORT B

           ANDA   #%00000011// port A and port B

           CMPA   #%0000011

           BNE     THERE

           LDAA   #$FF

           STAA    PORT A

           JSR       DELAY

           LDAA    #$00

           STAA     PORT A

           BACK     BRA BACK

Q#1: Provide an example of a software project that would be amenable to the following models. Be specific. a. Waterfall b. Prototype c. Extreme Programming

Answers

Answer:

Waterfall model

Explanation:

The waterfall model is amenable to the projects. It focused on the data structure. The software architecture and detail about the procedure. It will interfere with the procedure. It interfaces with the characterization of the objects. The waterfall model is the first model that is introduced first. This model also called a linear sequential life cycle model.

The waterfall model is very easy to use. This is the earliest approach of the SDLC.

There are different phase of the waterfall:

Requirement analysisSystem DesignImplementationTestingDeploymentMaintenance

A metal plate of 400 mm in length, 200mm in width and 30 mm in depth is to be machined by orthogonal cutting using a tool of width 5mm and a depth of cut of 0.5 mm. Estimate the minimum time required to reduce the depth of the plate by 20 mm

Answers

Complete Question:

A metal plate of 400 mm in length, 200mm in width and 30 mm in depth is to be machined by orthogonal cutting using a tool of width 5mm and a depth of cut of 0.5 mm. Estimate the minimum time required to reduce the depth of the plate by 20 mm if the tool moves at 400 mm per second.

Answer:

[tex]T_{min} =[/tex] 26 mins 40 secs

Explanation:

Reduction in depth, Δd = 20 mm

Depth of cut, [tex]d_c = 0.5 mm[/tex]

Number of passes necessary for this reduction, [tex]n = \frac{\triangle d}{d_c}[/tex]

n = 20/0.5

n = 40 passes

Tool width, w = 5 mm

Width of metal plate, W = 200 mm

For a reduction in the depth per pass, tool will travel W/w = 200/5 = 40 times

Speed of tool, v = 100 mm/s

[tex]Time/pass = \frac{40*400}{400} \\Time/pass = 40 sec[/tex]

minimum time required to reduce the depth of the plate by 20 mm:

[tex]T_{min} =[/tex] number of passes * Time/pass

[tex]T_{min} =[/tex] n * Time/pass

[tex]T_{min} =[/tex] 40 * 40

[tex]T_{min} =[/tex]  1600 = 26 mins 40 secs

Answer:

the minimum time required to reduce the depth of the plate by 20 mm is 26 minutes 40 seconds

Explanation:

From the given information;

Assuming the tool moves 100 mm/sec

The number of passes required to reduce the depth from 30 mm to 20 mm can be calculated as:

Number of passes = [tex]\dfrac{30-20}{0.5}[/tex]

Number of passes = 20

We know that the width of the tool is 5 mm; therefore, to reduce the depth per pass; the tool have to travel 20 times

However; the time per passes is;

Time/pass = [tex]\dfrac{20*L}{velocity \ of \ the \ feed}[/tex]

where;

length L = 400mm

velocity of the feed is assumed as 100

Time/pass  [tex]=\dfrac{20*400}{100}[/tex]

Time/pass = 80 sec

Thus; the minimum time required to reduce the depth of the plate by 20 mm can be estimated as:

[tex]T_{min} = Time/pass *number of passes[/tex]

[tex]T_{min} = 20*80[/tex]

[tex]T_{min} = 1600 \ sec[/tex]

[tex]T_{min}[/tex] = 26 minutes 40 seconds

To determine the viscosity of a liquid of specific gravity 0.95, you fill to a depth of 12 cm a large container that drains through a 30 cm long vertical tube attached to the bottom. The tube diameter is 2 mm, and the rate of draining is found to be 1.9 cm3 /s. What is the fluid viscosity (assume laminar flow)

Answers

Answer:

