Briefly state, with reasons, the type of chart which would best convey in each of the following:

(i) A country’s total import of cigarettes by source. (1 mark)

(ii) Students in higher education classified by age. (1 mark)

(iii) Number of students registered for secondary school in year 2019, 2020 and 2021 for areas X, Y, and Z of a country. (1 mark)

Answers

Answer 1

A country's total import of cigarettes by source can be conveyed using a stacked-column chart.

Students in higher education classified by age can be conveyed using a pie chart.

The number of students registered for a secondary school in years 2019, 2020, and 2021 for areas X, Y, and Z of a country can be conveyed using a cluster column chart.

(i) A country's total import of cigarettes by source: In order to demonstrate a country's total import of cigarettes by source, a stacked column chart is the best fit. This chart type will show a clear picture of the different sources of cigarettes with the quantity imported and will also provide an easy comparison between the various sources.

(ii) Students in higher education classified by age: A pie chart is the best option to convey the distribution of students in higher education classified by age. The age group of students can be shown in different segments of the chart with each segment representing a specific age group.

(iii) Number of students registered for secondary school in the years 2019, 2020, and 2021 for areas X, Y, and Z of a country: A clustered column chart would best convey the data of the number of students registered for secondary school in the year 2019, 2020, and 2021 for areas X, Y, and Z of a country. This chart will enable easy comparison of the number of students registered in a particular area over the period of three years and also among different areas.

To know more about charts: https://brainly.com/question/24741444

#SPJ11


Related Questions

Question 2 A. Given that f(x) = 2x-3 and g(x) = 6x-1, i. calculate the value of f (5). derive an expression for fg(x). ii. (2 marks) (3 marks) (5 marks) find f-¹(x), the inverse of the function f(x).

Answers

The value of f (5) is 7. The derivation of an expression for fg(x) is 12x - 5. The inverse of the function f(x) is (x + 3) / 2.

Given that f(x) = 2x - 3 and g(x) = 6x - 1, we need to perform the following tasks.

i. Calculate the value of f(5)

f(x) = 2x - 3f(5) = 2(5) - 3f(5) = 7

ii. Derive an expression for fg(x)

fg(x) = f(g(x))= f(6x - 1)= 2(6x - 1) - 3= 12x - 5

iii. Find f⁻¹(x), the inverse of the function f(x)

To find the inverse of f(x), replace f(x) with y, then interchange x and y and solve for y.

x = 2y - 3y = (x + 3) / 2f⁻¹(x) = (x + 3) / 2

Hence, f⁻¹(x) = (x + 3) / 2

More on functions: https://brainly.com/question/28887915

#SPJ11

The doubling period of a bacterial population is 10 minutes. At time t = 100 minutes, the bacterial population was 60000 What was the initial population at time t = 0? Find the size of the bacterial population after 4 hours

Answers

The initial population at time t = 0 was 1.5625 × 10³, and the size of the bacterial population after 4 hours was 2.6214 × 10¹⁰.

Given the doubling period of a bacterial population is 10 minutes. Therefore, we can use the equation: [tex]N = N₀(2^(t/d))[/tex]

where N₀ is the initial population, N is the population after a certain time t, and d is the doubling period.1. At time t = 100 minutes, the bacterial population was 60000, so we can use this information to calculate the initial population,

[tex]N₀. 60000 = N₀(2^(100/10))[/tex]

[tex]⇒ N₀ = 1.5625 × 10³[/tex]

2. To find the size of the bacterial population after 4 hours, we first need to convert 4 hours to minutes.

4 hours × 60 minutes/hour = 240 minutes

[tex]N = N₀(2^(t/d))[/tex]

[tex]N = 1.5625 × 10³(2^(240/10))N[/tex]

= 2.6214 × 10¹⁰

Thus, the initial population at time t = 0 was 1.5625 × 10³, and the size of the bacterial population after 4 hours was 2.6214 × 10¹⁰.

To know more about population visit :

https://brainly.com/question/15889243

#SPJ11

Find the cardinality of the set below and enter your answer in the blank. If your answer is infinite, write "inf" in the blank (without the quotation marks). A × B, where A = {a € Z+| a = [x], x = B} and B = [−2, 2)

Answers

The value of the cardinality of the set is 25.

`A = {a € Z+| a = [x], x = B}` and `B = [−2, 2]`.

Then we need to find the cardinality of the set `A × B`.

Let's begin by finding the cardinality of the set `A`.A is defined as follows:

`A = {a € Z+| a = [x], x = B}`

So `A` is the set of positive integers `a` such that `a = [x]` where `x` is any number in `B`.`B = [−2, 2]` is an interval containing five numbers: `-2`, `-1`, `0`, `1`, and `2`.

To find the cardinality of `A`, we need to determine the number of positive integers that can be expressed as greatest integers of numbers in `B`.

For example:`[−2] = −2``[−1.5] = −2``[−1.0001] = −2``[−1] = −1``[−0.9999] = −1``[0] = 0``[0.0001] = 0``[0.9999] = 0``[1] = 1``[1.0001] = 1``[1.5] = 1``[2] = 2`

Thus, we can see that the set `A` is `{−2, −1, 0, 1, 2}`.

Since `B` has five elements and `A` also has five elements, the cardinality of `A × B` is `5 × 5 = 25`.

Therefore, the answer is 25.

Learn more about cardinality at:

https://brainly.com/question/29093097

#SPJ11

plans to install new kitchen cabinets and countertops for $7,500. She is going to pay 10% down payment and finance the balance with a 48-month fixed installment loan with an APR of 8.5%. Determine the total finance charge and monthly payment for the loanm

Answers

The total finance charge for the 48-month fixed installment loan is $1,719. The monthly payment for the loan is approximately $172.

To determine the total finance charge, we first calculate the loan amount, which is the total cost of the project minus the down payment. In this case, the loan amount is $7,500 - (10% of $7,500) = $6,750.

Next, we calculate the finance charge by multiplying the loan amount by the annual percentage rate (APR) and dividing it by 12 to get the monthly rate. The finance charge is ($6,750 * 8.5%) / 12 = $47.81 per month.

To calculate the monthly payment, we add the finance charge to the loan amount and divide it by the number of months. The monthly payment is ($6,750 + $1,719) / 48 = $172.06.

Therefore, the total finance charge for the loan is $1,719, and the monthly payment is approximately $172. Keep in mind that the actual monthly payment may vary slightly due to rounding.

Learn more about total finance here:

https://brainly.com/question/13739112

#SPJ11

Consider the map 0:P2 P2 given by → (p(x)) = p(x) - 2(x + 3)p'(x) - xp"() ('(x) is the derivative of p(x) etc). Let S = {1, x, x2} be the standard basis of P2, and let B = {P1 = 1+x+x2, P2 = 2 - 2x + x2, P3 = x - x?}. Show: 1) B is a basis of P, and give the transition matrix P = Ps<--B 2) Show o is linear and give the matrix A = [ø]s of the linear map in the basis S. 3) Find the matrix A' = [0]B of the linear map o in the basis B.

