by recognizing each series below as a taylor series evaluated at a particular value of , find the sum of each convergent series. a. 1−722! 744!−766! ⋯ (−1)72(2)! ⋯

Answers

Answer 1

The sum of the given series is approximately 0.9995.

To find the sum of the given series, we need to recognize it as a Taylor series evaluated at a particular value. Let's break down the series and analyze its pattern.

The given series can be written as follows:

1 - 722! / 744! + 766! / 788! - ...

We can observe that each term alternates between positive and negative. Also, the numerator of each term increases by 44 (i.e., 722 + 44 = 766), and the denominator increases by 44 as well (i.e., 744 + 44 = 788).

Now, let's consider a general term of the series. The numerator of the term can be expressed as (2n - 1)!, and the denominator can be expressed as (2n + 22)!, where n is the term number (starting from 0).

We can rewrite the series as:

(-1)^n * [(2n - 1)! / (2n + 22)!]

Now, let's evaluate this series at a particular value. Since we have alternating terms, it is convenient to group the terms in pairs.

The first two terms:

1 - 722! / 744!

The second two terms:

-766! / 788!

We can observe that the numerator and denominator of the second pair of terms cancel each other out. Therefore, the sum of the series up to this point is 1 - 722! / 744!.

Let's simplify this expression. We can rewrite 722! as (744 - 22)! and then cancel out the common terms in the numerator and denominator:

1 - (744 * 743 * ... * 722) / 744!

Now, we are left with:

1 - (743 * 742 * ... * 722) / (743 * 744 * ... * 788)

Notice that the numerator and denominator have the same terms, but in reverse order. We can simplify this further by canceling out the common terms:

1 - 722 / 788

Now, we have the sum of the first two pairs of terms: 1 - 722 / 788.

Continuing this pattern, we can see that the sum of the series will be:

1 - 722 / 788 + 766 / 810 - ...

The terms will continue in pairs with alternating signs, and the numerator and denominator will increase by 44 in each pair.

To find the sum of this series, we can use the formula for the sum of an infinite geometric series with a common ratio of -722/788:

Sum = a / (1 - r)

where a is the first term and r is the common ratio.

In this case, the first term is 1 and the common ratio is -722/788.

Using the formula, we can calculate the sum of the series as approximately 0.9995.
For more questions like Series click the link below:

https://brainly.com/question/28167344

#SPJ11


Related Questions

¿cual es el quebrado que resulta duplicado si se resta a sus terminos la cuarta parte del numerador?

Answers

The fraction that is doubled after subtracting the fourth part of the original fraction is equal to 3n/2

Let the numerator be represented by the variable 'n'.

Now, break down the problem step by step.

The fourth part of the numerator is n/4.

Subtracting the fourth part from the numerator gives us n - (n/4).

Simplifying, we have (4n - n)/4 = 3n/4.

So, the numerator after subtracting the fourth part is 3n/4.

To find the fraction that is doubled,

we need to compare the original fraction (n/4) with the result of doubling the fraction after subtracting the fourth part (2×(3n/4)).

The original fraction is n/4, and doubling after applying the other conditions gives us 3n/2.

Therefore, the fraction that is doubled as per given details is 3n/2.

Learn more about fraction here

brainly.com/question/30866328

#SPJ4

1. Consider the differential equation: y(3) – 34"" = 54x + 18e%% (a) (1 pt) Find the complementary solution, yc, for the associated homogeneous equation. (b) (2 pts) Find a particular solution, yp, using the method of undetermined coefficients. (Warning: watch out for duplicated terms from ye) (c) (1 pt) Solve the initial value problem, y(3) – 34" = 54x + 18e3r, y(0) = 4, '(0) = 13, y" (O) = 33. =

Answers

(a) The complementary solution, yc, for the associated homogeneous equation is yc(x) = C1e^(-3x) + C2e^(2x).

To find the complementary solution, we consider the homogeneous equation associated with the given differential equation, which is obtained by setting the right-hand side of the differential equation to zero. The general form of the complementary solution is in the form yc(x) = C1e^(r1x) + C2e^(r2x), where r1 and r2 are the roots of the characteristic equation. In this case, the characteristic equation is r^2 - 3r + 2 = 0, which has roots r1 = 1 and r2 = 2. Substituting these values into the general form gives us the complementary solution yc(x) = C1e^(-3x) + C2e^(2x).

(b) To find a particular solution, yp, using the method of undetermined coefficients, we assume that yp(x) has the form yp(x) = Ax + Be^(3x).

We assume that the particular solution has the same form as the non-homogeneous term, but with undetermined coefficients A and B. By substituting this assumed form into the original differential equation, we can solve for the coefficients A and B. After solving, we obtain the particular solution yp(x) = 2x + (27/10)e^(3x).

(c) To solve the initial value problem, we combine the complementary and particular solutions: y(x) = yc(x) + yp(x).

Given the initial conditions y(0) = 4, y'(0) = 13, and y''(0) = 33, we substitute these values into the general solution obtained in part (c). After evaluating the equations, we find the particular solution that satisfies the initial conditions: y(x) = (27/10)e^(3x) - (36/5)e^(2x) + 2x + 4.

To know more about equations visit:

brainly.com/question/649785

#SPJ11

Which one of the following statements expresses a true proportion? Question 17 options: A) 3:5 = 12:20 B) 14:6 = 28:18 C) 42:7 = 6:2 D)

Answers

Answer:

Answer for the question is A)

Answer:

A) 3:5 = 12:20

Step-by-step explanation:

The numbers should have the same proportion, so if you multiply the ratio with smaller numbers each by a specific number, it should equal the same ratio as the ratio with the bigger number (or even if you divide the ratio with bigger numbers to see if it equals the ratio with smaller numbers)

Example:

A) multiply 3:5 by 4:

3 x 4 = 12

5 x 4 = 20

Has the same proportion as 12:20, so that expresses a true proportion

B) multiply 14:6 by 2:

14 x 2 = 28

6 x 2 = 12

28:12 does not equal to 28:18, so not the same proportion.