Fluid viscosity, [tex]\mu = 2.57 * 10^{-3} kgm^{-1}s^{-1}[/tex]

Explanation:

Container depth, D = 12 cm = 0.12 m

Tube length, l = 30 cm = 0.3 m

Specific Gravity, [tex]\rho[/tex] = 0.95

Tube diameter, d = 2 mm = 0.002 m

Rate of flow, Q = 1.9 cm³/s = 1.9 * 10⁻⁶ m³/s

Calculate the velocity at point 2 ( check the diagram attached)

Rate of flow at section 2, [tex]Q = A_2 v_2[/tex]

[tex]Area, A_2 = \pi d^{2} /4\\A_2 = \pi/4 * 0.002^2\\A_2 = 3.14159 * 10^{-6} m^2[/tex]

[tex]v_{2} = Q/A_{2} \\v_{2} =\frac{1.9 * 10^{-6}}{3.14 * 10^{-6}} \\v_{2} = 0.605 m/s[/tex]

Applying the Bernoulli (energy flow) equation between Point 1 and point 2 to calculate the head loss:

[tex]\frac{p_{1} }{\rho g} + \frac{v_{1}^2 }{2 g} + z_1 = \frac{p_{2} }{\rho g} + \frac{v_{2}^2 }{2 g} + z_2 + h_f\\ z_1 = L + l = 0.12 + 0.3\\z_1 = 0.42\\p_1 = p_{atm}\\v_1 = 0\\z_2 = 0\\\frac{p_{atm} }{\rho g} + \frac{0^2 }{2 g} + 0.42= \frac{p_{atm} }{\rho g} + \frac{0.605^2 }{2 *9.8} +0 + h_f\\h_f = 0.401 m[/tex]

For laminar flow, the head loss is given by the formula:

[tex]h_f = \frac{128 Q \mu l}{\pi \rho g d^4} \\\\0.401 = \frac{128 * 1.9 * 10^{-6} * 0.3 \mu}{\pi *0.95* 9.8* 0.002^4}\\\\\\\mu = \frac{0.401 * \pi *0.95* 9.8* 0.002^4}{128 * 1.9 * 10^{-6} * 0.3} \\\\\mu = 2.57 * 10^{-3} kgm^{-1}s^{-1}[/tex]

Answer:

0.00257 kg / m.s

Explanation:

Given:-

- The specific gravity of a liquid, S.G = 0.95

- The depth of fluid in free container, h = 12 cm

- The length of the vertical tube , L = 30 cm

- The diameter of the tube, D = 2 mm

- The flow-rate of the fluid out of the tube into atmosphere, Q = 1.9 cm^3 / s

Find:-

To determine the viscosity of a liquid

Solution:-

- We will consider the exit point of the fluid through the vertical tube of length ( L ), where the flow rate is measured to be Q = 1.9 cm^3 / s

- The exit velocity ( V2 ) is determined from the relation between flow rate ( Q ) and the velocity at that point.

                              [tex]Q = A*V_2[/tex]

Where,

             A: The cross sectional area of the tube

- The cross sectional area of the tube ( A ) is expressed as:

                                [tex]A = \pi \frac{D^2}{4} \\\\A = \pi \frac{0.002^2}{4} \\\\A = 3.14159 * 10^-^6 m^2[/tex]

- The velocity at the exit can be determined from the flow rate equation:

                              [tex]V_2 = \frac{Q}{A} \\\\V_2 = \frac{1.9*10^-^6}{3.14159*10^-^6} \\\\V_2 = 0.605 \frac{m}{s}[/tex]

- We will apply the energy balance ( head ) between the points of top-surface ( free surface ) and the exit of the vertical tube.

                    [tex]\frac{P_1}{p*g} + \frac{V^2_1}{2*g} + z_t_o_p = \frac{P_2}{p*g} + \frac{V^2_2}{2*g} + z_d_a_t_u_m + h_L[/tex]

- The free surface conditions apply at atmospheric pressure and still ( V1 = 0 ). Similarly, the exit of the fluid is also to atmospheric pressure. Where, z_top is the total change in elevation from free surface to exit of vertical tube.