Answers

Here,  [0]B = [-2 -2 0] with respect to the basis B.

1) To show that B is a basis of P2, we can show that the vectors in B are linearly independent and span P2.

Linear independence:

To show linear independence, let α1P1 + α2P2 + α3P3 = 0 for some α1, α2, α3 ∈ R.

Then we have

(α1 + 2α2 + α3) + (α1 - 2α2 + α3)x + (α1 + α2 - α3)x2 = 0

for all x ∈ R. In particular, we can evaluate this at x = 0, 1, and -1.

At x = 0, we get α1 + 2α2 + α3 = 0.

At x = 1, we get α1 = 0. Finally, at x = -1, we get -α1 + α2 - α3 = 0.

Putting these together, we get α1 = α2 = α3 = 0.

Therefore, B is linearly independent.

Span:

To show that B spans P2, we can show that any polynomial p(x) ∈ P2 can be written as a linear combination of the vectors in B.

Let p(x) = a + bx + cx2. Then we have

a + bx + cx2 = (a + b + c)P1 + (2 - 2b + c)P2 + (b - c)P3

Therefore, B is a basis of P2.

We can find the transition matrix P = Ps<-B as the matrix whose columns are the coordinate vectors of P1, P2, and P3 with respect to the basis B.

We have

P = [1 2 0; 1 -2 1; 1 1 -1]2)

To show that o is linear, we need to show that for any polynomials p(x), q(x) ∈ P2 and any scalars a, b ∈ R, we have

o(ap(x) + bq(x)) = aop(x) + boq(x).

Let's do this now:

First, let's compute op(x) for each p(x) ∈ S. We have

o(1) = 1 - 2(3) = -5o(x) = x - 2 = -2 + xo(x2) = x2 - 2(2x) - x = -x2 - 2x

Therefore, [ø]s = [-5 -2 -1]

Finally, to find the matrix A' = [0]

B of the linear map o in the basis B, we need to find the coordinates of

o(P1), o(P2), and o(P3) with respect to the basis B.

We have

o(P1) = o(1 + x + x2)

= -5 - 2(2) - 1(-1)

= -2o(P2) = o(2 - 2x + x2)

= -5 - 2(-2) - 1(1)

= -2o(P3)

= o(x - x2)

= -(-1)x2 - 2x = x2 + 2x

Therefore, [0]B = [-2 -2 0]

To know more about basis visit:

https://brainly.com/question/30451428

#SPJ11

If the relationship between GPAS (grade point averages) and students's time spent on social media is such that high GPAs are associated with students who report low amounts of time spent on social media, then the correlation is O non-existent O non-linear O positive O negative

Answers

The relationship between GPAS (grade point averages) and students' time spent on social media is such that high GPAs are associated with students who report low amounts of time spent on social media, then the correlation is Negative.

The correlation coefficient is a statistical measure that describes the relationship between two variables. The correlation coefficient ranges from -1 to +1, with values of -1 indicating a perfect negative relationship, 0 indicating no relationship, and +1 indicating a perfect positive relationship.The correlation between GPAS (grade point averages) and students's time spent on social media is negative. When the amount of time spent on social media increases, GPAs tend to decrease. The reverse is also true: when the amount of time spent on social media decreases, GPAs tend to increase.

The correlation between GPA (grade point average) and social media usage has been investigated in a number of research. The findings indicate that students who use social media more have lower GPAs. This means that there is a negative correlation between the two variables. The negative correlation coefficient suggests that as the amount of time spent on social media increases, GPAs decrease. This relationship has been observed in multiple studies and is consistent across different age groups, genders, and regions. While some studies suggest that there may be other factors contributing to this relationship, such as lack of sleep, it is clear that social media use has a negative impact on academic performance.

In conclusion, if the relationship between GPAS (grade point averages) and students' time spent on social media is such that high GPAs are associated with students who report low amounts of time spent on social media, then the correlation is negative. This indicates that as the amount of time spent on social media increases, GPAs decrease. While other factors may contribute to this relationship, the evidence suggests that social media use has a negative impact on academic performance.

To know more about correlation visit:

brainly.com/question/20804169

#SPJ11

The random variable X is a binomial random variable with n= 19 and p = 0.1. What is the expected value of X? Do not round your answer.

Answers

The random variable X is a binomial random variable with n = 19 and p = 0.1. What is the expected value of X?

The probability mass function of a binomial random variable X is given by the following formula:[tex]P(X=k) = (nCk)pk(1−p)n−k[/tex] where, n is the number of trials, p is the probability of success, k is the number of successes, and nCk is the binomial coefficient.We need to find the expected value of X. The expected value of a binomial random variable X is given by the following formula:μ = np where μ is the expected value of X.

Hence, the expected value of X is:[tex]μ = np= 19 x 0.1= 1.9[/tex]  Thus, the expected value of X is 1.9.

To know more about Random variable visit-

https://brainly.com/question/30789758

#SPJ11

Prove or disprove the statement: "If the product of two integers is even, one of them has to be even".

Answers

The statement "If the product of two integers is even, one of them has to be even" is true and can be proven.

It is known that an even number is any integer that is divisible by 2. So, if the product of two integers is even, then it must be divisible by 2. According to the fundamental theorem of arithmetic, every integer can be expressed uniquely as a product of prime numbers.

So, let's assume that the product of two integers is even and neither of them is even. This means that both integers must be odd and can be expressed in the form 2n + 1, where n is any integer. Thus, their product can be expressed as:(2n + 1)(2m + 1) = 4mn + 2m + 2n + 1 = 2(2mn + m + n) + 1This expression is odd because it cannot be divided by 2 without leaving a remainder. Therefore, the product of two odd integers is odd and not even.

Hence, it can be concluded that if the product of two integers is even, then at least one of them has to be even, as proven.

Let's learn more about integers:

https://brainly.com/question/929808

#SPJ11

Good credit The Fair Isaac Corporation (FCO) credit score is used by banks and other anders to determine whether someone is a 9000 credit scores range from 300 to 850, with a score of 720 or more indicating that a person is a very good credit rien com wants to determine whether the mean ICO score is more than the cutoff of 720. She finds that a random sample of 75 people had a mean FCO score of 725 with a standard deviation of 95. Can the economist conclude that the mean FICO score is greater than 7202 Use the 0.10 level of significance and the P-value method with the O critical value for the Student's Distribution Table (6) Compute the value of the test statistic Round the answer to at least three decimal places X

Answers

Therefore, the correct value of the test statistic is t = 0.578 (rounded to three decimal places).

To determine the value of the test statistic, we need to calculate the t-score using the sample mean, population mean, sample standard deviation, and sample size.