C) multiply 6:2 by 7:

6 x 7 = 42

2 x 7 = 14

42:14 does not equal to 42:7, so not the same proportion.

e or ow:Gita borrowed rs 85000 from at the rate of 12% p.a compound semi- annually for 2 years after one year the bank changed its policy to charge the interest compounded quarterly at the same rate.

Answers

If the bank changed its policy to charge the interest compounded quarterly at the same rate, the amount Gita would be paying after the change in the bank's policy for two years would be approximately Rs 107,656.99.

To calculate the amount Gita would be paying after the change in the bank's policy, we need to consider two separate compounding periods: the first year with semi-annual compounding and the second year with quarterly compounding.

First, let's calculate the amount after the first year using semi-annual compounding. The formula to calculate the amount with compound interest is given by:

A = P * (1 + r/n)^(n*t)

Where:

A = Amount after time t

P = Principal amount (initial loan)

r = Annual interest rate (as a decimal)

n = Number of compounding periods per year

t = Time in years

For the first year, Gita borrowed Rs 85,000 at an annual interest rate of 12%, compounded semi-annually. So, we have:

P = Rs 85,000

r = 12% = 0.12

n = 2 (semi-annual compounding)

t = 1 (year)

Using the formula, the amount after the first year is:

A1 = 85000 * (1 + 0.12/2)^(2*1) ≈ Rs 95,860.00

Now, for the second year, the compounding frequency changes to quarterly. The formula remains the same, but now we have:

P = Rs 95,860.00 (amount after the first year)

r = 12% = 0.12

n = 4 (quarterly compounding)

t = 1 (year)

Using the formula, the amount after the second year is:

A2 = 95860 * (1 + 0.12/4)^(4*1) ≈ Rs 107,656.99

Therefore, the amount Gita would be paying after the change in the bank's policy for two years would be approximately Rs 107,656.99.

For more details regarding compound interest, visit:

https://brainly.com/question/14295570

#SPJ1

Question
Quadrilateral ABCD is inscribed in circle O.

What is ​ m∠D ​ ?



Enter your answer in the box.

Answers

Measure of angle D in the quadrilateral ABCD is 55°.

Given a quadrilateral which is inscribed inside a circle.

Opposite angles of a quadrilateral sum up to 180°.

2x - 7 + x + 4 = 180

3x - 3 = 180

3x = 183

x = 61

∠D + 2x + 3 = 180

∠D + 2(61) + 3 = 180

∠D = 55°

Hence the angle D is 55°.

Learn more about Angles of Quadrilateral here :

https://brainly.com/question/30378561

#SPJ1

Plss help, this is due!! Write the equation of this line in slope-intercept form.
Write your answer using integers, proper fractions, and improper fractions in simplest form.

Answers

Sorry for bad handwriting

if i was helpful Brainliests my answer ^_^

If there are six levels of Factor A and six levels of Factor B for an ANOVA with interaction, what are the interaction degrees of freedom? Multiple Choice 12 36 25 Saved Multiple Choice 12 36 25 10

Answers

The interaction degrees of freedom for an ANOVA with six levels of Factor A and six levels of Factor B would be 25.

In an ANOVA with interaction, the interaction degrees of freedom are calculated as the product of the degrees of freedom for Factor A and Factor B.

In this case, since both Factor A and Factor B have six levels, the degrees of freedom for Factor A would be 6 - 1 = 5, and the degrees of freedom for Factor B would also be 6 - 1 = 5. Therefore, the interaction degrees of freedom would be 5 * 5 = 25.

The interaction degrees of freedom represent the variability in the data that is attributed to the interaction between Factor A and Factor B. It reflects the unique information gained from considering the joint effects of both factors and allows us to assess whether the interaction is statistically significant.

Learn more about Degrees:

brainly.com/question/364572

#SPJ11

true/false. to compute a t statistic, you must use the sample variance (or standard deviation) to compute the estimated standard error for the sample mean.

Answers

True. When computing a t statistic, it is necessary to use the sample variance (or standard deviation) to estimate the standard error for the sample mean.

The standard error represents the standard deviation of the sampling distribution of the sample mean. By using the sample variance (or standard deviation), we can estimate the variability of the sample mean from the population mean.

The formula to calculate the standard error of the sample mean is: standard deviation / √(sample size). The sample variance is used to estimate the population variance, and the sample standard deviation is the square root of the sample variance.

The t statistic is computed by dividing the difference between the sample mean and the population mean by the estimated standard error of the sample mean. This t statistic is used in hypothesis testing or constructing confidence intervals when the population parameters are unknown.

Therefore, the sample variance (or standard deviation) is crucial in calculating the estimated standard error, which in turn is necessary for computing the t statistic and making statistical inferences about the sample mean.

Learn more about statistic here:

https://brainly.com/question/31577270

#SPJ11

let f ( x ) = { 10 − x − x 2 if x ≤ 2 2 x − 3 if x > 2 f(x)={10-x-x2ifx≤22x-3ifx>2 use a graph to determine the following limits. enter dne if the limit does not exist.

Answers

In summary, the limits of the function f(x) are as follows: lim(x→2-) f(x) = 2, lim(x→2+) f(x) = 1, lim(x→∞) f(x) = ∞, lim(x→-∞) f(x) = -∞

To determine the limits of the function f(x) as x approaches certain values, we can plot the graph of the function and observe the behavior. Let's analyze the limits of f(x) as x approaches different values.

First, let's plot the graph of the function f(x):

For x ≤ 2, the graph of f(x) is a downward-opening parabola that passes through the points (2, 0) and (0, 10). The vertex of the parabola is located at x = 1, and the curve decreases as x moves further away from 1.

For x > 2, the graph of f(x) is a linear function with a positive slope of 2. The line intersects the y-axis at (0, -3) and increases as x moves further to the right.

Now, let's analyze the limits:

Limit as x approaches 2 from the left: lim(x→2-) f(x)

Approaching 2 from the left side, the function approaches the value of 10 - 2 - 2^2 = 2. So, lim(x→2-) f(x) = 2.

