How can your knowledge of acids and bases
help you approach this problem to keep your soil
viable?
HELP NOW
Answer:
How can we make use of acids or bases to remove heavy metals from soils? We can remove heavy metals from soil by adding acid and catching the solution that drains through. Acids can react with metals turning metalic compounds which can be dissolved by water and washed away. Improve crop yields?
Explanation:
A control. during a experiment
A scientific control is an experiment or observation designed to minimize the effects of variables other than the independent variable. This increases the reliability of the results, often through a comparison between control measurements and the other measurements.
How many grams of Fe3+ are present in 2.56 grams of iron(III) iodide?
Answer:
436.55841 grams.
Explanation:
The molecular formula for Iron(III) Iodide is FeI3. The SI base unit for amount of substance is the mole. 1 mole is equal to 1 moles Iron(III) Iodide, or 436.55841 grams.
You use the 1 / 436.55841 conversion rate. This is different for each element, according to the stoichiometry tables. Iron(II) oxide would be 2/3 of the 1/436.55841 conversion rate, that is, multiplying the fraction to denominator.
Calculate the molar mass of NH4NO3.
molar mass of NH4NO3 =
g/mol
Answer:
67g/mol
Explanation:
The given compound is:
NH₄NO₃ :
Problem here is to find the molar mass of the compound.
Now;
The molar mass is the sum of the atomic masses of the elements in the compound.
Atomic mass of N = 14g
Atomic mass of H = 1g
Atomic mass of O = 16g
So;
Molar mass = 14 + 4(1) + 1 + 3(16) = 67g/mol
Answer:
the answer is 80.0 grams per mole
Explanation:
How did the grandmother show her gratitude towards her granddaughter
answer this and in end please tell me how to mark answer as brainliest I will mark your answers as brainliest
Answer:
vgffffgggggvghvxgyfdgubvhumigrrdghg
When fat comes in contact with sodium hydroxide, it produces soap and glycerin. Determine whether this is a physical change or a chemical change. Explain your
Answer:
It is a chemical change
Explanation:
The combination of sodium hydroxide and fat yields soap and glycerine.
We have to remember that one of the characteristics of a chemical change is that new substance(es) is/are formed. We have to look out for this when considering any process.
We can see here that new substances were formed (soap and glycerine). Based on this, we can assert that a chemical change has taken place.
What is the coefficient, subscript for V, and subscript for O in V2O5
Answer: Coefficient 0
subscript for V 2
subscript for O 5
Explanation: yes
There is no coefficient in V₂O₅ and the subscript of vanadium V is 2 and the subscript of oxygen is 5.
What is vanadium pentoxide ?Vanadium pentoxide is an ionic compound formed by donating electrons from the vanadium metal to oxygen. The chemical formula of vanadium pentoxide is V₂O₅.
The chemical formula of a compound is written in terms of the chemical symbol of each constituent elements and the number of their atoms. The number of atoms is written as subscript for the chemical symbols.
In V₂O₅, there are are 2 vanadium atoms and 5 oxygen atoms. Coefficients are numbers prior to the formula in reaction. Here there is no coefficient and the subscript for V is 2 and that of O is 5.
Find more on chemical formula:
https://brainly.com/question/29031056
#SPJ2
How much volume (in cm3) is gained by a person who gains 12.3 lb of pure fat?
Answer:
So we are given with the mass while we are asked for the amount of volume. So this means, we must need an information on the density. From literature, the density of human fat is 0.918 g/cm³. Convert grams to lb by the conversion that 1,000 g = 2.2 lbs.
Density = 0.918 g/cm³ * (2.2 lbs/1,000 g) = 0.0020196 lb/cm³
Volume = Mass/Density = 12.2 lb / 0.0020196 lb/cm³
Volume = 6,040.8 cm³
Burning a marshmallow is an example of a
A. chemical change
B .no change
C. physical change
Answer:
A, chemical change
Explanation:
When marshmallows are toasted, a chemical change occurs. The sugar molecules in the marshmallow are being changed into carbon. Sugar can be changed into water molecules. When you toast marshmallows, the heat causes a chemical reaction producing water molecules which then evaporate, leaving the carbon behind.
John Dalton determined that the concept of atoms could be used to describe matter.
Which of the following is FALSE regarding John Dalton's four points about atomic theory.