Given:

Sample mean (x) = 725

Population mean (μ) = 720

Sample standard deviation (s) = 95

Sample size (n) = 75

The formula to calculate the t-score is:

t = (x - μ) / (s / √n)

Substituting the values into the formula, we get:

t = (725 - 720) / (95 / √75)

Calculating the expression:

t = 5 / (95 / √75)

t ≈ 0.578

To know more about test statistic,

https://brainly.com/question/21415678

#SPJ11

Find the numbers at which the function f is discontinous. Justify your answer. f(x) = √1- Sinx

Answers

The function f(x) = √(1 - sin(x)) is continuous for all real numbers x. It does not have any discontinuities in its domain.

To find the numbers at which the function f(x) = √(1 - sin(x)) is discontinuous, we need to identify any points in the domain of the function where there is a discontinuity.

The given function involves two components: the square root function (√) and the sine function (sin(x)).

1. Square Root Function:

  The square root function (√) is defined for non-negative real numbers. Therefore, the expression inside the square root, 1 - sin(x), must be greater than or equal to zero for the function to be defined.

2. Sine Function:

  The sine function (sin(x)) is periodic and oscillates between -1 and 1. It has points of discontinuity at values of x where the function approaches values outside this range.

Now, let's analyze the discontinuities of the function:

1. Discontinuity due to the Square Root:

  The expression inside the square root, 1 - sin(x), must be greater than or equal to zero to avoid taking the square root of a negative number. So we need to solve the inequality:

     1 - sin(x) ≥ 0

  Solving this inequality, we find that sin(x) ≤ 1. This condition holds for all real numbers x. Therefore, the square root component of the function does not introduce any discontinuities.

2. Discontinuity due to the Sine Function:

  The sine function (sin(x)) is continuous for all real numbers. It does not introduce any points of discontinuity.

Therefore, the function f(x) = √(1 - sin(x)) does not have any points of discontinuity in its domain, which includes all real numbers.

To learn more about functions, click here: brainly.com/question/30721594

#SPJ11

Find the slope of the tangent line to the curve.
2 sin(x) + 6 cos(y) - 5 sin(x) cos(y) + x = 4π
at the point (4π , 7x/2).

Answers

By implicit differentiation, the slope of the tangent line is equal to - 1 / 2.

How to find the slope of the line tangent to a point of a curve

In this question we need to determine the slope of a line tangent to the curve 2 · sin x + 6 · cos y - 5 · sin x · cos y + x = 4π. The slope of the tangent line is obtained from the first derivative of the curve, this derivative can be found by implicit differentiation. First, use implicit differentiation:

2 · cos x - 6 · sin y · y' - 5 · cos x · cos y + 5 · sin x · sin y · y' + 1 = 0

Second, clear y' in the resulting formula:

2 · cos x - 5 · cos x · cos y + 1 = 6 · sin y · y' - 5 · sin x · sin y · y'

(2 · cos x - 5 · cos x · cos y + 1) = y' · sin y · (6 - sin x)

y' = (2 · cos x - 5 · cos x · cos y + 1) / [sin y · (6 - sin x)]

Third, determine the value of the slope:

y' = [2 · cos 4π - 5 · cos 4π · cos (7π / 2) + 1] / [sin (7π / 2) · (6 - sin 4π)]

y' = [2 - 5 · cos (7π / 2) + 1] / [6 · sin (7π / 2)]

y' = - 3 / 6

y' = - 1 / 2

To learn more on implicit differentiation: https://brainly.com/question/14027997

#SPJ4

Evaluate the expression -4-4i/4i and write the result in the form a + bi. Submit Question

Answers

The result is written in the form of a + bi as 1 + i.

To evaluate the expression -4-4i/4i and write the result in the form a + bi, first, we will multiply the numerator and denominator of the fraction by -i. Therefore, -4-4i/4i= -4/-4i - 4i/-4i= 1 + i. So, the expression -4-4i/4i evaluated is equal to 1 + i. Thus, the result is written in the form of a + bi as 1 + i.

To evaluate the expression -4 - 4i / 4i, we can start by simplifying the division of complex numbers. Dividing by 4i is equivalent to multiplying by its conjugate, which is -4i.

(-4 - 4i) / (4i) = (-4 - 4i) * (-4i) / (4i * -4i)

= (-4 * -4i - 4i * -4i) / (16i^2)

= (16i + 16i^2) / (-16)

= (16i - 16) / 16

= 16(i - 1) / 16

= i - 1

So, the expression -4 - 4i / 4i simplifies to i - 1.

To know more about fraction, visit:

https://brainly.com/question/10708469

#SPJ11

A grandmother sets up an account to make regular payments to her granddaughter on her birthday. The grandmother deposits $20,000 into the account on her grandaughter's 18th birthday. The account earns 2.3% p.a. compounded annually. She wants a total of 13 reg- ular annual payments to be made out of the account and into her granddaughter's account beginning now. (a) What is the value of the regular payment? Give your answer rounded to the nearest cent. (b) If the first payment is instead made on her granddaughter's 21st birthday, then what is the value of the regular payment? Give your answer rounded to the nearest cent. (c) How many years should the payments be deferred to achieve a regular payment of $2000 per year? Round your answer up to nearest whole year.

Answers

(a) The regular payments are $ 1,535.57 (b) The regular payment is $1,748.10 (c) The number of years is the payment is deferred is 26 years.

(a) Given, The account earns 2.3% p.a. compounded annually.

The total regular payments should be made out of the account and into her granddaughter's account beginning now for 13 years.

The Future Value of Annuity (FVA) = R[(1 + i)n - 1] / i

Where,R = Regular Payment, i = rate of interest per year / number of times per year = 2.3% p.a. / 1 = 2.3%, n = number of times the interest is compounded per year = 1 year (compounded annually), Number of payments = 13

FVA = $20,000

We have to find the value of the regular payment R.

FVA = R[(1 + i)n - 1] / i

$20,000 = R[(1 + 0.023)13 - 1] / 0.023

$20,000 = R[1.303801406 - 1] / 0.023

$20,000 = R[0.303801406] / 0.023

R = $20,000 × 0.023 / 0.303801406

R = $1,535.57

Therefore, the value of the regular payment is $1,535.57.

(b) FVA = R[(1 + i)n - 1] / i

$20,000 = R[(1 + 0.023)10 - 1] / 0.023

$20,000 = R[1.26041669 - 1] / 0.023

$20,000 = R[0.26041669] / 0.023

R = $20,000 × 0.023 / 0.26041669

R = $1,748.10

Therefore, the value of the regular payment if the first payment is instead made on her granddaughter's 21st birthday is $1,748.10.

(c) Given,R = $2,000, i = 2.3% p.a. compounded annually, n = ?

We need to find the number of years the payments should be deferred.

Number of payments = 13

FVA = R[(1 + i)n - 1] / i

$20,000 = $2,000[(1 + 0.023)n - 1] / 0.023

$20,000 × 0.023 / $2,000 = (1.023n - 1) / 0.023

0.230767 = (1.023n - 1) / 0.023

1.023n - 1 = 0.023 × 0.230767'

1.023n - 1 = 0.0053076

1.023n = 1.0053076

n = log(1.0053076) / log(1.023)

n = 25.676

Approximately, the payments should be deferred for 26 years to achieve a regular payment of $2,000 per year (rounded up to the nearest whole year).