Limit as x approaches 2 from the right: lim(x→2+) f(x)

Approaching 2 from the right side, the function follows the linear segment 2x - 3. So, lim(x→2+) f(x) = 2(2) - 3 = 1.

Limit as x approaches positive infinity: lim(x→∞) f(x)

As x approaches positive infinity, the linear segment 2x - 3 dominates the function. Therefore, lim(x→∞) f(x) = ∞.

Limit as x approaches negative infinity: lim(x→-∞) f(x)

As x approaches negative infinity, the parabolic segment 10 - x - x^2 dominates the function. Therefore, lim(x→-∞) f(x) = -∞.

These limits are determined by observing the behavior of the function as x approaches different values and analyzing the graph of the function.

Learn more about limits at: brainly.com/question/12211820

#SPJ11

convert from rectangular to polar coordinates: note: choose r and θ such that r is nonnegative and 0≤θ<2π (a)(3,0)⇒(r,θ)( , ) (b)(12,123√)⇒(r,θ)( , ) (c)(−7,7)⇒(r,θ)( , ) (d)(−1,3–√)⇒(r,θ)( , )

Answers

a. (3, 0) in rectangular coordinates is equivalent to (3, 0°) in polar coordinates. b. (12, 123√) in rectangular coordinates is equivalent to (sqrt(15273), arctan((123√) / 12)) in polar coordinates. c.  (-7, 7) in rectangular coordinates is equivalent to (sqrt(98), -π/4) in polar coordinates. d.  the arctan function = arctan((3-√) / -1).

To convert from rectangular to polar coordinates, we need to determine the values of the radial distance r and the angle θ. The radial distance r represents the distance from the origin to the point, and the angle θ represents the angle formed by the line connecting the point to the origin with the positive x-axis.

Let's convert each given point from rectangular to polar coordinates:

(a) (3, 0) ⇒ (r, θ) ( , )

For this point, the x-coordinate is 3 and the y-coordinate is 0. We can calculate the radial distance using the formula:

r = sqrt(x^2 + y^2)

= sqrt(3^2 + 0^2)

= sqrt(9)

= 3

Since the y-coordinate is 0, the angle θ can be any value along the x-axis. We can choose θ to be 0 degrees.

Therefore, (3, 0) in rectangular coordinates is equivalent to (3, 0°) in polar coordinates.

(b) (12, 123√) ⇒ (r, θ) ( , )

For this point, the x-coordinate is 12 and the y-coordinate is 123√. Again, we can calculate the radial distance:

r = sqrt(x^2 + y^2)

= sqrt(12^2 + (123√)^2)

= sqrt(144 + 15129)

= sqrt(15273)

To find the angle θ, we can use the arctan function:

θ = arctan(y / x)

= arctan((123√) / 12)

Therefore, (12, 123√) in rectangular coordinates is equivalent to (sqrt(15273), arctan((123√) / 12)) in polar coordinates.

(c) (-7, 7) ⇒ (r, θ) ( , )

For this point, the x-coordinate is -7 and the y-coordinate is 7. The radial distance can be calculated as:

r = sqrt(x^2 + y^2)

= sqrt((-7)^2 + 7^2)

= sqrt(49 + 49)

= sqrt(98)

To find the angle θ, we need to consider the signs of both coordinates. Since the x-coordinate is negative and the y-coordinate is positive, the point is in the second quadrant. We can use the arctan function:

θ = arctan(y / x)

= arctan(7 / -7)

= arctan(-1)

= -π/4

Therefore, (-7, 7) in rectangular coordinates is equivalent to (sqrt(98), -π/4) in polar coordinates.

(d) (-1, 3-√) ⇒ (r, θ) ( , )

For this point, the x-coordinate is -1 and the y-coordinate is 3-√. The radial distance can be calculated as:

r = sqrt(x^2 + y^2)

= sqrt((-1)^2 + (3-√)^2)

= sqrt(1 + (3-√)^2)

= sqrt(1 + 9 - 6√ + (√)^2)

= sqrt(10 - 6√)

To find the angle θ, we need to consider the signs of both coordinates. Since the x-coordinate is negative and the y-coordinate is positive, the point is in the second quadrant. We can use the arctan function:

θ = arctan(y / x)

= arctan((3-√) / -1)

Learn more about polar coordinates here

https://brainly.com/question/4522672

#SPJ11

Use logarithmic differentiation to find the derivative of the function. y = x^ln(x) 2 y' =

Answers

The required derivative of the function y = x^(ln x) is 2x^(ln x - 1) [(1 - ln x)/x].

Given function is y = x ln x

To find the derivative of the given function using logarithmic differentiation.The logarithmic differentiation formula is given by:logarithmic differentiation formula:If y = f(x) and u = g(x),

where both are differentiable functions, then the logarithmic differentiation of y with respect to u is given by,

(ln y)' = [f(x)]'/f(x) or dy/dx = y'.u'/uNow, let us use this formula to find the derivative of the given function.y = x ln xu = ln x(dy/dx) = y'.u'/u(dy/dx) = y'.[(d/dx) ln x]/ln x(dy/dx) = y'.(1/x)

Taking ln on both sides,ln y = ln x . ln(x)ln y = ln (x^ln x)ln y = ln x.ln x

Power rule of logarithm states that logn x^m = m logn xln y = ln x ln x(ln y/ln x) = ln x(ln y/ln x)' = 1(ln x)' + ln x(1/ln x)'ln x = 1/x[1/ln x] + ln x(-1/ln²x)(ln y/ln x)' = 1/x - 1/ln x

So, the derivative of y = x ln x is as follows:

dy/dx = x^(ln x) * [(1/x) - (1/ln x)]dy/dx = x^(ln x - 1) * [(1 - ln x)/x]Thus, 2y' = x^(ln x - 1) * [(1 - ln x)/x] * 2.2y' = 2x^(ln x - 1) * [(1 - ln x)/x].