- The major head losses in a circular pipe are accounted using Poiessel Law:

                           [tex]h_L = \frac{32*u*L*V}{S.G*p*g*D^2}[/tex]

Where,

                  μ: The dynamic viscosity of fluid

                  L: the length of tube

                  V: the average velocity of fluid in tube

                  ρ: The density of water

- The average velocity of the fluid in the tube remains the same as the exit velocity ( V2 ) because the cross sectional area ( A ) of the tube remains constant throughout the tube. Hence, the velocity also remains constant.

- The energy balance becomes:

                      [tex]h + L = \frac{V_2^2}{2*g} + \frac{32*u*L*V_2}{S.G*p*g*D^2} \\\\0.42 = \frac{0.605^2}{2*9.81} + \frac{32*u*(0.3)*(0.605)}{0.95*998*9.81*0.002^2} \\\\u = 0.00257 \frac{kg}{m.s}[/tex]

- Lets check the validity of the Laminar Flow assumption to calculate the major losses:

                     [tex]Re = \frac{S.G*p*V_2*D}{u} \\\\Re = \frac{0.95*998*0.605*0.002}{0.00257} \\\\Re = 446 < 2100[/tex]( Laminar Flow )

                             

Which of the following is normally included in the criteria of a design?
1. Materials
2. Time
3. Budget
4. Efficiency

Answers

Answer:

i took the test and its budget

Explanation:

Budget, of the following is normally included in the criteria of a design. Thus, option (c) is correct.

What is design?

The term design refers to the visual representation of image and shapes. The image is based on vector raster and bitmap. Who design the graphic is called graphic designer. The design main purpose to design of logo, word art, and advertisement design. The design mostly software as Coral Draw, Photoshop, Canva etc.

The criteria of a design are the budget. The budget was the financial as well as the monetary terminology. The criteria of the budget are the decided to how much they spend, and they save. The design on the country budget and the five-year plan.

As a result, the budget following is normally included in the criteria of a design. Therefore, option (c) is correct.

Learn more about on design, here:

https://brainly.com/question/14035075

#SPJ6

An aggregate blend is composed of 65% coarse aggregate by weight (Sp. Cr. 2.635), 36% fine aggregate (Sp. Gr. 2.710), and 5% filler (Sp. Cr. 2.748). The compacted specimen contains 6% asphalt binder (Sp. Gr. 1.088) by weight of total mix, and has a bulk density of 143.9 lb/ft^3 Ignoring absorption, compute the percent voids in total mix, percent voids in mineral aggregate, and the percent voids filled with asphalt.

Answers

Answer:

Explanation:

From the given information:

Addition of all the materials = 65+ 36+ 5 +6 = 112  which is higher than 100 percentage; SO we need to find;

The actual percentage of each material which can be determined as follows:

Percentage of the coarse aggregate will be = 65 × 112/100

= 72.80%

Percentage of the Fine aggregate will be = 36 × 112/100

= 40.32%

Percentage of the filler  will be = 5 × 112/100

= 5.6%

Percentage of the   asphalt binder will be = 6 × 112/100

= 6.72 %

So; the theoretical specific gravity (Gt) of the mixture can be calculated as follows:

Gt = 100/( 72.80/2.635 + 40.32/2.710 + 5.6/2.748 + 6.72/1.088)

Gt = 100/( 27.628 + 14.878 + 2.039 + 6.177)

Gt = 100/ (50.722)