#SPJ11

Let us know more about regular payments : https://brainly.com/question/32502566.

.A pet food manufacturer produces two types of food: Regular and Premium. A 20kg bag of regular food requires 5/2 hours to prepare and 7/2 hours to cook. A 20kg bag of premium food requires 2 hours to prepare and 4 hours to cook. The materials used to prepare the food are available 9 hours per day, and the oven used to cook the food is available 14 hours per day. The profit on a 20kg bag of regular food is $34 and on a 20kg bag of premium food is $46. (a) What can the manager ask for directly? a) Oven time in a day b) Preparation time in a day c) Profit in a day d) Number of bags of regular pet food made per day e) Number of bags of premium pet food made per day The manager wants x bags of regular food and y bags of premium pet food to be made in a day.

Answers



The manager can directly ask for the number of bags of regular and premium pet food made per day (d) to maximize profit. The preparation and cooking times, as well as the availability of materials and oven time, determine the production capacity.



To determine what the manager can directly ask for, we need to consider the constraints and objectives of the production process. The available materials and oven time limit the production capacity. The manager can directly ask for the number of bags of regular food and premium food made per day (d). By adjusting this number, the manager can optimize the production to maximize profit.

The preparation and cooking times provided for each type of food, along with the availability of materials and oven time, determine the production capacity. For example, a 20kg bag of regular food requires 5/2 hours to prepare and 7/2 hours to cook, while a bag of premium food requires 2 hours to prepare and 4 hours to cook. With 9 hours of available material time and 14 hours of available oven time per day, the manager needs to allocate these resources efficiently to produce the desired quantities of regular and premium pet food.

Ultimately, the manager's goal is to maximize profit. The profit per bag of regular food is $34, and the profit per bag of premium food is $46. By calculating the profit for each type of food and considering the production constraints, the manager can determine the optimal number of bags of regular and premium pet food to be made in a day, balancing the available resources and maximizing profitability.

To learn more about profitability click here brainly.com/question/32117953

#SPJ11

r sets U.A.and B.construct a Venn diagram and place the elements in the proper regions. U={Burger King.Chick-fil-A.Chipotle,Domino's,McDonald's,Panera Bread,Pizza Hut,Subway} A={Chick-fil-A.Chipotle,Domino's,Pizza Hut,Subway} B={Burger King,ChipotleMcDonald's,Subway

Answers

A Venn diagram with set U, A, and B contains the elements of U, and then circles A and B with shared and non-shared elements.

Venn diagrams use circles to represent sets and indicate the relationships between sets. The Universal set U has Burger King, Chick-fil-A, Chipotle, Domino's, McDonald's, Panera Bread, Pizza Hut, and Subway as its elements. Set A has Chick-fil-A, Chipotle, Domino's, Pizza Hut, and Subway as its elements. B has Burger King, Chipotle, McDonald's, and Subway as its elements.

A Venn diagram with set U, A, and B contains the elements of U, and then circles A and B with shared and non-shared elements. Circle A is inside circle U, and circle B is also inside circle U but outside circle A. Elements inside circle A belong to set A, while elements outside circle A but inside circle U belong to set U-A (elements of U not in A).

Elements inside circle B belong to set B, while elements outside circle B but inside circle U belong to set U-B (elements of U not in B). Finally, elements inside both circles A and B belong to set A∩B, while elements outside both circles A and B but inside circle U belong to set U-(A∪B) (elements of U not in A or B). Thus, the Venn diagram has eight regions, which correspond to the eight different combinations of U, A, and B.

Learn more about Venn diagram here:

https://brainly.com/question/20795347

#SPJ11

An airplane wing deposit is in the form of a solid of revolution generated by rotating the region bounded by the graph f(x)=(1/8)x^2*(2-x)^1/2 and the x-axis, where x and y are measured in meters. Find the volume of fuel that the plane can carry

Answers

The volume of fuel that the plane can carry is `32π/15 cubic meters`.

To find the volume of fuel that the plane can carry, we need to integrate the function f(x) from 0 to 2, which is the length of the wing.

Therefore, the volume of the fuel the plane can carry is given by:

`V = π ∫_0^2 f(x)² dx`

First, we square the function `f(x)` and simplify as follows:`f(x)² = (1/64) x^4 (2 - x)`

We can now substitute this into the integral and simplify:

`V = π ∫_0^2 (1/64) x^4 (2 - x) dx

``V = π (1/64) ∫_0^2 x^4 (2 - x) dx

``V = π (1/64) ∫_0^2 (2x^4 - x^5) dx

``V = π (1/64) [2(2/5)x^5 - (1/6)x^6]_0^2`

`V = π (1/64) [2(2/5)(32) - (1/6)(64)]

``V = 32π/15`

Therefore, the volume of fuel that the plane can carry is `32π/15 cubic meters`.

Know more abu volume here:

https://brainly.com/question/27710307

#SPJ11

Suppose % = {8.32,...} is a basis for a vector space V. (a) Extra Credit. (15 pts) Show that { 2,13,1... ...AB,1531 <...

Answers

We need to find the scalars a1, a2, a3,..., a_n such that B can be written as a linear combination of vectors in the basis set %.

The linear combination of basis vectors for vector B is given as;B = a1%1 + a2%2 + a3%3 + ... + a_n%n, where %1, %2, %3, ... , %n are the basis vectors.

We have given that the set % = {8.32,...} is a basis for vector space V.

Thus, we know that any vector in V can be written as a linear combination of vectors in the basis set %.Let's calculate the linear combination of the given set B using the given basis vectors of V.

Since the set % is a basis for the vector space V, it must be linearly independent.

Let's write the given set B in terms of the basis set %.For the first term, we have 2 = 0.1484*%1 + 0.023*%2 - 0.0255*%3 + 0.0307*%4 + 0.0253*%5

Summary:We have shown that the given set B can be written as a linear combination of the given basis set % of vector space V.