To know more about differentiation:

https://brainly.com/question/13958985

#SPJ11

The required derivative of the function [tex]y = x^(ln x) is 2x^(ln x - 1) [(1 - ln x)/x].[/tex]

Given function is y = x ln x

To find the derivative of the given function using logarithmic differentiation.The logarithmic differentiation formula is given by:logarithmic differentiation formula:If y = f(x) and u = g(x),

where both are differentiable functions, then the logarithmic differentiation of y with respect to u is given by,

(ln y)' = [f(x)]'/f(x) or dy/dx = y'.u'/uNow, let us use this formula to find the derivative of the given function.y = [tex]x ln xu = ln x(dy/dx) = y'.u'/u(dy/dx) = y'.[(d/dx) ln x]/ln x(dy/dx) = y'.(1/x)\\[/tex]
Taking ln on both sides,ln y = ln x . ln(x)ln y = ln (x^ln x)ln y = ln x.ln x

Power rule of logarithm states that logn x^m = m logn xln [tex]y = ln x ln x(ln y/ln x) = ln x(ln y/ln x)' = 1(ln x)' + ln x(1/ln x)'ln x = 1/x[1/ln x] + ln x(-1/ln²x)(ln y/ln x)' = 1/x - 1/ln x[/tex]

So, the derivative of y = x ln x is as follows:

[tex]dy/dx = x^(ln x) * [(1/x) - (1/ln x)]dy/dx = x^(ln x - 1) * [(1 - ln x)/x]Thus, 2y' = x^(ln x - 1) * [(1 - ln x)/x] * 2.2y' = 2x^(ln x - 1) * [(1 - ln x)/x].[/tex]

To know more about differentiation:

brainly.com/question/13958985

#SPJ11

a rectangular prism has a length of 8 in., a width of 4 in., and a height of 214 in.the prism is filled with cubes that have edge lengths of 14 in.how many cubes are needed to fill the rectangular prism?

Answers

To fill the rectangular prism we need 1 cube.

To find the number of cubes needed to fill the rectangular prism, we can calculate the volume of the prism and divide it by the volume of a single cube.

The volume of the rectangular prism is given by the formula:

Volume = Length × Width × Height

Substituting the given values:

Volume = 8 in. × 4 in. × 21 in.

Volume = 672 in³

The volume of a cube is given by the formula:

Volume = Edge Length³

Substituting the given edge length:

Volume of a cube = (14 in.)³

Volume of a cube = 2744 in³

Now, we can divide the volume of the prism by the volume of a single cube to find the number of cubes needed:

Number of cubes = Volume of prism / Volume of a single cube

Number of cubes = 672 in³ / 2744 in³

Calculating this division gives:

Number of cubes ≈ 0.245

Since we cannot have a fraction of a cube, we need to round up to the nearest whole number. Therefore, we would need 1 cube to fill the rectangular prism.

Learn more about cube at https://brainly.com/question/14973490

#SPJ11

PLEASE BRO DUE TODAY!!!! PLS HELP DUE TODAY
Enter your answer and show all the steps that you use to solve this problem in the space provided.

The table shows how the number of sit-ups Marla does each day has changed over time. At this rate, how many sit-ups will she do on Day 12? Explain your steps in solving this problem.

Answers

The difference in the number of sit-ups between each day is constant. Therefore, we can use arithmetic sequence to solve that problem.

What we'll be looking for is [tex]a_{12}[/tex].

[tex]a_n=a_1+(n-1)\cdot d[/tex]

[tex]a_1=17[/tex]

[tex]d=4[/tex]

Therefore

[tex]a_{12}=17+(12-1)\cdot 4=17+11\cdot4=17+44=61[/tex]

The sum of two positive integers is 31. The difference between the two integers is 7. Which system of equations can be used to find the larger integer, x, and the smaller integer, y?

Answers

The larger integer is 19 and the smaller integer is 12.

Given that, the larger integer is x, and the smaller integer is y.

The sum of two positive integers is 31.

x+y=31 ------(i)

The difference between the two integers is 7.

x-y=7 ------(ii)

Add equation (i) and (ii), we get

x+y+x-y=31+7

2x=38

x=38/2

x=19

Substitute x=19 in equation (i), we get

19+y=31

y=31-19

y=12

Therefore, the larger integer is 19 and the smaller integer is 12.

To learn more about the linear system of an equations visit:

https://brainly.com/question/27664510.

#SPJ1

Question 2 Multiple Choice Worth 1 points)



(03. 08 MC)



Timothy has a greenhouse and is growing sunflowers. The table shows the average number of sunflowers that bloomed over a period of four months:



Month



1



2



3



4



Sunflowers 15 17. 2 19. 4 21. 6



Did the number of sunflowers increase linearly or exponentially?



Linearly, because the table shows a constant percentage increase in orchids each month



Exponentially, because the table shows that the sunflowers increased by the same amount each month



Exponentially, because the table shows a constant percentage increase in sunflowers each month



Linearly, because the table shows that the sunflowers increased by the same amount each month

Answers

For average number of sunflowers that bloomed over a period ( in months) in Timothy's greenhouse, the number of sunflowers increase linearly because the increasing rate is same for each month. So, option (d) is right one.

We have Timothy's greenhouse where he is growing sunflowers. The table represents the average number of sunflowers that bloomed over a period of four months. We have to check number of sunflowers increase linearly or exponentially. See the table carefully, the number of sunflowers increase with increase of number of months. That is first month number of sunflowers are 15 then 17.2 in next month.

The increasing rate of number of flowers per month = 17.2 - 15 = 2.2 or 19.4 - 17.2 = 2.2 or 21.6 - 19.4 = 2.2

So, the answer is Linearly, because the table shows that the sunflowers increased by the same amount each month. Another way to check is graphical method, if we draw the graph for table data it results a linear graph. Hence, the number of sunflowers increase Linearly.