Gt =1.972

Also;Given that the bulk density = 143.9 lb/ft³

LIke-wsie ; as we know that unit weight of water is =62.43lb/cu.ft

Hence, the bulk specific gravity of the mix (Gm) = 143.9/62.43

=2.305

The percentage of air  void  = (Gt -Gm )× 100/ Gt

= (1.972 - 2.305) ×  100/ 1.972

= -16.89%

The percentage of the asphalt binder is =(6.72/1.088*100)/(72.80+40.32+5.6+6.72)/2.305)

= 617.647/54.42

= 11.35%

Thus; the percentage voids in mineral aggregate =  -16.89% + 11.35%

the percentage voids in mineral aggregate = -5.45%

The percent voids filled with asphalt. = 100 × 11.35/-5.45

The percent voids filled with asphalt = - 208.26 %

You want to plate a steel part having a surface area of 160 with a 0.002--thick layer of lead. The atomic mass of lead is 207.19 . The density of lead is 11.36 . How many atoms of lead are required

Answers

Answer:

To answer this question we assumed that the area units and the thickness units are given in inches.

The number of atoms of lead required is 1.73x10²³.    

Explanation:

To find the number of atoms of lead we need to find first the volume of the plate:

[tex] V = A*t [/tex]

Where:

A: is the surface area = 160

t: is the thickness = 0.002

Assuming that the units given above are in inches we proceed to calculate the volume:

[tex]V = A*t = 160 in^{2}*0.002 in = 0.32 in^{3}*(\frac{2.54 cm}{1 in})^{3} = 5.24 cm^{3}[/tex]    

Now, using the density we can find the mass:

[tex] m = d*V = 11.36 g/cm^{3}*5.24 cm^{3} = 59.5 g [/tex]

Finally, with the Avogadros number ([tex]N_{A}[/tex]) and with the atomic mass (A) we can find the number of atoms (N):

[tex] N = \frac{m*N_{A}}{A} = \frac{59.5 g*6.022 \cdot 10^{23} atoms/mol}{207.19 g/mol} = 1.73 \cdot 10^{23} atoms [/tex]    

Hence, the number of atoms of lead required is 1.73x10²³.

I hope it helps you!

Consider a steady developing laminar flow of water in a constant-diameter horizontal discharge pipe attached to a tank. The fluid enters the pipe with nearly uniform velocity V and pressure P1. The velocity profile becomes parabolic after a certain distance with a momentum correction factor of 2 while the pressure drops to P2. Identify the correct relation for the horizontal force acting on the bolts that hold the pipe attached to the tank.

Answers

Answer:

hello attached is the free body diagram of the missing figure

Fr = [tex]\frac{\pi }{4} D^2 [ ( P1 - P2) - pV^2 ][/tex]

Explanation:

Average velocity is constant i.e V1 = V2 = V

The momentum equation for the flow in the Z - direction can be expressed as

-Fr + P1 Ac - P2 Ac = mB2V2 - mB1V1 ------- equation 1

Fr = horizontal force on the bolts

P1 = pressure of fluid at entrance

V1 = velocity of fluid at entrance

Ac = cross section area of the pipe

P2 and V2 = pressure and velocity of fluid at some distance

m = mass flow rate of fluid

B1 = momentum flux at entrance , B2 = momentum flux correction factor

Note; average velocity is constant hence substitute V for V1 and V2

equation 1 becomes

Fr = ( P1 - P2 ) Ac + mV ( 1 - 2 )

Fr = ( P1 - P2 ) Ac - mV ---------------- equation 2

equation for mass flow rate

m = pAcV  

p = density of the fluid

insert this into equation 2 EQUATION 2 BECOMES

Fr = ( P1 - P2) Ac - pAcV^2

    = Ac [ (P1 - P2) - pV^2 ]  ---------- equation 3

Note Ac = [tex]\frac{\pi }{4} D^2[/tex]

Equation 3 becomes

Fr = [tex]\frac{\pi }{4} D^2[/tex] [ (P1 -P2 ) - pV^2 ] ------- relation for the horizontal force acting on the bolts      

Time, budget, and safety are almost always considered to be
1. Efficiency
2. Constraints
3. Trade-offs
4. Criteria

Answers

Answer:

The answer is option # 2. (Constraints).

the answer is constraints

Waste cooking oil is to be stored for processing by pouring it into tank A, which is connected by a manometer to tank B. The manometer is completely filled with water. Measurements indicate that the material of tank B will fail and the tank will burst if the air pressure in tank B exceeds 18 kPa. To what height h can waste oil be poured into tank A? If air is accidentally trapped in the manometer line, what will be the error in the calculation of the height?

Answers

KINDLY NOTE that there is a picture in the question. Check the picture below for the picture.

==================================

Answer:

(1). 1.2 metres.

(2). There is going to be the same pressure.

Explanation:

From the question above we can take hold of the statement Below because it is going to assist or help us in solving this particular Question or problem;

" Measurements indicate that the material of tank B will fail and the tank will burst if the air pressure in tank B exceeds 18 kPa."

=> Also, the density of oil = 930

That is if Pressure, P in B > 18kpa there will surely be a burst.

The height, h the can waste oil be poured into tank A is;

The maximum pressure  = height × acceleration due to gravity × density) + ( acceleration due to gravity × density × height, j).

18 × 10^3 = (height, h ×  10 × 930) + 10 × (2 - 1.25) × 1000.

When we make height, h the Subject of the formula then;

Approximately, Height, h = 1.2 metres.

(2). If air is accidentally trapped in the manometer line, what will be the error in the calculation of the height we will have the same pressure.

A nozzle receives an ideal gas flow with a velocity of 25 m/s, and the exit at 100 kPa, 300 K velocity is 250 m/s. Determine the inlet temperature if the gas is argon, helium, or nitrogen.

Answers

Given Information:

Inlet velocity = Vin = 25 m/s

Exit velocity = Vout = 250 m/s

Exit Temperature = Tout = 300K

Exit Pressure = Pout = 100 kPa

Required Information:

Inlet Temperature of argon = ?

Inlet Temperature of helium = ?

Inlet Temperature of nitrogen = ?

Answer:

Inlet Temperature of argon = 360K

Inlet Temperature of helium = 306K

Inlet Temperature of nitrogen = 330K

Explanation:

Recall that the energy equation is given by

[tex]$ C_p(T_{in} - T_{out}) = \frac{1}{2} \times (V_{out}^2 - V_{in}^2) $[/tex]

Where Cp is the specific heat constant of the gas.

Re-arranging the equation for inlet temperature

[tex]$ T_{in} = \frac{1}{2} \times \frac{(V_{out}^2 - V_{in}^2)}{C_p} + T_{out}$[/tex]

For Argon Gas:

The specific heat constant of argon is given by (from ideal gas properties table)

[tex]C_p = 520 \:\: J/kg.K[/tex]

So, the inlet temperature of argon is

[tex]$ T_{in} = \frac{1}{2} \times \frac{(250^2 - 25^2)}{520} + 300$[/tex]

[tex]$ T_{in} = \frac{1}{2} \times 119 + 300$[/tex]

[tex]$ T_{in} = 360K $[/tex]

For Helium Gas:

The specific heat constant of helium is given by (from ideal gas properties table)

[tex]C_p = 5193 \:\: J/kg.K[/tex]

So, the inlet temperature of helium is

[tex]$ T_{in} = \frac{1}{2} \times \frac{(250^2 - 25^2)}{5193} + 300$[/tex]

[tex]$ T_{in} = \frac{1}{2} \times 12 + 300$[/tex]

[tex]$ T_{in} = 306K $[/tex]

For Nitrogen Gas:

The specific heat constant of nitrogen is given by (from ideal gas properties table)

[tex]C_p = 1039 \:\: J/kg.K[/tex]

So, the inlet temperature of nitrogen is

[tex]$ T_{in} = \frac{1}{2} \times \frac{(250^2 - 25^2)}{1039} + 300$[/tex]

[tex]$ T_{in} = \frac{1}{2} \times 60 + 300$[/tex]

[tex]$ T_{in} = 330K $[/tex]

Note: Answers are rounded to the nearest whole numbers.

Other Questions
Para correr ms rpido, entreno todos los das y para tirar la pelota mejor, levanto pesas. Me gusta participar en carreras de fondo para estirar los msculos de las piernas. In Emily Dickinson's poem "324" ("Some keep the Sabbath going to Church"), what does the speaker prefer to listen to? A) The choir singing B) Birds singing C) The church bell D) Her own music Daniel expanded the expression as shown. Negative 2 (Negative 8 x minus 4 y + three-fourths) = negative 10 x minus 8 y minus 1 and one-fourth What errors did he make? Select three options. Select all that apply. General Douglas MacArthur: A) wanted to fight an all-out war with the Communists B) was relieved of his command in Korea C) was opposed to a stalemate in war D) carried out peace negotiations in Korea E) disagreed with Kennedy's policies HURRY PLS!!!which expression is equivalent to 3(b+ c) using only the distributive property?3bc 3(c+b) 3b+3c (b+c) 3 So what do the bagel data have to say? In recent years, there have been two noteworthy trends in the overall payment rate. The first was a long, slow decline that began in 1992. By the summer of 2001, the overall rate had slipped to about 87 percent. But immediately after September 11 of that year the rate spiked a full 2 percent and hasnt slipped much since. (If a 2 percent gain in payment doesnt sound like much, think of it this way: the nonpayment rate fell from 13 to 11 percent, which amounts to a 15 percent decline in theft.) Because many of Feldmans customers are affiliated with national security, there may have been a patriotic element to the 9/11 Effect. Or it may have represented a more general surge in empathy. The excerpt serves as which type of support for the authors argument? I was the Internet or originally constructed Consider the following reaction where Kp = 2.01 at 500 K: PCl3(g) + Cl2(g) PCl5(g) If the three gases are mixed in a rigid container at 500 K so that the partial pressure of each gas is initially one atm, what will happen? Indicate True (T) or False (F) for each of the following: T 1. A reaction will occur in which PCl5(g) is consumed. T 2. Kp will decrease. F 3. A reaction will occur in which PCl3 is produced. F 4. Q is greater than K. F 5. The reaction is at equilibrium. No further reaction will occur. how many times do you need to add 5 to 17 to reach the product of 6 and 7 Explain how you can determine that the following system has one unique solution without actually solving the system.2x+y=42y=6-2x What does a high boiling point temperature indicate about a substance?A. Little heat has been added to the system.B. Intermolecular forces are hard to overcome.C. Chemical bond energy is very high.D. The pressure over the liquid is very low. Explain one problem that non-indigenous carp might cause for other organisms if the carp escaped from the ponds into nearby rivers. Knowing that The Land takes place in postCivil War America provides the reader with How long does it usually take for Hugo Crosthwaite to complete a mural?3 weeks1 week2 weeks which is the first step managers should take to resolve the conflict within a diverse team Oh football player kicks a football from the height of 4 feet with an initial vertical velocity of 64 ft./s use the vertical motion model H equals -16 tea to the power of 2+ VT plus S where V is initial velocity and feet per second and S is the height and feet to calculate the amount of time the football is in the air before it hits the ground round your answer to the nearest 10th if necessary. Why is it more important to check for errors during DNA replication than during translation?A) An error in translation affects only one cellB) Proteins function normally even when they have errorsC) Errors in DNA replication are not passed to more generationsD) Translation does not use a nucleic acid code A recipe calls for 3/5 gallon of milk. how much milk is needed to make half the recipe Bringing the nations of the world to act together in addressing environmental issues that spill over national borders requires _______________ between countries with _________________ . What happens to the Kinetic Energy of an object if its mass stays the same but its speed is doubled