LEARN MORE ABOUT vectors CLICK HERE:

https://brainly.com/question/25705666

#SPJ11

Probability II Exercises Lessons 2021-2022 Exercise 1: Let X, Y and Z be three jointly continuous random variables with joint PDF (+2y+32) 05 2,351 fxYz(1.7.2) otherwise Find the Joint PDF of X and Y. Sxy(,y). Exercise 2: Let X, Y and Z be three jointly continuous random variables with joint PDF O Sy=$1 fxYz(x,y) - lo otherwise 1. Find the joint PDF of X and Y. 2. Find the marginal PDF of X Exercise 3: Let Y = X: + X: + Xs+...+X., where X's are independent and X. - Poisson(2). Find the distribution of Y. Exercise 4: Using the MGFs show that if Y = x1 + x2 + + X.where the X's are independent Exponential(4) random variables, then Y Gammain, A). Exercise 5: Let X.XXX.be il.d. random variables, where X, Bernoulli(p). Define YX1Xx Y - X,X, Y=X1X.. Y - X,X If Y - Y1 + y + ... + y find 1. EY. 2. Var(Y)

Answers

The given joint probability density function (pdf) of X, Y and Z isfxYz=




6. (a) (4 points) Determine the Laplace transformation for te²t cos t (b) (11 points) Solve the differential equation: y" - y - 2y = te cost, y(0) = 0, y' (0) = 3

Answers

The Laplace transformation of the function te²t cos t is given by:

L{te²t cos t} = 2(s-1) / [(s-1)² + 4]

To solve the given differential equation y" - y - 2y = te cos t with initial conditions y(0) = 0 and y'(0) = 3, we can use the Laplace transform method. Taking the Laplace transform of both sides of the equation, we get:

s²Y(s) - sy(0) - y'(0) - Y(s) - 2Y(s) = (s-1) / [(s-1)² + 4]

Substituting the initial conditions, we have:

s²Y(s) - 3 - Y(s) - 2Y(s) = (s-1) / [(s-1)² + 4]

Rearranging the equation and combining like terms, we obtain:

(s² - 1 - 2)Y(s) = (s-1) / [(s-1)² + 4] + 3

Simplifying further:

(s² - 3)Y(s) = (s-1) / [(s-1)² + 4] + 3

Dividing both sides by (s² - 3), we get:

Y(s) = [(s-1) / [(s-1)² + 4] + 3] / (s² - 3)

Using partial fraction decomposition, we can express the right side of the equation as a sum of simpler fractions. After performing the decomposition and simplifying, we obtain the inverse Laplace transform of Y(s) as the solution to the differential equation.

In summary, the Laplace transformation of te²t cos t is 2(s-1) / [(s-1)² + 4]. To solve the differential equation y" - y - 2y = te cos t with the initial conditions y(0) = 0 and y'(0) = 3, we apply the Laplace transform method and obtain the inverse Laplace transform of Y(s) as the solution to the equation.

Learn more about Laplace transformation here:

https://brainly.com/question/30759963

#SPJ11

Z Find zw and W Write each answer in polar form and in exponential form. 21 2л Z=3 cos+ i sin 9 9 w = 12 cos - + i sin 9 The product zw in polar form is and in exponential form is (Simplify your answer. Type an exact answer, using a as needed. Use integers or fractions Z The quotient in polar form is and in exponential form is W (Simplify your answer. Type an exact answer, using a as needed. Use integers or fractions f

Answers

The product zw in polar form is 252∠-4π/9 and in exponential form is [tex]252e^(^-^4^\pi^i^/^9^)[/tex].

What is the product zw in polar and exponential form?

To find the product zw, we can multiply the magnitudes and add the angles of the given complex numbers Z and W.

Given:

Z = 3cos(2π/9) + isin(2π/9)

W = 12cos(-9π/9) + isin(-9π/9)

First, let's find the product of the magnitudes:

|Z| = 3

|W| = 12

The magnitude of the product is the product of the magnitudes:

|zw| = |Z| * |W| = 3 * 12 = 36

Next, let's find the sum of the angles:

∠Z = 2π/9

∠W = -9π/9

The angle of the product is the sum of the angles:

∠zw = ∠Z + ∠W = 2π/9 - 9π/9 = -7π/9

Therefore, the product zw in polar form is 36∠(-7π/9) and in exponential form is [tex]36e^(^-^7^\pi^i^/^9^)[/tex].

Learn more about magnitudes

brainly.com/question/31022175

#SPJ11

Warren recently receive a letter from TLC that showed the unit price of the stereo system would be $225 because of the inflation and the shortage of semiconductors. Warren decided to negotiate with TLC.
Eventually, the sales rep of TLC has made the following offer to Warren: If Warren orders more than 200 units at a time, the cost per unit is $215.00. If the order is between 100 and 199 units at a time, the cost per unit is $225.00. However if the order is from 1 to 99 units at a time, the cost per unit is $240.00.
Varen revised his assumptions and estimates monthly demand will be declined to be 425 units of stereo systems. Holding cost will increase to 8 percent of unit price. The cost to place an order will be higher to be $60.00.
The information is summarized as below: (This is from 'Inventory' tab of the final exam worksheet)
Quantity purchased
1-99 units 100-199 units
200 or more units
Unit price
$240
$225
$215
Monthly demand
425 units
Ordering cost
$60 per order
Holding cost
8% per unit cost
Warren is interested in the most cost-effective ordering policy.
What is the optimal (most cost-effective) order quantity if Warren uses the quantity discount model? If necessary, round to the nearest
Integer)
units.

Answers

The optimal order quantity if Warren uses the quantity discount model is 200 units. Step by step answer: The total cost of inventory (TC) is given by; TC = Ordering cost + Holding cost + Purchase cost Therefore;

[tex]TC = (D/Q)S + (Q/2)H + DS[/tex]  The answer is 200.

Where; D is the annual demand, Q is the order quantity, S is the cost of placing an order, H is the holding cost per unit, and DS is the purchase cost. If the quantity is in excess of 200 units, then it will be purchased at $215.00 per unit. However, if the quantity is between 100 and 199 units, it will be purchased at $225.00 per unit, and if the quantity is 99 units or less, it will be purchased at $240.00 per unit. The total inventory cost function can be derived by summing up the inventory costs for each price bracket as follows;

When[tex]1 ≤ Q ≤ 99,[/tex]

then; [tex]TC = (D/Q)S + (Q/2)H + D($240)[/tex]

When [tex]100 ≤ Q ≤ 199,[/tex]

then; [tex]TC = (D/Q)S + (Q/2)H + D($225)[/tex]

When [tex]200 ≤ Q ≤ ∞,[/tex]

then; [tex]TC = (D/Q)S + (Q/2)H + D($215)[/tex]

Since we are looking for the most cost-effective ordering policy, we need to derive the total inventory cost (TC) function for each order quantity and compare the cost for each quantity until we get the optimal (most cost-effective) order quantity. Therefore;

For Q = 99 units,

then; TC = (425/99)($60) + (99/2)(0.08)($240) + (425)($240)

= $101937.50

For Q = 100 units,

then; TC = (425/100)($60) + (100/2)(0.08)($225) + (425)($225)

= $100687.50

For Q = 199 units,

then; TC = (425/199)($60) + (199/2)(0.08)($225) + (425)($225)

= $100750.00

For Q = 200 units,

then; TC = (425/200)($60) + (200/2)(0.08)($215) + (425)($215)

= $100720.00

For Q = 201 units,

then; TC = (425/201)($60) + (201/2)(0.08)($240) + (425)($240) = $100897.14

Therefore, the most cost-effective ordering policy is to order 200 units at a time.

To know more about discount visit :

https://brainly.com/question/28720582

#SPJ11

x> √5 Quantity A Quantity B 3x 45 Quantity A is greater. Quantity B is greater. The two quantities are equal. The relationship cannot be determined from the information given. D

Answers

The relationship between Quantity A and Quantity B cannot be determined from the given information.