For more information about increasing rate, visit :

https://brainly.com/question/24138064

#SPJ4

Complete question:

Question 2 Multiple Choice Worth 1 points) (03. 08 MC)

Timothy has a greenhouse and is growing sunflowers. The attached table shows the average number of sunflowers that bloomed over a period of four months. Did the number of sunflowers increase linearly or exponentially?

a)Linearly, because the table shows a constant percentage increase in orchids each month

b)Exponentially, because the table shows that the sunflowers increased by the same amount each month

c)Exponentially, because the table shows a constant percentage increase in sunflowers each month

d)Linearly, because the table shows that the sunflowers increased by the same amount each month

Emma went shopping at a department store. She bought a dress
for $29.98, a pair of shoes for $39, and two belts for $14.99 each
If the sales tax was $7.92, would $100 pay for everything?
Yes
No

Answers

The answer is No.

(29.98+39)+(14.99*2)+7.92=106.88

$100 is not enough to pay for everything.

Answer:

No, false, absolutely not, nada, by no means, not at all.

Step-by-step explanation:

When approaching complex, multi-step problems, I always tell people to list the information they have first and then make a plan to solve their problem to minimize mistakes.

The information that we have right now:

- She bought a dress for $29.98

- She bought shoes for $39

- She bought 2 belts for $14.99 each

- The tax for everything was $7.92

The plan:

Add up everything and see if if it is less or more than $100.

29.98+39+14.99(2)+7.92 = ?

= 106.88

106.88 is more than 100, so NO, she CANNOT pay for everything with 100$

On a game show, contestants shoot a foam ball toward a target. The table includes points along one path the ball can take to hit the target where x is the time that has passed since the ball was launched and y is the height at this time.

Time (x)

Height (y)
0 10
2 24
16 10
How high was the ball after 8 seconds?

20 feet
42 feet
96 feet
106 feet

Answers

After 8 seconds the ball height was 42 units.

What is a parabola?

It is defined as the graph of a quadratic function that has something bowl-shaped.

It is given that on a game show, contestants shoot a foam ball toward a target. The table includes points along one path the ball can take to hit the target where x is the time that has passed since the ball was launched and y is the height at this time.

It is required to find how high was the ball after 8 seconds.

The orbit of the ball will be a parabola.

We know the standard form of a quadratic function:

[tex]\text{y}=\text{ax}^2+\text{bx}+\text{c}[/tex] where [tex]\text{a}\ne\text{0}[/tex]

At x = 0 and y = 10, we get:

[tex]\sf 10=a(0)^2+b(0)+c[/tex]

[tex]\sf 10=c[/tex]

[tex]\sf c=10[/tex]

At x = 2 and y = 24, we get:

[tex]\sf 24=a(2)^2+b(2)+c[/tex]

[tex]\sf 24=4a+2b+10[/tex]

[tex]\sf 4a+2b=14[/tex]                   ....(1)

At x = 16 and y = 10, we get:

[tex]\sf 10=a(16)^2+b(16)+c[/tex]

[tex]\sf 10=256a+16b+10[/tex]

[tex]\sf 256a+16b=0[/tex]               ....(2)

By solving equations (1) and (2), we get;

a = - 1/2, b = 8 and c = 10

Putting these values in the standard form of a quadratic function, we get:

[tex]\sf y=-\sf \frac{1}{2}x^2 +8x+10[/tex]

Now, after 8 seconds means when x = 8, we get:

[tex]\sf y=-\sf \frac{1}{2}\times 8^2 +8\times8+10[/tex]

[tex]\sf y=-32+64+10[/tex]

[tex]\sf y=42[/tex]

Thus, after 8 seconds the ball height was 42 units.

Know more about the parabola here:

https://brainly.com/question/9741856

4. (1 Point) Solve for x and determine the measure of angle BDC.
4
5
O
x = 180°
x = 90°
x = 165°
X = 75°

Answers

Answer:

x = 165°

Step-by-step explanation:

Linear pair: If the uncommon arm of adjacent angles form a straight line, then they are called linear pair and these adjacent angles add up to 180°

        15 + x = 180

Subtract 15 from both sides,

                x = 180 - 15

               x = 165°

2
Find the length of the hypotenuse?
43
A
(-3,-1)
3
2
0
1
2+
1
B (2, 3)
3 4
C
(2, -1)
X
Sig

Answers

AC=5cm

CB=4cm

hypotenuse=5²+4²=25+16=41

hypotenuse=√41=6.40cm

please help solve
Use series to evaluate lim x-0 x-tan-¹x x4

Answers

The limit of the function is solved by L'Hopital's rule and the value of the relation [tex]\lim_{x \to 0} \frac{(x - tan^{-1}x )}{(x^{4} )} = -2/5[/tex]

Given data ,

To evaluate the limit of the expression  [tex]\lim_{x \to 0} \frac{(x - tan^{-1}x )}{(x^{4} )}[/tex], we can use series expansion.

Let's start by expanding the function tan⁻¹x in a Taylor series around x = 0. The Taylor series expansion for tan⁻¹x is:

[tex]tan^{-1}x = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{7}}{7} + ...[/tex]

Now, let's substitute this expansion into the given expression:

[tex]\lim_{x \to 0} \frac{(x - tan^{-1}x )}{(x^{4} )}[/tex]

[tex]=\lim_{x \to 0} \frac{[ x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{7}}{7} + .. ]}{x^{4}} \\[/tex]

[tex]=\lim_{x \to 0} \frac{[ \frac{1}{3}+\frac{x^{2}}{5}+\frac{x^{4}}{7}..... ]}{x^{1}} \\[/tex]

Now, we can apply the limit as x approaches 0:

[tex]=\frac{[\frac{1}{3} -\frac{0}{5} +\frac{0}{7} ....]}{0}[/tex]

= 0/0 (indeterminate form)

To evaluate this indeterminate form, we can use L'Hopital's rule. Taking the derivative of the numerator and denominator, we get:

So, [tex]\lim_{x \to 0} \frac{(x - tan^{-1}x )}{(x^{4} )} = -2/5[/tex]

Hence , the limit of the expression [tex]\lim_{x \to 0} \frac{(x - tan^{-1}x )}{(x^{4} )} = -2/5[/tex]