A. Atoms are very small indivisible, indestructible particles.
B. Chemical compounds form when two or more kinds of atoms combine.
C. All matter is made up of atoms.
D. All molecules are identical in mass and other properties.
Answer:
D
Explanation:
I don't exactly remember his four points, but the D. is just not true anyway. For example, a molecule of water (H20) does that have the same properties or mass as Nitrogen dioxide or sulfer dioxide or something else
Answer:
The answer is D
Explanation:
As it is true that molecules are identical in mass.
Which of the below elements are part of a group? Feel free to use the periodic table.
A. H, He, O, C
B. Be, Mg, Ca, Sr
C. Li, Be, C, O
D. H, Li, Na, Mg
Answer:
B. Be, Mg, Ca, Sr
Explanation:
Be, Mg, Ca, Sr are parts of the alkaline Earth metal family/group. So they are the second most reactive elements following behind alkali metals. Furthermore, Be, Mg, Ca, Sr all have 2 valence electrons that lose them to form cations. They have low melting points, low boiling points, can conduct electricity, have high malleability and ductility.
Hope it helped!
When performing a multiplication or division calculation, significant figures in the calculated result are dictated by the _____ of the measured numbers.
The calculated result should have ______ the measured number in the calculation with the fewest _______.
Answer:
fewest; the same significant figures with; measured numbers.
Explanation:
Without mincing words let us dive straight into the solution to the above question. In order to be able to use the significant figures properly one must know the rules attached to it uses. This is so, because they contributes to the precision of measurements.
When performing multiplication or division calculation, the number of significant figures in the answer[result] will be determined by the one with the smallest number of significant figure in the problem. Therefore, if we have 6.56 which is three[3] significant figures and 1.2 which is two[2] significant figures, then the number of significant figures will be two[2].
6.56 × 1.2= 7.872 = 7.9[ to 2 significant figures].
My question my question
H2O as an oxidant only
Further explanationGiven
Reaction
2 Na + 2 H2O → 2 NaOH + H2
Required
The function of water in the equation
Solution
Water : oxidizing agent
Na : reducing agent
Na⁰ → Na⁺ (oxidation)
H⁺- → H⁰ (reduction)
Acids and bases according to Bronsted-Lowry
Acid = donor (donor) proton (H⁺ ion)
Base = proton (receiver) acceptor (H⁺ ion)
If water is acting as an acid it should only give 1 H +, so that becomes:
H₂O (l) ⇔ OH⁻ (aq) not H₂
How many lead atoms in Pb(OH) 4 ?
4 in hydrogen 4 in oxygen
Explanation:
hope this helps
Peeling a banana is an example of a
A. no change
B. chemical change
C. physical change
Answer:
C. Physical Change
Explanation:
Peeling a banana is not changing the banana's structure, it's still the same banana, but it looks different, which is a chemical change! Hope I helped!
What is homologous series. write the example.
. Predict the possible products for the following reaction and include
molecular, complete ionic, and net ionic equations.
NA2SO4 (aq) +γ (BrO3)2 (aq) --->
Answer:
Introduction
As a diligent student of chemistry, you will likely encounter tons of reactions that occur in aqueous solution (perhaps you are already drowning in them!). When ions are involved in a reaction, the equation for the reaction can be written with various levels of detail. Depending on which part of the reaction you are interested in, you might write a molecular, complete ionic, or net ionic equation.
Definitions of molecular, complete ionic, and net ionic equations
A molecular equation is sometimes simply called a balanced equation. In a molecular equation, any ionic compounds or acids are represented as neutral compounds using their chemical formulas. The state of each substance is indicated in parentheses after the formula. [Huh?]
Let's consider the reaction that occurs between \text{AgNO}_3AgNO
3
start text, A, g, N, O, end text, start subscript, 3, end subscript and \text{NaCl}NaClstart text, N, a, C, l, end text. When aqueous solutions of \text{AgNO}_3AgNO
3
start text, A, g, N, O, end text, start subscript, 3, end subscript and \text{NaCl}NaClstart text, N, a, C, l, end text are mixed, solid \text{AgCl}AgClstart text, A, g, C, l, end text and aqueous \text{NaNO}_3NaNO
3
start text, N, a, N, O, end text, start subscript, 3, end subscript are formed. Using this information, we can write a balanced molecular equation for the reaction:
\text{AgNO}_3(aq) + \text{NaCl}(aq) \rightarrow \text{AgCl}(s) + \text{NaNO}_3(aq)AgNO
3
(aq)+NaCl(aq)→AgCl(s)+NaNO
3
(aq)start text, A, g, N, O, end text, start subscript, 3, end subscript, left parenthesis, a, q, right parenthesis, plus, start text, N, a, C, l, end text, left parenthesis, a, q, right parenthesis, right arrow, start text, A, g, C, l, end text, left parenthesis, s, right parenthesis, plus, start text, N, a, N, O, end text, start subscript, 3, end subscript, left parenthesis, a, q, right parenthesis
[What kind of reaction is this?]