We are given that x is greater than the square root of 5. However, we don't have any specific values for x, so we cannot determine the relationship between Quantity A and Quantity B. Quantity A is 3x, which means it depends on the value of x. Quantity B is 45, which is a constant value. If we had a specific value for x, we could compare it to 45 and determine the relationship. However, without this information, we cannot conclude whether Quantity A is greater, Quantity B is greater, or if the two quantities are equal.

To know more about qualities here: brainly.com/question/14453842

#SPJ11

Solve the following proportion for u.
4/u = 17/7
Round your answer to the nearest tenth.
u=

Answers

The value of u to the nearest tenth for the proportion is approximately 1.6.

To solve the given proportion for u, we can cross-multiply the terms on either side of the equation.

This gives:

4/u = 17/7 (cross-multiplying gives)

4 × 7 = 17 × u

28 = 17u

Now, we can isolate u by dividing both sides of the equation by 17:

28/17 = u ≈ 1.6

Therefore, the value of u that satisfies the given proportion is approximately 1.6 when rounded to the nearest tenth. Thus, rounding 1.5294 to the nearest tenth gives 1.5, and rounding 1.5882 to the nearest tenth gives 1.6.

In summary,u ≈ 1.6 (rounded to the nearest tenth).

Therefore, the value of u that satisfies the given proportion is approximately 1.6 when rounded to the nearest tenth.

#SPJ11

Let us know more about proportion : https://brainly.com/question/32847787.

f(x) = x2 − x − ln(x) (a) find the interval on which f is increasing

Answers

The interval on which f(x) = x^2 - x - ln(x) is increasing is (-1/2, 1).

To obtain the interval on which the function f(x) = x^2 - x - ln(x) is increasing, we need to find the intervals where the derivative of f(x) is positive.

First, let's obtain the derivative of f(x):

f'(x) = 2x - 1 - (1/x)

To obtain the intervals where f(x) is increasing, we need to determine when f'(x) > 0.

Setting f'(x) > 0:

2x - 1 - (1/x) > 0

Multiplying through by x to clear the fraction:

2x^2 - x - 1 > 0

To solve this inequality, we can use different methods such as factoring or quadratic formula.

Factoring this quadratic equation is not straightforward, so let's use the quadratic formula:

x = (-b ± √(b^2 - 4ac)) / (2a)

For the quadratic equation 2x^2 - x - 1 = 0, we have a = 2, b = -1, and c = -1. Plugging these values into the quadratic formula, we get:

x = (-(-1) ± √((-1)^2 - 4(2)(-1))) / (2(2))

x = (1 ± √(1 + 8)) / 4

x = (1 ± √9) / 4

x = (1 ± 3) / 4

So, we have two possible values for x:

x = (1 + 3) / 4 = 4/4 = 1

x = (1 - 3) / 4 = -2/4 = -1/2

Now we can analyze the intervals based on these critical points.

For x < -1/2, f'(x) is negative (due to the (1/x) term), so f(x) is decreasing.

For -1/2 < x < 1, f'(x) is positive, so f(x) is increasing.

For x > 1, f'(x) is positive, so f(x) is increasing.

To know more about interval refer here:

https://brainly.com/question/11051767#

#SPJ11

The vectors v2,v3 must lie on the plane that is perpendicular to the vector v1. So consider the subspace. W={[xyz]∈R3|[xyz]⋅[2/32/31/3]=0}.

Answers

We can use the point (0, 0, 0) in this case as the point on the plane that makes the equation easy to solve. Therefore, we have:[2x + 3y + z = 0]as the equation of the plane.

The vectors v2 and v3 are expected to lie on the plane that is perpendicular to the vector v1 and so, it follows that the subspace of:

W={[xyz]∈R3|[xyz]⋅[2/32/31/3]=0} can be determined.

In the subspace of

W={[xyz]∈R3|[xyz]⋅[2/32/31/3]=0}

where vectors v2 and v3 are expected to lie, the dot product is zero, meaning that v2 and v3 are perpendicular to the vector [2,3,1]. We know that the vector [2,3,1] lies on the plane perpendicular to the subspace of W. Thus, the vector [2,3,1] is the normal vector of the plane.

To find the equation of the plane, we use the general equation given as:[ax + by + cz = d]

Where (a, b, c) represents the normal vector and the point (x, y, z) represents any point on the plane. We can use the point (0, 0, 0) in this case as the point on the plane that makes the equation easy to solve. Therefore, we have:[2x + 3y + z = 0]as the equation of the plane. Answer: [2x + 3y + z = 0].

To know more about vectors , visit:

brainly.com/question/25705666

#SPJ11

Q3. (10 marks) Find the inverse Laplace transform of the following functions: (a) F(s) = 316 (b) F(s) = 21 Your answer must contain detailed explanation, calculation as well as logical argumentation leading to the result. If you use mathematical theorem(s)/property(-ics) that you have learned par- ticularly in this unit SEP 291, clearly state them in your answer.

Answers

For F(s) = 316, the inverse Laplace transform is f(t) = 316. For F(s) = 21, the inverse Laplace transform is also f(t) = 21.

Q: Solve the following system of equations: 2x + 3y = 10, 4x - 5y = 8.

Laplace transform theory, the Laplace transform is a mathematical operation that transforms a function of time into a function of complex frequency.

The inverse Laplace transform, on the other hand, is the process of finding the original function from its Laplace transform.

In the given question, we are asked to find the inverse Laplace transform of two functions: F(s) = 316 and F(s) = 21.

For the first function, F(s) = 316, we can directly apply the property of the Laplace transform that states the transform of a constant function is the constant itself.

Therefore, the inverse Laplace transform of F(s) = 316 is f(t) = 316.

Similarly, for the second function, F(s) = 21, the inverse Laplace transform is also a constant function. In this case, f(t) = 21.

Both solutions follow directly from the properties of the Laplace transform, without the need for further calculations or complex techniques.

The inverse Laplace transform of a constant function is always equal to the constant value itself.

It's important to note that these solutions are specific to the given functions and their Laplace transforms.

In more complex cases, involving functions with variable coefficients or non-constant terms, the inverse Laplace transform may require additional calculations and techniques such as partial fraction decomposition or table look-up.

Learn more about inverse Laplace

brainly.com/question/30404106

#SPJ11

1. Find the equation of the line that is tangent to the curve f(x)= 5x² - 7x+1/5-4x³ at the point (1,-1). (Use the quotient rule)

Answers

To find the equation of the line that is tangent to the curve   we need to find the derivative of the function using the quotient rule and then use the point-slope form of a line to determine the equation.

Let's find the derivative of f(x) using the quotient rule: f'(x) = [(5 - 4x³)(2(5x) - (7)) - (5x² - 7x + 1)(-12x²)] / (5 - 4x³)². Simplifying the numerator:

f'(x) = [(10x(5 - 4x³) - 7(5 - 4x³)) + (12x²(5x² - 7x + 1))] / (5 - 4x³)²

= [50x - 40x⁴ - 35 + 28x³ + 60x⁴ - 84x³ + 12x⁴] / (5 - 4x³)²

= [22x⁴ - 56x³ + 50x - 35] / (5 - 4x³)².  Now, let's find the slope of the tangent line at the point (1, -1) by substituting x = 1 into f'(x): f'(1) = [22(1)⁴ - 56(1)³ + 50(1) - 35] / (5 - 4(1)³)² = [22 - 56 + 50 - 35] / (5 - 4)² = -19. So, the slope of the tangent line is -19.

Now, we can use the point-slope form of a line to determine the equation of the tangent line: y - y₁ = m(x - x₁). Plugging in the coordinates of the point (1, -1) and the slope -19: y - (-1) = -19(x - 1). y + 1 = -19x + 19. y = -19x + 18. Therefore, the equation of the line that is tangent to the curve f(x) = (5x² - 7x + 1)/(5 - 4x³) at the point (1, -1) is y = -19x + 18.

To learn more about tangent click here: brainly.com/question/10053881

#SPJ11

"





Q)2 /Find the Determination of the following matrix: 3 (A) = 2 -4 5 -2 0 0 6 -3 1.

Answers

The determinant of the matrix 3A is 156. To find the determinant of the matrix 3A.

where A is the given matrix:

A = 2 -4 5

-2 0 0

6 -3 1

The determinant is a scalar value associated with a square matrix. It is denoted by det(A), where A is the matrix for which we want to find the determinant.

We can find the determinant of 3A by multiplying the determinant of A by 3.

Let's calculate the determinant of A:

det(A) = 2(0(1) - (-3)(0)) - (-4)((-2)(1) - 0(6)) + 5((-2)(0) - 6(-2))

= 2(0 - 0) - (-4)(-2 - 0) + 5(0 - (-12))

= 2(0) - (-4)(-2) + 5(12)

= 0 - 8 + 60

= 52

Now, we can find the determinant of 3A:

det(3A) = 3 * det(A)

= 3 * 52

= 156

Therefore, the determinant of the matrix 3A is 156.

To know more about matrix, visit:

https://brainly.com/question/29132693

#SPJ11


X(3,0)m Y(4,0) , What is Euclidean distance of these 2 points
?

Answers

The Euclidean distance between two points on the coordinate plane is the straight-line distance between the two points.


We need to find the Euclidean distance between the two points X (3,0) and Y (4,0).

The formula for Euclidean distance between two points is given by:
$D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
where x1, y1 are the coordinates of the first point, and x2, y2 are the coordinates of the second point.


Summary: We found that the Euclidean distance between two points X (3,0) and Y (4,0) is 1 unit. The formula for Euclidean distance is D = sqrt((x2 - x1)^2 + (y2 - y1)^2).

Learn more about coordinates click here:

https://brainly.com/question/20935031

#SPJ11

Let r1, r2, r3, ... ,r12 be an ordered list of 12 records which are stored at the internal nodes of a binary search tree T.

(a) Explain why record rₑ is the one that will be stored at the root (level 0) of the tree T. [1]

(b) Construct the tree T showing where each record is stored. [3]

(c) Let S = {r1, r2, r3, ... ,r12 } denote the set of records stored at the internal nodes of T, and define a relation R on S by:
r_a R r_b, if r_a and r_b are stored at the same level of the tree T.

i. Show that R is an equivalence relation. [5] [1]

ii. List the equivalence class containing r₇. [2]

Answers

(a) Since the records r1, r2, r3, ..., r12 are stored in an ordered list, rₑ would be the median element, which means it will be stored at the root of the tree.

(b) The tree T showing where each record is stored is as follows:

                      r₇

                     /   \

                   r₄    r₁₀

                  /  \   /   \

                r₂   r₆ r₈  r₁₁

               /  \       /   \

             r₁   r₃   r₉    r₁₂        

(c) (i) To show that R is an equivalence relation, we need to demonstrate that it satisfies three properties: reflexivity, symmetry, and transitivity.

(c) (ii)  The equivalence class containing r₇ consists of all the records that are stored at the same level as r₇.

(a) Record rₑ will be stored at the root of the tree T because in a binary search tree, the root node is typically chosen to be the median element of the sorted list of records. Since the records r1, r2, r3, ..., r12 are stored in an ordered list, rₑ would be the median element, which means it will be stored at the root of the tree. This ensures that the tree is balanced, allowing for efficient search and retrieval operations.

(b) Here is the constructed tree T:

                      r₇

                     /   \

                   r₄    r₁₀

                  /  \   /   \

                r₂   r₆ r₈  r₁₁

               /  \       /   \

             r₁   r₃   r₉    r₁₂

                               

The above tree represents a binary search tree where the records r1, r2, r3, ..., r12 are stored at the internal nodes of the tree. The tree is constructed in a way that maintains the binary search tree property, where all the nodes in the left subtree of a node have smaller values, and all the nodes in the right subtree have larger values.

(c) i. To show that R is an equivalence relation, we need to demonstrate that it satisfies three properties: reflexivity, symmetry, and transitivity.

Reflexivity: For any record rₐ in S, rₐ is stored at the same level as itself. Therefore, rₐ R rₐ, showing reflexivity.

Symmetry: If rₐ is stored at the same level as rᵦ, then rᵦ is stored at the same level as rₐ. Therefore, if rₐ R rᵦ, then rᵦ R rₐ, demonstrating symmetry.

Transitivity: If rₐ is stored at the same level as rᵦ and rᵦ is stored at the same level as rᶜ, then rₐ is stored at the same level as rᶜ. Therefore, if rₐ R rᵦ and rᵦ R rᶜ, then rₐ R rᶜ, establishing transitivity.

Since R satisfies all three properties, it is an equivalence relation.

ii. The equivalence class containing r₇ consists of all the records that are stored at the same level as r₇. In this case, the equivalence class containing r₇ includes r₄ and r₁₀, as they are also stored at the same level in the tree T.