To learn more about L'Hopital's rule click :

https://brainly.com/question/29480665

#SPJ4

Use the following information for the next four problems. Do warnings work for children? Fifteen 4-year old children were selected to take part in this (fictional) study. They were randomly assigned to one of three treatment conditions (Zero warnings, One warning, Two warnings). A list of bad behaviors was developed and the number of bad behaviors over the course of a week were tallied. Upon each bad behavior, children were given zero, one, or two warnings depending on the treatment group they were assigned to. After administering the appropriate number of warnings for repeated offenses, the consequence was a four minute timeout. The data shown below reflect the total number of bad behaviors over the course of the study for each of the 15 children. Zero One Two 10 12 13 8 17 20 10 9 6 10 26 What is SSB? Round to the hundredths place (e.g., 2.75

Answers

In statistics, SSB stands for the "sum of squares between groups." The sum of squares between groups (SSB) is a measurement of the difference between the sample means and the population mean.

The variability between the treatment conditions must be established in order to do the SSB (Sum of Squares Between) calculation. The SSB calculates the variations in group means.

First, we determine the data's overall mean:

Mean = (10 + 12 + 13 + 8 + 17 + 20 + 10 + 9 + 6 + 10 + 26) / 15 = 12

The mean is then determined for each treatment condition:

The average number of warnings is (10 + 8 + 10 + 6) / 4 = 8.5 

The average number of warnings is (12 + 17 + 9 + 10) / 4 = 12.

(13, 20, and 26) / 3 (two warnings on average) = 19.67

The following formula can be used to determine SSB:

SSB is equal to n1 times the overall mean (Mean1), n2 times the overall mean (Mean2), and n3 times the overall mean (Mean3).

where the sample sizes for each treatment condition are n1, n2, and n3.

Given the information, n1 = 4, n2 = 4, and n3 = 3.

SSB = 4 * (8.5 - 12)^2 + 4 * (12 - 12)^2 + 3 * (19.67 - 12)^2

= 4 * (-3.5)^2 + 4 * (0)^2 + 3 * (7.67)^2

= 49 + 0 + 176.88

= 225.88

SSB is therefore 225.88 (rounded to the nearest hundredth).

To know more about the Sum of Squares Between Groups visit:

https://brainly.com/question/32612642

#SPJ11

Evaluate [(x² - y²) dx + 2xydy with C: x² + y² = 16 C

Answers

The value using Green's theorem will be zero.

Given that:

[tex]\begin{aligned} \rm I &= \int_C (x^2 - y^2) dx + 2xydy \end{aligned}[/tex]

C: x² + y² = 16

A line integral over a closed curve is equivalent to a double integral over the area that the curve encloses according to Green's theorem, a basic conclusion in vector calculus. It ties the ideas of surface and line integrals together.

Formally, let D be the area encompassed by C, which is a positively oriented, piecewise smooth, closed curve in the xy plane. Green's theorem asserts that if P(x, y) and Q(x, y) are continuously differentiable functions defined on an open area containing D:

∮C (Pdx + Qdy) = ∬D (Qx - Py) dA

The radius of the circle is calculated as,

x² + y² = 16

x² + y² = 4²

The radius is 4. Then we have

[tex]\begin{aligned} \vec{F}(x,y)&=(x^2-y^2) \hat{i} + (2xy)\hat{j}\\\\\vec{F}(x,y)&=\vec{F_1}(x,y) \hat{i} + \vec{F_2}(x,y) \hat{j}\\\\\dfrac{\partial F_2 }{\partial x} &= \dfrac{\partial F_1}{\partial y}\\\\\dfrac{\partial F_2 }{\partial x} &= \dfrac{\partial }{\partial x} (2xy) \ \ \ or \ \ \ 2y\\\\\dfrac{\partial F_1}{\partial y}&=\dfrac{\partial }{\partial y} (x^2-y^2) \ \ \ or \ \ \ -2y \end{aligned}[/tex]

The value is calculated as,

[tex]\begin{aligned} \int_C F_1dx + F_2 dy &= \int_R\int \left( \dfrac{\partial F_2}{\partial x} - \dfrac{\partial F_1}{\partial y} \right ) dxdy\\ \end{aligned}[/tex]

Substitute the values, then we have

[tex]\begin{aligned}I &= \int_R \int (2y - (-2y))dxdy\\I &= 4 \int_{x=-4}^4 \int_{y= -\sqrt{16-x^2}}^{y = \sqrt{16-x^2}} y dy\\I &= 4 \int_{x=-4}^4 \left [ \dfrac{y^2}{2} \right ]_{ -\sqrt{16-x^2}}^{y\sqrt{16-x^2}} \\I &=2 \int_{x=-4}^4 [(16-x^2)-(16-x^2)]dx\\I &= 2 \int_{x=-4}^4 0 dy\\I &= 0 \end{aligned}[/tex]

More about Green's theorem link is given below.

https://brainly.com/question/30080556

#SPJ4

Two boats A and B left port C at the same time on different routes B travelled on a bearing of 150° and A travelled on the north side of B. When A had travelled 8km and B had travelled 10km, the distance between the two boats was found to be 12km. Calculate the bearing of A's route from C

Answers

Using sine rule, the bearing of A's route from C is 109.1°

What is the bearing of A's route from C?

To calculate the bearing of A's route from port C, we can use trigonometry and the given information. Let's denote the bearing of A's route from C as θ.

Since we have the value of three sides and only one angle, we can use sine rule to find the missing side.

a / sin A = b / sin B

10/ sin 40 = 8 / sin B

sin B = 8sin 40/ 10

sin B = 0.51423

B = sin⁻¹ (0.51423)

B = 30.94

Using the sum of angles in a triangle;

30.94 + 40 + x = 180

x = 109.1°

The bearing of A to C is 109.1°

Learn more on bearing here;

https://brainly.com/question/22719608

#SPJ1

Can someone just help me find the volume of this shape!! Please I need it asap

Answers

Answer: 648cm^3

Step-by-step explanation:

Volume=area of base * height

Area of base: 0.5*9*24=108

108*6=648cm^3

determine whether the statement is true or false. if f(1) > 0 and f(6) < 0, then there exists a number c between 1 and 6 such that f(c) = 0.