If we could zoom in on the contents of the reaction beaker, though, we wouldn't find actual molecules of \text{AgNO}_3AgNO
3
start text, A, g, N, O, end text, start subscript, 3, end subscript, \text{NaCl}NaClstart text, N, a, C, l, end text, or \text{NaNO}_3NaNO
3
start text, N, a, N, O, end text, start subscript, 3, end subscript. Since \text{AgNO}_3AgNO
3
start text, A, g, N, O, end text, start subscript, 3, end subscript, \text{NaCl}NaClstart text, N, a, C, l, end text, and \text{NaNO}_3NaNO
3
start text, N, a, N, O, end text, start subscript, 3, end subscript are soluble ionic compounds, they dissociate into their constituent ions in water. For example, \text{NaCl}NaClstart text, N, a, C, l, end text dissociates into one ion of \text{Na}^+Na
+
start text, N, a, end text, start superscript, plus, end superscript for every ion of \text{Cl}^-Cl
−
start text, C, l, end text, start superscript, minus, end superscript; these ions are stabilized by ion-dipole interactions with the surrounding water molecules. [I don't get it!]
Image of crystalline sodium chloride next to image of chloride and sodium ions dissociated in water. Each chloride ion is interacting with multiple water molecules through the positive dipole of the water, and each sodium ion is interacting with water molecules through the negative dipole of the water.
Image of crystalline sodium chloride next to image of chloride and sodium ions dissociated in water. Each chloride ion is interacting with multiple water molecules through the positive dipole of the water, and each sodium ion is interacting with water molecules through the negative dipole of the water.
Sodium chloride dissociates into sodium and chloride ions in water, and these ions become solvated by the highly polar water molecules. Image credit: "Salts: Figure 1" by OpenStax Anatomy and Physiology, CC-BY-NC-SA 4.0.
From the molecular formula, we can rewrite the soluble ionic compounds as dissociated ions to get the complete ionic equation:
\text{Ag}^+(aq) + \blueD{{\text{NO}_3}^-(aq)} + \maroonD{\text{Na}^+(aq)} + \text{Cl}^-(aq) \rightarrow \text{AgCl}(s) + \maroonD{\text{Na}^+(aq)} + \blueD{{\text{NO}_3}^- (aq)}Ag
+
(aq)+NO
3
−
(aq)+Na
+
(aq)+Cl
−
(aq)→AgCl(s)+Na
+
(aq)+NO
3
−
−
(aq)
+
Na
+
(aq)
+Cl
−
(aq)→AgCl(s)+
Na
+
(aq)
+
NO
3
−
(aq)
How many moles are in the following:
7.36 x 1024 of free Oxygen atoms
Answer: 12.2 moles
Explanation:
7.36x10^24/6.02214076x10^23 = 12.2 moles of free oxygen atoms
Mn(OH)3 what is it called
Answer:
Lets start by looking at the elements We had Mn= manganese OH= Hydroxide We have a subscript of 3 Hence Manganese III Hydroxide9. What metric unit would be most
appropriate to use when measuring
the length of a paperclip?
a. Millimeter
b. Decimeter
c. Meter
d. Kilometer
Answer: a. Millimeter
Explanation:
A paperclip is a small device or instrument that can be used to hold the papers or stack of papers together. The length of the paperclip can be measured using millimeter. It is equal to the thousands of meters. The millimeter is a dimension which is used to measure the very small length objects which have visible scale distances and length.
Decimeter can be used to measure the length of the object smaller than paperclips. Meter and kilometers are used for objects and distances larger than paperclip.
What are important things we can figure out by looking at a food web?
Answer:
We can find out what animals eat..and how long a food chain could get..?
Explanation:
An ionic compound contains 2 potassium cations for every 1 oxygen anion. What is the chemical formula of the compound?
Answer:
Chemical formula of the compound = K₂O
Explanation:
Given:
Number of potassium cation = 2
Number of oxygen anion = 1
Cross valency
Symbol of potassium = k
Symbol of oxygen = o
So;
Chemical formula of the compound = K₂O
How do the percent compositions for C3H6 and C4H7 compare?