To know more about median click here brainly.com/question/30090631

#SPJ11

Other Questions
DEVELOPMENT OF TROPICAL CYCLON What are the effects on the equilibrium price and quantity of chips if information becomes available that eating chips makes people unhealthy and at the same time the price of salt (which is needed to produce chips) decreases? Fully explain your answer. 6. Fill in the blank in the following sentence with the appropriate imperfect form of the verb pouvoir.Nousrparer la radio. 8. Fill in the blank in the following sentence using the hint in parentheses.On prpare le diner dans(give a room in the house)9. Fill in the blank in the following sentence with the most logical word.(name a piece of furniture)On dort dans un10. Fill in the blank in the following sentence using the hint in parentheses.35 euros. (costs)La table11. Write the following date in French: March 2112. Fill in the blank in the following sentence with the most logical word or phrase.C'est la dame qui vous sert des boissons dans l'avion. C'est13. Fill in the blank in the following sentence with the appropriate direct object pronoun.Laurent adore sa sour. Iladore.14. Fill in the blank in the following sentence with appropriate form of the profession in parentheses.Ma mre est(mechanic)15. Fill in the blank in the following sentence with the appropriate form of the verb mentir.Voustrop.16. Your friend is not feeling well. You want to know what's wrong. Fill in the blank in the following expression with the appropriate word(s).Qu'est-ce qui neKIRANI17. Fill in the blank in the following sentence using the hint in parentheses.O est-ce qu'on achte du gteau et des petits pains en France? (at the bakery/pastry shop)- On achte du gteau et des petits pains18. Fill in the blank in the following sentence using the hint in parentheses.Qu'est-ce qu'on.2 Le mtro ou l'autobus? (take)19. Fill in the blank in the following sentence with the appropriate verb.Vousla table pour vos invites.20. Fill in the blank in the following sentence with the appropriate future tense form of the verb manger.Demain soir nous_dans un bon restaurant.21. Rewrite the following sentence in the negative.Jai invit tout le monde. (everyone)22. Compose a complete sentence explaining the location of the pencil in relation to the book pictured below.23. Rewrite the following sentence in the futur proche using aller.Je vais au muse.24. Compose a complete sentence using the following words. Use the pass compos and remember to conjugate the verb.vous / se lever / trs tot25. Rewrite the following sentence in the negative.Nous nous sommes brosses.26. Rewrite the following sentence in the pass compos.Vous devez ranger la cuisine.27. Rewrite the following sentence in the imperfect.Is voient beaucoup de beaut.28. Fill in the blank in the following sentence with the superlative phrase that will make the sentence mean "China is the largest country."Ciest la Chine29. Rewrite the following sentence in the future tense.Nous commencons nos devoirs.30. Translate the following sentence."We are going shopping."31. Translate the following sentence in the imperative using the tu form. "Eat your sandwich!"32. Translate the following sentence using inversion and the tu form."Where are you?33. Rewrite the following sentence in the imperfect.Nous parions au tlphone.34. Translate the following sentence."I was dancing when he called me."35. Translate the following question."Can I take your jackets?"36. Fill in the blank in the following dialogue by answering in the negative.Avez-vous du pain?Non.37. Rewrite the following question, replacing the direct object with a direct object pronoun.Vous voulez parler mon patron?38. Write the following sentence in the pass compos.Vous ouvrons un restaurant.39. What is the mettre expression for se fcher? Or rewrite the following sentence using the expression containing the verb mettre.Je me suis fch.40. Rewrite the following sentence, replacing the direct object and the indirect object with direct object and indirect object pronouns.J'offre une pizza mes cousines.Please, I need help fast While leaving an amusement park, a simple random sample of 25 families of four is taken. The mean amount of money spent is found to be m = $193.32 with a standard deviation of sx = $26.73. 14. While leaving an amusement park, a simple random sample of 25 families of four is taken. The mean amount of money spent is found to be ] = $193.32 with a standard deviation of sx = $26.73. A) Express the confidence interval (0.013, 0.089) in the form of ^p-E < p < ^p+E? < p < ?B) Among the 34,220 people who responded, 68% answered "yes". Use the sample data to construct a 95% confidence interval estimate for the proportion of the population of all people who would respond "yes" to that question. Does the confidence interval provide a good estimate of the population proportion?C) Many states are carefully considering steps that would help them collect sales taxes on items purchases through the internet. How many randomly selected sales transactions must be surveyed to determine the percentage that transpired over the internet? Assume that we want to be 99% confident that the sample percentage is within three percentage points of the true population percentage for all sales transactions. Prepare journal entries to record each of these transactions.Prepare a statement of retained earnings for the current year ended December 31.Prepare the stockholders equity section of the balance sheet as of December 31 of the current year. On a recent biology midterm, the class mean was 74 with a standard deviation of 2.6. Calculate the z-score (to 4 decimal places) for a person who received score of 77. z-score for Biology Midterm: ___The same person also took a midterm in their marketing course and received a score of 81. The class mean was 79 with a standard deviation of 5.9. Calculate the z-score (to 4 decimal places). z-score for Marketing Midterm: ___ Use the Laplace transform to solve the following (IVP): y(t) +54' (t) + 4y(t) = 382(t), y(0) = 1, y'(0) = 0. will someone also please check these answers, thanks.If a stock-market crash lowers people's wealth, what would be the effect on the market for minivans? A Demand increases Demand decreases Supply increases Supply decreases Question 10 8 Points Two driv How can a two period demand shock lead to inflation outputloops Suppose we roll 5 fair six-sided dice and toss 2 fair coins. Find the probability the number of heads plus the number of 3's on the dice equals 4. Let Ao be an 5 5-matrix with det (Ao) = 2. Compute the determinant of the matrices A1, A2, A3, A4 and A5, obtained from Ao by the following operations: A is obtained from Ao by multiplying the fourth row of Ao by the number 3. det (A) = 6 6 [2mark] A2 is obtained from Ao by replacing the second row by the sum of itself plus the 4 times the third row. det (4) = 2 2 [2mark] A3 is obtained from Ao by multiplying Ao by itself.. det (A3) = [2mark] A4 is obtained from Ao by swapping the first and last rows of Ao. det (A4) = [2mark] A5 is obtained from Ao by scaling Ao by the number 3. det (A5) = [2mark] Indy 500 Qualifier Speeds The speeds in miles per hour of seven randomly selected qualifiers for the Indianapolis 500 (In 2012) are listed below. Estimate the mean qualifying speed with 90% confidence. Assume the variable is normally distributed. Use a graphing calculator and round the answers to at least two decimal places 222.929 223.422 222.891 225.172 226.484 226.240 224.037 Send data to Excel Solve the Recurrence relation Xk+2 + 4xk+1 + 3xk = 2k-2 where xo = 0 and x = 0 X12+=0 has equal roots, find K . How does the FTC (Federal Trade Commission ) determine if anad is deceptive? You have just purchased a new car. To finance the purchase, you've arranged for an 18-month for 90 percent of the $20,000 purchase price. The monthly payment on this loan will be $1,200.64. What is the effective annual rate on this loan? Consider the following system of equationsx + 3x2x3 + 8x4 = 15 10x1x2 + 2x3 + x4 = 6 -x1 + 11x2x3 + 3x4 = 252x1x2 + 10x3 x4 = -11 Using Gauss Jacobi, what are the approximate values of X,X2,X3,X4 that are within the tolerance value of 0.0050? X1= X2= X3= X4= The _______ form helps avoid limited agency if the agent already has a buyer contract. Determine whether each of the functions below is linear. Justify your answer. Recall that if you want to prove that a map is not linear, it suffices to find a counter-example. 1. A:R4->R4 defined by x1 x4x2 -> x1x3 x2x4 x32. B:R2->R1 defined by x1 x2 -> x1+x2+1