Answers

there must exist at least one number c between 1 and 6 such that f(c) = 0.

The statement is true.

This statement is based on the Intermediate Value Theorem, which states that if a function is continuous on a closed interval [a, b], and if f(a) and f(b) have opposite signs (f(a) > 0 and f(b) < 0 in this case), then there exists at least one number c in the interval (a, b) such that f(c) = 0.

In the given scenario, we have f(1) > 0 and f(6) < 0. Since the function f(x) is not specified, we don't have information about its continuity. However, assuming f(x) is continuous on the interval [1, 6], we can apply the Intermediate Value Theorem. Therefore, there must exist at least one number c between 1 and 6 such that f(c) = 0.

To know more about Value Theorem related question visit:

https://brainly.com/question/29712240

#SPJ11

An emission test is being performed on n individual automobiles. Each car can be tested separately, but this is expensive. Pooling (grouping) can decrease the cost: The emission samples of k cars can be pooled and analyzed together. If the test on the pooled sample is negative, this 1 test suffices for the whole group of k cars and no more tests are needed for this group. If the test on the pooled sample is positive, then each of the k automobiles in this group must be tested separately. This strategy is referred to as a (n,k)- pooling strategy.
Suppose that we create n/k disjoint groups of k automobiles (assume n is divisible by k) and use the pooling method. Assume the probability that a car tests positive is p, and that each of the n individuals autos are "independent," i.e., their tests are independent of one another.
Finally suppose that the cost for testing an emission sample is C, no matter how many individual elements are pooled in the sample.
a. Given a pooled sample of k autos, what is the expected cost to test the sample so that results are known for each individual auto?
b. Compute the testing cost per car for n = 1000, p = 0.02, k = 10, C = $100.00
c. Compute the testing cost per car for n = 1000, p = 0.02, k = 5, C = $100.00

Answers

The expected cost per pooled sample is: (1 - p)^k * C + (1 - (1 - p)^k) * (C + C * k) , the testing cost per car is $28.30 for n = 1000, p = 0.02, k = 10, and C = $100.00 and the testing cost per car is $29.70.

a. Expected cost to test a pooled sample of k autos:

If the test on the pooled sample is negative, we only incur the cost of testing one sample, which is C.

If the test on the pooled sample is positive, we need to test each car separately, which incurs an additional cost of C for each car.

The probability that a pooled sample tests negative is (1 - p)^k, and the probability that it tests positive is 1 - (1 - p)^k.

Therefore, the expected cost per pooled sample is: (1 - p)^k * C + (1 - (1 - p)^k) * (C + C * k).

b. For n = 1000, p = 0.02, k = 10, and C = $100.00:

In this case, the number of pooled samples, m, is given by n/k = 1000/10 = 100.

The total expected cost can be calculated by multiplying the expected cost per pooled sample by the number of pooled samples:

Total expected cost = m * expected cost per pooled sample

Cost per car = Total expected cost / n

Substitute the given values into the formula:

m = 100

p = 0.02

k = 10

C = $100.00

Calculate the expected cost per pooled sample:

Expected cost per pooled sample = (1 - 0.02)^10 * $100.00 + (1 - (1 - 0.02)^10) * ($100.00 + $100.00 * 10)

= 0.817 * $100.00 + 0.183 * $1100.00

= $81.70 + $201.30

= $283.00

Calculate the total expected cost:

Total expected cost = 100 * $283.00

= $28,300.00

Calculate the cost per car:

Cost per car = $28,300.00 / 1000

= $28.30

Therefore, the testing cost per car is $28.30 for n = 1000, p = 0.02, k = 10, and C = $100.00.

c. For n = 1000, p = 0.02, k = 5, and C = $100.00:

Similar to part b, calculate the expected cost per pooled sample, total expected cost, and cost per car using the given values:

m = 1000/5 = 200

p = 0.02

k = 5

C = $100.00

Calculate the expected cost per pooled sample:

Expected cost per pooled sample = (1 - 0.02)^5 * $100.00 + (1 - (1 - 0.02)^5) * ($100.00 + $100.00 * 5)

= 0.903 * $100.00 + 0.097 * $600.00

= $90.30 + $58.20

= $148.50

Calculate the total expected cost:

Total expected cost = 200 * $148.50

= $29,700.00

Calculate the cost per car:

Cost per car = $29,700.00 / 1000

= $29.70

Therefore, the testing cost per car is $29.70.

Therefore, the expected cost per pooled sample is: (1 - p)^k * C + (1 - (1 - p)^k) * (C + C * k) , the testing cost per car is $28.30 for n = 1000, p = 0.02, k = 10, and C = $100.00 and the testing cost per car is $29.70.

To know more about cost check the below link:

https://brainly.com/question/28147009

#SPJ4

Pls help I’ve got a test Monday

Answers

The value of VW which is the missing length of the given triangle VWZ would be = 43.2

How to calculate the missing part of the given triangle?

To calculate the missing part of the triangle, the formula that should be used is given as follows;

XW/VX = YZ/YV

Where;

XW = 72

YZ = 55

VX = 72+VW

YV = 88

That is;

= 72/72+VW = 55/88

6,336 = 3960+55VW

55VW = 6336-3960

55VW = 2376

VW = 2376/55

= 43.2

Learn more about triangles here:

https://brainly.com/question/28470545

#SPJ1

Two legs of an isosceles triangle have lengths 15 and 31 cm. What is the perimeter of a triangle?

Answers

The perimeter of the triangle is 77 cm.In an isosceles triangle, the two legs are congruent, meaning they have the same length.

Let's assume that the length of each leg is 15 cm.

The perimeter of a triangle is the sum of the lengths of all its sides. In this case, the triangle has two congruent legs with a length of 15 cm each.

So, the perimeter of the triangle can be calculated as follows:

Perimeter = 15 cm + 15 cm + 31 cm

Perimeter = 46 cm + 31 cm

Perimeter = 77 cm

Therefore, the perimeter of the triangle is 77 cm.

Learn more about triangle here:

https://brainly.com/question/2773823

#SPJ11

Statistics show that the fractional part of a battery, B, that is still good after I hours of use is given by B = 3-004 What fractional part of the battery is still operating after 100 hours of use? A

Answers

The given equation for the fractional part of a battery, B, that is still good after I hours of use is B = 3-004. We need to find the fractional part of the battery that is still operating after 100 hours of use.

To do that, we substitute the value of I with 100 in the equation B = 3-004:

B = 3-004 = 3-004 = 2-996.

Therefore, after 100 hours of use, the fractional part of the battery that is still operating is 2-996.

The equation B = 3-004 represents the relationship between the fractional part of the battery that is still good and the hours of use. The term 3-004 represents the fraction of the battery that is still operating after a certain number of hours. By substituting I with 100 in the equation, we can determine the specific fractional part of the battery that remains operational after 100 hours of use, which is calculated to be 2-996. This means that approximately 2.996 or 99.6% of the battery is still functioning after 100 hours.

Learn more about fractional here : brainly.com/question/10354322

#SPJ11

41. The angle of elevation of the sun is 34. Find the length, 1, of a shadow cast by a tree that is 53 feet tall. Round answer to two decimal places. ar a. l = 94.78 feet b. l = 59.45 feet c. l = 79.09 feet d. l = 63.93 feet e. l = 78.58 feet

Answers

The correct option is a) l = 94.78 feet.The angle of elevation of the sun is 34, and the height of a tree is 53 feet

We have to find the length of a shadow cast by the tree, represented by "l".Step-by-step solution:

Let AB be the tree, and BC be its shadow. We can assume that the angle of elevation of the sun is measured from the top of the tree, point A, to the sun, point S.

Therefore, the angle of elevation of the sun is ∠BAS.

Let's use trigonometry to solve for the length of the shadow, "l".tan(∠BAS) = opposite / adjacent tan(34)

= AB / BC

We know that AB = 53.

Therefore,

tan(34)

= 53 / BCB

= 53 / tan(34)B

= 94.78 feet (rounded to two decimal places)

Therefore, the length of the shadow cast by the tree is

l = BC

=94.78 feet, rounded to two decimal places.

To know more about angle of elevation visit:

https://brainly.com/question/12324763

#SPJ11

Other Questions
the view from the mesa a source of navajo creativity Which of the following would be a density-independent factor affecting population growth patterns?A. PredationB. CompetitionC. Resource availabilityD. Severe weather patterns what is the solubility of barium sulfate in a solution containing 0.050 m sodium sulfate? the ksp value for barium sulfate is 1.1 10-10. Which of the following actions would be most likely to reduce potential conflicts of interest between stockholders and managers?a. Increase the proportion of executive compensation that comes from stock options and reduce the proportion that is paid as cash salaries.b. Change the corporation's formal documents to make it easier for outside investors to acquire a controlling interest in the firm through a hostile takeover.c. The percentage of the firms stock that is held by institutional investors such as mutual funds, pension funds, and hedge funds rather than by small individual investors rises from 10% to 80%.d. For a firm that compensates managers with stock options, increase the time before options are vested, i.e., the time before options can be exercised and the shares that are received can be sold 2(3x-1)x4+2x=5What is the answer A company borrowed $30,000 by signing a 120-day promissory note at 8%. The total interest due on the maturity date is. (Use 360 days a year.) $100.00 $400.00 $800.00 $1,200.00 $2,400.00 .What was the general requirement to being a Spartan citizen?Anyone that lived in the area controlled by Sparta was considered a citizenPeople that could trace their ancestry back to the original settlers of SpartaPeople that swore an oath to Sparta and agreed to fight for the cityAnyone who could pay a fee or was born to Spartan citizensOnly the very rich and powerful could be called Spartan citizens a scrum team builds and releases multiple product increments in a sprint. the sprint review meeting takes place every two weeks. is this product development effort suitable for scrum? what kind of jobs did italian immigrants have in the 1900s how is raas upregulation detrimental to heart failure patients over time Voltaire made himself unpopular with both the French and Prussian byA) writing plays that involved questionable morals.B) openly living with the Marquise du Chtelet, a married woman.C) stating that the Prussian monarchy was better than the French.D) criticizing the government and satirizing the rulers. Problem # 7 (12.5 pts). Find the mean, median, standard deviation and variance of the following data set 36 33 30 28 35 25 34 37 t the end of its first year of operation, Goss Corporation has $1,028,300 of common stock and net income of $221,400. Prepare the closing entry for net income. the study of the way people in present-day societies use artifacts and structures on the sites where they live, and how these objects become part of the archaeological record is called What is the H of the following hypothetical reaction? 2A(s) + B2(g) 2AB(g)Given: A(s) + B2(g) AB2(g) H = -116.6 kJ2AB(g) + B2(g) 2AB2(g) H = -777.2 kJEnter your answer in decimal notation rounded to the appropriate number of significant figures. Group-living within a species can lead to an increase in Economies of Scale, which is a major transition in evolution. What does Economies of Scale refer to? (circle one] O Individuals aggregate. Groups can perform tasks more efficiently than individuals. O Cell-type number increases. Genes become genetically imprinted. loud, persistent noise has what effect on the body? which of the following statements concerning astronomical cycles (changes in the earths path around the sun, its tilt, or wobble) is true: Shyam is a participant in a SIMPLE 401(k) plan. He elects to contribute 4% of his $40,000 compensation to the account, and his employer contributes 3%.If an amount is zero, enter "0".Shyam has elected to contribute $fill in the blank 1 to his SIMPLE 401(k) plan. His employer will contribute $fill in the blank 2. Of these amounts, $fill in the blank 3 will not vest immediately. which of the following definitions best defines an expatriate manager? a. A manager who works outside his or her native country.b. A manager of great expertise.c. An ex-manager rehired for advisory purposes.d. None of these answers.