A. They are the same
B. C4H8 has a higher percentage of carbon than C3H6.
C. C4H8 has a higher percentage of hydrogen than C3H6.
D. none of the above
A. They are the same
Further explanationGiven
C3H6 and C4H8
Required
The percent compositions
Solution
C₃H₆(MW = 42 g/mol)%C = 3.12/42 x 100% = 85.71%
%H = 6.1/42 x 1005 = 14.29%
C₄H₈(MW=56 g/mol)
%C = 4.12/56 x 100% = 85.71%
%H = 8.1/56 x 100%=14.29%
So they are the same, because mol ratio of C and H in both compounds is the same, 1: 2
a sample of solid is decomposed and found to contain 6.52g of potassium, 4.34 g of chromium and 5.34 of oxygen, what is the empirical formula of the compound? help asap
Answer:
K₂CrO₅
Explanation:
The empirical formula is the simplest formula of a compound. To find the empirical formula, we follow the procedure below:
Elements Potassium Chromium Oxygen
Mass 6.52 4.34 5.34
Molar mass 39 60 16
Number of moles 6.52/39 4.34/60 5.34/16
0.167 0.072 0.333
Divide through by
the smallest 0.167/0.072 0.072/0.072 0.333/0.072
2.3 1 4.6
2 1 5
Empirical formula K₂CrO₅
according to the bohr model of an atom, what happens when an electron moves from the second energy level to the third energy level and then back to the second energy level?
Answer:
when the atom moves to the third energy level, its energy increases. However, when it goes back to the second energy level its overall energy decreases.
Explanation:
the smallest (or innermost) energy level has the least amount of energy and the largest (or outer most) level needs the most amount of energy. In order for the electron to move from one level to the other, it would need to match the energy of that level.
A student sets up the following equation to convert a measurement.
(The ? stands for a number the student is
going to calculate.)
Fill in the missing part of this equation.
Note: your answer should be in the form of one or more fractions multiplied together.
gcm
3 kg.m
-2.9 x 10
0x0
.
X Х
5
Answer:
9 . this was not able the first one. it has to go on, I will not sure about
HELP!!! The chemical formula is different from the empirical formula in
A) H2O2
B) CO2
C) CO.
OD) H20.
Answer:
the Ans is H2O2
Explanation:
THANKS.............
Which is a characteristic of a solution?
Its particles scatter light.
Its particles are evenly distributed.
Its particles settle out.
It has large suspended particles.
Answer:
Its particles are evenly distributed.
Explanation:
Solutions are homogenous mixtures of solutes and solvents. In a solution the solute particles are evenly distributed in the solvent.
Here are some characteristics of solutions:
The size of the particles is small The particles do not settle on standingThe particles pass through ordinary filter papersThe particles pass through permeable membranesThe particles are not visible with microscope or the naked eyes. They are clear and may have a color.A characteristic of a solution is that its particles are evenly distributed.
What are solutions?A characteristic of a solution is that its particles are evenly distributed. In a solution, the solute (substance being dissolved) is uniformly distributed and mixed with the solvent (the substance doing the dissolving) at the molecular or ionic level.
The particles of the solute become thoroughly dispersed and do not settle out over time. Solutions are generally clear and do not scatter light, unlike suspensions or colloids which may exhibit light scattering due to the presence of larger particles.
More on solutions can be found here: https://brainly.com/question/30665317
#SPJ6
Weigh out the appropriate amount of HEPES sodium salt required to prepare 100 mL of a HEPES buffer that has pH 7.50 and is 90 mM in HEPES. FW for the HEPES sodium salt is 260.31. Transfer to a 150 mL beaker. Flowchart: Calculate the amount of HEPES sodium salt required to make the buffer.
Answer:
2.343 g of HEPES sodium salt is needed.
Explanation:
So, from the question above we have the following parameters which is going to help in solving this particular question.
The number of moles = 90mM, the pH = 7.50, FW for the HEPES sodium salt = 260.31, and the volume of HEPES sodium salt required = 100mL.
Therefore, the amount of HEPES sodium salt required to make the buffer = 260.31 × 9 × 0.001 = 2.343 grams of HEPES sodium salt is needed in 10mL.
PLEASE HELP PLEASE LLEASE HELP, WILL MARK BRAINLIEST!!!
Which of the following elements will NOT reach an octet when in a bond?
Answer:
Hydrogen
Explanation: