Spectra can be used as an evidence that nuclear fusion occurs in the star through the ability of the elements generated to absorb light at specific wavelength.
The internal part of the star is made up of hydrogen gas, with a little helium.
The helium atom is formed through the nuclear fusion reaction that occurs in the core of the star.
Nuclear fusion reaction involves the combination of two or more atoms which leads to the formation of a new atom with the emission of great energy. This reaction leads to formation of helium elements in the core of the stars.
To detect if nuclear fusion reaction is occurring in the stars, a spectrum is used.
Because each element emits or absorbs light only at specific wavelengths, the chemical composition of stars can be determined using a spectrum.
Learn more here:
https://brainly.com/question/18545784
1. Explain what the police siren sounds like to Jane:
2. Explain what the police siren sounds like to John:
3. Explain why the police siren sounds different between Jane and John:
Answer:
1. the siren has a lower pitch to Jane
2. the siren has a higher pitch to John
3. sound different due to moving away from Jane making the sound wave lengths longer and moving toward John making the wave lengths shorter
Explanation:
The Doppler effect expresses that sound is comparative with the spectator or observer. This is demonstrated valid by the model given with Jane and John. To one individual it could sound low and to someone else it could sound high, in light of where they are tuning in from. To John, the police alarm playing is a higher pitch. Be that as it may, to Jane this equivalent alarm is a totally extraordinary pitch and is heard lower than in comparison to the john.
This is a prime case of the Doppler Effect. They sound distinctive on the grounds that the sound is moving far from Jane making the sound frequencies longer and it is advancing toward John making the frequencies shorter. This impacts how the sound is heard by the human ear.
Identify the conjugate pairs in the following acid-base reaction
H₂CO₃(aq) + C₅H₅N(aq) HNO₃-(aq) + HC₅H₅N+(aq)
H2CO3 is an acid because it gave away a proton to become HNO3~.
HNO3~ is a conjugate Base because Acids become conjugate Bases after giving away a proton.
C5H5N is a base because it accepted the proton from H2CO3 to become HC5H5N+.
HC5H5N+ is a conjugate Acid because Bases become Conjugate Acids after accepting a proton.
There are 2.4g of calcium hydroxide reacted with nitric acid. Calculate the number of moles of calcium hydroxide used. Write your answer using proper significant digits and units. Show all your work.
Answer:
0.032 moles
Explanation:
no of moles =
[tex] \frac{mass \: in \: grams}{relative \: molecular \: mass} [/tex]
=
[tex] \frac{2.4}{40 + 32 + 2} [/tex]
= 0.032
Calcium hydroxide reacted with nitric acid the total number of moles will be 0.032 moles.
What is a mole?
A mole is Avogadro's number of particles, which is exactly 6.02214076×1023.
The mole is widely used in chemistry as a convenient way to express amounts of reactants and products of chemical reactions. For example, the chemical equation 2H2 + O2 → 2H2O can be interpreted to mean that for each 2 mol dihydrogen (H2) and 1 mol dioxygen (O2) that react 2 mol of water (H2O) form.
Number of moles = Mass of substance / Mass of one mole Number of moles
mass of substance = 2.4g
molar mass of calcium hydroxide is (1 ×40.078g/mol Ca) +(2 × 15.999g/mol O) + (2 × 1.008g/mol H) = 74.092 g/mol Ca (OH)2
substituting the value,
number of moles = 2.4 / 74.029
= 0.032 moles
Therefore, moles of calcium hydroxide will be 0.032 moles
Learn more about moles, here :
https://brainly.com/question/15209553
#SPJ2
A monoprotic weak acid, HA , dissociates in water according to the reaction HA(aq)+H2O(l)↽−−⇀H3O+(aq)+A−(aq) The equilibrium concentrations of the reactants and products are [HA]=0.260 M , [H3O+]=4.00×10−4 M , and [A−]=4.00×10−4 M . Calculate the Ka value for the acid HA.
Answer:
Ka = 6.15x10⁻⁷
Explanation:
Ka is defined as dissociation constant in the equilibrium of a weak acid with water. The general reaction is:
HA(aq) + H₂O(l) ⇆ H₃O⁺(aq) + A⁻(aq)
And Ka is defined as the ratio between molar concentrations in equilibrium of products over reactants as follows:
Ka = [H₃O⁺] [A⁻] / [HA]
You don't take water in the equilibrium beacuse is a pure liquid
Replacing with the concentrations of the problem:
Ka = [H₃O⁺] [A⁻] / [HA]
Ka = [4.00x10⁻⁴] [4.00x10⁻⁴] / [0.260]
Ka = 6.15x10⁻⁷
Why don't siblings look exactly alike
Answer:
Your genes play a big role in making you who you are. ... But brothers and sisters don't look exactly alike because everyone (including parents) actually has two copies of most of their genes. And these copies can be different. Parents pass one of their two copies of each of their genes to their kids.
When equation for neutralization of HBr by Ca(OH)2 is correctly balanced, how many molecules of water will be formed
Answer:
When equation for neutralization of HBr by Ca(OH)₂ is correctly balanced, 1.2046*10²⁴ molecules of water will be formed
Explanation:
A neutralization reaction is one in which an acid (or acidic oxide) reacts with a base (or basic oxide). In the reaction a salt is formed and in most cases water is formed. A Salt is an ionic compound formed by the union of ions and cations through ionic bonds.
In the reactions of a strong acid (those substances that completely dissociate) with a strong base (they dissociate completely, giving up all their OH-), the complete neutralization of the species is carried out:
2 HBr (aq) + Ca(OH)₂ (s) → CaBr₂ (aq) + 2 H₂O (l)
The reaction is already balanced, complying with the law of conservation of matter. This law states that since no atom can be created or destroyed in a chemical reaction, the number of atoms that are present in the reactants must be equal to the number of atoms present in the products.
By stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction), 2 moles of water H₂O are formed.
On the other hand, Avogadro's Number or Avogadro's Constant is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023 * 10²³ particles per mole. Avogadro's number applies to any substance.
Then you can apply the following rule of three: if 1 mole of H₂O contains 6.023*10²³ molecules, 2 moles of H₂O, how many molecules does it contain?
[tex]amount of molecules=\frac{2moles*6.023*10^{23}molecules }{1 mole}[/tex]
amount of molecules= 1.2046*10²⁴ molecules
When equation for neutralization of HBr by Ca(OH)₂ is correctly balanced, 1.2046*10²⁴ molecules of water will be formed
After combining hydrogen ions and hydroxide ions combine to form water molecules, the next step in balancing a redox reaction under basic conditions is to: ______
Explanation:
After combining hydrogen ions and hydroxide ions combine to form water molecules, the next step is the last step when balancing a redox reaction under basic condition.
The last step is to cancel all common terms that arises as a result of the formation of the water molecule. Usually, there's need to balance the water molecules in the reactant and product side of the reaction.
The predominant consequence to an individual who is genetically deficient in liver fructose 1,6-bisphosphatase would be
A. Inability to metabolize fructose.
B. a lowered yield of ATP production per mole of glucose metabolized.
C. a failure to split fructose bisphosphate into triose phosphates.
D. a failure to resynthesize glucose from lactic acid.
The predominant consequence to an individual who is genetically deficient in liver fructose 1,6-bisphosphatase would be failure to resynthesize glucose from lactic acid.
WHAT IS FRUCTOSE 1,6-BISPHOSPHATASE:
fructose 1,6-bisphosphatase is an important enzyme produced in the liver to catalyze the conversion of fructose-1,6-bisphosphate to fructose-6-phosphate during gluconeogenesis. Gluconeogenesis is the process whereby glucose sugar is produced from noncarbohydrate substances such as lactate, pyruvate etc. Gluconeogenesis is the opposite of glycolysis (breakdown of glucose).CONSEQUENCES OF DEFICIENCY OF FRUCTOSE 1,6-BISPHOSPHATASE:
Since, gluconeogenesis results in the synthesis of glucose from substances like lactic acid, a deficiency in liver fructose 1,6-bisphosphatase enzyme will mean that GLUCOSE WILL NOT BE ABLE TO BE SYNTHESIZED.Therefore, the predominant consequence to an individual who is genetically deficient in liver fructose 1,6-bisphosphatase would be failure to resynthesize glucose from lactic acid.
Learn more at: https://brainly.com/question/13717824
A saturated sodium carbonate solution at 0°C contains 7.1 g of dissolved sodium carbonate per 100. mL of solution. The solubility product constant for sodium carbonate at this temperature is
Answer:
[tex]Ksp=1.2[/tex]
Explanation:
Hello,
In this case, as the saturated solution has 7.1 grams of sodium carbonate, the solubility product is computed by firstly computing the molar solubility by using its molar mass (106 g/mol):
[tex]Molar \ solubility=\frac{7.1gNa_2CO_3}{0.1L}*\frac{1molNa_2CO_3}{106gNa_2CO_3}=0.67M[/tex]
Next, as its dissociation reaction is:
[tex]Na_2CO_3(s)\rightleftharpoons 2Na^+(aq)+CO_3^{2-}(aq)[/tex]
The equilibrium expression is:
[tex]Ksp=[Na^+]^2[CO_3^{2-}][/tex]
And the concentrations are related with the molar solubility (2:1 mole ratio between ionic species):
[tex]Ksp=(2*0.67)^2*(0.67)\\\\Ksp=1.2[/tex]
Best regards.
The normal boiling point of a liquid is 282 °C. At what temperature (in °C) would the vapor pressure be 0.350 atm? (∆Hvap = 28.5 kJ/mol)
Answer:
The temperature at which the vapor pressure would be 0.350 atm is 201.37°C
Explanation:
The relationship between variables in equilibrium between phases of one component system e.g liquid and vapor, solid and vapor , solid and liquid can be obtained from a thermodynamic relationship called Clapeyron equation.
Clausius- Clapeyron Equation can be put in a more convenient form applicable to vaporization and sublimation equilibria in which one of the two phases is gaseous.
The equation for Clausius- Clapeyron Equation can be expressed as:
[tex]\mathtt{In \dfrac{P_2}{P_1}= \dfrac{\Delta \ H _{vap}}{R} \begin {pmatrix} \dfrac{T_2 -T_1}{T_2 \ T_1} \end {pmatrix} }[/tex]
where ;
[tex]P_1[/tex] is the vapor pressure at temperature 1
[tex]P_ 2[/tex] is the vapor pressure at temperature 2
∆Hvap = enthalpy of vaporization
R = universal gas constant
Given that:
[tex]P_1[/tex] = 1 atm
[tex]P_ 2[/tex] = 0.350 atm
∆Hvap = 28.5 kJ/mol = 28.5 × 10³ J/mol
[tex]T_1[/tex] = 282 °C = (282 + 273) K = 555 K
R = 8.314 J/mol/k
Substituting the above values into the Clausius - Clapeyron equation, we have:
[tex]\mathtt{In \dfrac{P_2}{P_1}= \dfrac{\Delta \ H _{vap}}{R} \begin {pmatrix} \dfrac{T_2 -T_1}{T_2 \ T_1} \end {pmatrix} }[/tex]
[tex]\mathtt{In \begin {pmatrix} \dfrac{0.350}{1} \end {pmatrix} } = \dfrac{28.5 \times 10^3 }{ 8.314 } \begin {pmatrix} \dfrac{T_2 - 555}{555T_2} \end {pmatrix} }[/tex]
[tex]\mathtt{In \begin {pmatrix} \dfrac{0.350}{1} \end {pmatrix} } = \dfrac{28.5 \times 10^3 }{ 8.314 } \begin {pmatrix} \dfrac{1}{555}- \dfrac{1}{T_2} \end {pmatrix} }[/tex]
[tex]- 1.0498= 3427.953 \begin {pmatrix} \dfrac{1}{555}- \dfrac{1}{T_2} \end {pmatrix} }[/tex]
[tex]\dfrac{- 1.0498}{3427.953}= \begin {pmatrix} \dfrac{1}{555}- \dfrac{1}{T_2} \end {pmatrix} }[/tex]
[tex]- 3.06246906 \times 10^{-4}= \begin {pmatrix} \dfrac{1}{555}- \dfrac{1}{T_2} \end {pmatrix} }[/tex]
[tex]\dfrac{1}{T_2} = \begin {pmatrix} \dfrac{1}{555}+ (3.06246906 \times 10^{-4} ) \end {pmatrix} }[/tex]
[tex]\dfrac{1}{T_2} = 0.002108048708[/tex]
[tex]T_2 = \dfrac{1}{0.002108048708}[/tex]
[tex]\mathbf{T_2 }[/tex] = 474.37 K
To °C ; we have [tex]\mathbf{T_2 }[/tex] = (474.37 - 273)°C
[tex]\mathbf{T_2 }[/tex] = 201.37 °C
Thus, the temperature at which the vapor pressure would be 0.350 atm is 201.37 °C
The temperature of the liquid at the given vapor pressure is 201.5 ⁰C.
The given parameters;
boiling point temperature, = 282 ⁰Cvapor pressure, P₂ = 0.35 atmenthalpy of vaporization, ∆Hvap = 28.5 kJ/molThe temperature of the liquid will be determined by applying Clausius- Clapeyron Equation;
[tex]ln(\frac{P_2}{P_1} ) = \frac{\Delta H}{R} (\frac{T_2 -T_1}{T_1T_2} )[/tex]
where;
R is ideal gas constant = 8.314 J/mol.kT₁ is the initial temperature in Kelvin = 282 + 273 = 555 KP₁ is the initial pressure = 1 atm[tex]ln(\frac{P_2}{P_1} ) = \frac{\Delta H}{R} (\frac{T_2 -T_1}{T_1T_2} )\\\\ln(\frac{0.35}{1} ) = \frac{28.5 \times 10^3}{8.314} (\frac{T_2 - 555}{555T_2} )\\\\-1.049 = 6.176- \frac{3427.95}{T_2} \\\\\frac{3427.95}{T_2} = 6.176 + 1.049\\\\\frac{3427.95}{T_2} = 7.225\\\\T_2 = \frac{3427.95}{7.225} \\\\T_2 = 474.5 \ K\\\\T_2 = 474.5 - 273 = 201.5 \ ^0C[/tex]
Thus, the temperature of the liquid at the given vapor pressure is 201.5 ⁰C.
Learn more here:https://brainly.com/question/1077674
Write the equations that represent the first and second ionization steps for sulfuric acid (H2SO4) in water.
Answer:
[tex]H_2SO_4(aq)\rightarrow H^+(aq)+HSO_4^-\\\\HSO_4^-(aq)\rightarrow H^+(aq)+SO_4^{2-}rightarrow[/tex]
Explanation:
Hello,
In this case, given that the sulfuric acid is a diprotic acid (two hydrogen ions) we can identify two ionization reactions, the first one, showing up the dissociation of the first hydrogen to yield hydrogen sulfate ions and the second one, showing up the dissociation of the hydrogen sulfate ions to hydrogen ions and sulfate ions by separated as shown below:
[tex]H_2SO_4(aq)\rightarrow H^+(aq)+HSO_4^-\\\\HSO_4^-(aq)\rightarrow H^+(aq)+SO_4^{2-}[/tex]
They are have one-sensed arrow, since sulfuric acid is a strong acid.
Regards.
The equations that represent the first and second ionization steps for sulfuric acid in water are H₂SO₄→HSO₄+H⁺ & HSO₄⁻→SO₄⁻+H⁺ respectively.
What is ionization reaction?Ionization reactions are those reactions in which atom or molecule will convert into ion by bearing a positive or negative charge on itself.
In water in the following way ionization of sulphuric acid takes place:
In the first ionization step one hydrogen atom (H⁺) will loose from the sulphuric acid molecule as:H₂SO₄ → HSO₄⁻ + H⁺
In the second ionization step another hydrogen atom will also loose and we get the sulphate ion (SO₄⁻) and one proton (H⁺) as:HSO₄⁻ → SO₄⁻ + H⁺
Hence, two steps are shown above.
To know more about ionization reaction, visit the below link:
https://brainly.com/question/1445179
0.22 L of HNO3 is titrated to equivalence using 0.18 L of 0.2 MNaOH. What is the concentration of the HNO3?
Answer:
0.16 M
Explanation:
Data provided as per the question is below:-
Volume of [tex]HNO_3[/tex] = 0.22 L
The Volume of NaOH = 0.18 L
Morality of NaOH = 0.2
According to the given situation, the calculation of the concentration of the [tex]HNO_3[/tex] is shown below:-
For equivalence,
Number of the equivalent of [tex]HNO_3[/tex] = Number of equivalents of NaOH
[tex]= \frac{0.18\times0.2}{0.22}[/tex]
[tex]= \frac{0.036}{0.22}[/tex]
= 0.16363 M
or
= 0.16 M
CaCl2 has which bond?
Answer:
CaCl2 has ionic bond because here calcium gives its electron to the chlorine atom and becomes positivetly charged ion.
HELP! Which type of model best represents simple molecules?
A. wire
B. ribbon
C. structural formula
D. Lewis dot
The compound methylamine, CH3NH2, is a weak base when dissolved in water. Write the Kb expression for the weak base equilibrium that occurs in an aqueous solution of methylamine:
Answer:
Kb = [CH₃NH₃⁺] × [OH⁻] / [CH₃NH₂]
Explanation:
According to Brönsted-Lowry acid-base theory:
An acid is a substance that donates H⁺.A base is a substance that accepts H⁺.When methylamine reacts with water, it behaves as a Brönsted-Lowry base, according to the following reaction.
CH₃NH₂(aq) + H₂O(l) ⇄ CH₃NH₃⁺(aq) + OH⁻(aq)
The basic equilibrium constant (Kb) is:
Kb = [CH₃NH₃⁺] × [OH⁻] / [CH₃NH₂]
A piece of metal has a volume of 30.0cm3 and a mass of 252g. What is its density? what metal do you think this is?
Answer:
Explanation:
get density = D = m / V = 0.252 / 0.00003 = 8400 metal will be Cu => bronzeThe solubility of lead(II) iodide is 0.064 g/100 mL at 20ºC. What is the solubility product for lead(II) iodide?
Answer:
[tex]Ksp=1.07x10^{-8}[/tex]
Explanation:
Hello,
In this case, the dissociation reaction is:
[tex]PbI_2(s)\rightleftharpoons Pb^{2+}(aq)+2I^-(aq)[/tex]
For which the equilibrium expression is:
[tex]Ksp=[Pb^{2+}][I^-]^2[/tex]
Thus, since the saturated solution is 0.064g/100 mL at 20 °C we need to compute the molar solubility by using its molar mass (461.2 g/mol)
[tex]Molar solubility=\frac{0.064g}{100mL}*\frac{1000mL}{1L}*\frac{1mol}{461.2g}=1.39x10^{-3}M[/tex]
In such a way, since the mole ratio between lead (II) iodide to lead (II) and iodide ions is 1:1 and 1:2 respectively, the concentration of each ion turns out:
[tex][Pb^{2+}]=1.39x10^{-3}M[/tex]
[tex][I^-]=1.39x10^{-3}M*2=2.78x10^{-3}M[/tex]
Thereby, the solubility product results:
[tex]Ksp=(1.39x10^{-3}M)(2.78x10^{-3}M)^2\\\\Ksp=1.07x10^{-8}[/tex]
Regards.
Solubility product constant for the product of lead(II) iodide is [tex]\bold { 1.07x 10^-^8}[/tex].
The dissociation reaction for lead (II) iodide
[tex]\bold {Pb I^2 (s) \leftrightharpoons Pb^2^+ + 2I^- }[/tex]
Solubility product constant at equilibrium.
[tex]\bold {Ksp = [Pb^2^++[I^-]^2}[/tex]
The molar solubility of the substance can be calculated by using the molar mass,
[tex]\bold {s = \dfrac {0.064}{100 mL} \times 461.2 g/mol = 1.39x10^-^3}[/tex]
Molar ratio between between PbI to lead and iodide ions is 1:1 and 1:2 respectively.
Thus Ksp will be,
[tex]\bold {Ksp =(1.39x10^-^3)(2.78x10^-^3 )^2}\\\\\bold {Ksp = 1.07x 10^-^8}[/tex]
Therefore, solubility product constant for the product of lead(II) iodide is [tex]\bold { 1.07x 10^-^8}[/tex].
To know more about solubility product constant,
https://brainly.com/question/1419865
a=bcd in order to solve the equation above for b you must multiply both sides of the equation by the same expression
a x _ = bcd x _
the results equation is:
b=
Both sides of the equation must be multiplied by 1/cd to give the following equation: b = a/cd
The following equation was given in this question: a = bcd. This means that a = b × c × d. Hence, to make "b" the subject of the formula, we have to eliminate "cd" from the side of the equation with "b". To do that, we multiply both sides of the equation with the same expression as follows:a x 1/cd = bcd x 1/cd
"cd" cancels out "cd" in the right side of the equation to result to:a/cd = b
Therefore, b = a/cd
Learn more: https://brainly.com/question/21866313
The color cyan has a frequency of 5.902x10^14 What is the wavelength in nm ? Record your answer with 2
decimals.
The wavelength of the color cyan is 508 nm.
To solve the problem, we use the following equation that relates the frequency (ν) and the wavelength (λ) of a wave:
c = λ x ν
Given:
c = speed of light = 3.00 x 10⁸ m/s (is a constant)
ν = 5.902 x 10¹⁴ Hz = 5.902 s⁻¹
We introduce the data to calculate the wavelength in m:
λ = c/ν = (3.00 x 10⁸ m/s)/(5.902 s⁻¹) = 5.08 x 10⁻⁷ m
We know that 10⁻⁹m = 1 nm, so we convert λ to nm:
λ = 5.08 x 10⁻⁷ m x 1 nm/10⁻⁹m = 508 nm
To learn more about the relationship between frequency and wavelength in a wave, you can visit: https://brainly.com/question/4386945
Complete the following nuclear equations. I recommend filling in the atomic number below each symbol. Instead of using superscripts in our answers, put each answer in the corresponding box. A). 54Fe 4He --> 2 1n _____
Answer:
gamma ray
Explanation:
Draw the major organic product that is expected when cyclopentanecarboxylic acid is treated with each of the following reagents:
a. NaOH
b. [H+]
Answer:
a. Sodium cyclopentanecarboxylate
b. No reaction
Explanation:
In this case, in the cyclopentanecarboxylic acid we have a carboxylic acid functional group. Therefore we have an "acid". The acids by definition have the ability to produce hydronium ions ([tex]H^+[/tex]).
With this in mind, for molecule a. we will have an acid-base reaction, because NaOH is a base. When we put together an acid and a base we will have as products a salt and water. In this case, the products are Sodium cyclopentanecarboxylate (the salt) and water.
For the second molecule, we have the hydronium ion ([tex]H^+[/tex]). This ion can not react with an acid. Because, the acid will produce the hydronium ion also, so a reaction between these compounds is not possible.
See figure 1
I hope it helps!
Draw the structure for the organic radical species produced by reaction of the compound with a chlorine atom. Assume reaction occurs at the weakest C-H bond.
Answer:
See explanation
Explanation:
The reaction of chlorine with the pictured compound will occur via free radical mechanism. The stability of the free radical formed will depend on its structure.
The order of stability of free radicals is methyl < primary < secondary < tertiary. Hence a tertiary carbon free radical is the most stable.
Looking at the compound, the radical will form at the position shown in the image attached since it will lead to a secondary free radical which is more stable.
The structure that should be drawn is shown below.
The reaction of chlorine:It should be within the pictured compound that will arise via a free radical mechanism. The stability should be based on the structure. The stability of the order of free radicals should be methyl < primary < secondary < tertiary. Thus, a tertiary carbon free radical should be most stable.
Here look at the compound, the radical should form at the position that should be shown in the image that resulted in the secondary free radical i.e. more stable.
If the rate of formation (also called rate of production) of compound C is 2M/s in the reaction A --->2C, what is the rate of consumption of A
Answer:
[tex]r_A=-1\frac{M}{s}[/tex]
Explanation:
Hello,
In this case, given the rate of production of C, we can compute the rate of consumption of A by using the rate relationships which include the stoichiometric coefficients at the denominators (-1 for A and 2 for C) as follows:
[tex]\frac{1}{-1} r_A=\frac{1}{2}r_C[/tex]
In such a way, solving the rate of consumption of A, we obtain:
[tex]r_A=-\frac{1}{2} r_C=-\frac{1}{2}*2\frac{M}{s}\\ \\r_A=-1\frac{M}{s}[/tex]
Clearly, such rate is negative which account for consumption process.
Regards.
Calculate the percent error in the atomic weight if the mass of a Zn electrode increased by 0.3681g and 6.514x10-3 moles of Zn was produced. You may assume the molar mass of elemental zinc is 65.38 g/mol.
a. -13.5%
b. 13.52%
c. -13.52%
d. 13.5%
Answer:
13.5%
Explanation:
To answer this you need to understand that percentage error can never be negative as we use absolute value in the equation
To get molar/atomic mass = mass/moles
=0.3681g/(6.514×10^-3)moles
=56.509g/moles
percentage error = (65.38-56.509)/65.38 ×100
=13.56% (this is what I'm getting without rounding off your question wasn't specific on how many d.p to use)
how many moles of oxygen are present in 16 g of oxygen gas
Answer:
Mole = molecular weight / molecular mass
Mole = 16/16
Mole= 1
What is the oxidation state for bh3
Answer:
As hydrogen is more electronegative than boron, in BH3 the oxidation number of hydrogen should be taken as -1. (E. N. of B = 2.0 & E. N. of H = 2.1)
Suppose, oxidation number of B is x.
So, we can write, x + 3*(-1) = 0
=> x = +3
Therefore, oxidation num
Explanation:
As hydrogen is more electronegative than boron, in BH3 the oxidation number of hydrogen should be taken as -1. (E. N. of B = 2.0 & E. N. of H = 2.1)
Suppose, oxidation number of B is x.
So, we can write, x + 3*(-1) = 0
=> x = +3
Therefore, oxidation num
Write chemical equations to show how the following bases react with water to produce hydroxide ions:
c. Imidazole (C₃H₄N₂), a weak base
d. Sulfite ion (SO₃²⁻), a weak base
Solution:-1
[tex]\boxed{\sf {C_3H_4N_2\atop imidazole}+{H_2O\atop water}\longrightarrow {C_3H_5N_2\atop Imidazolium}+{OH^-}}[/tex]
There can be another
[tex]\boxed{\sf {C_3H_4N_2\atop imidazole}+{H_2O\atop water}\longrightarrow {C_3HN_2\atop Dicyanomethanoide}+{H_3O^+}}[/tex]
Solution:-2:-
[tex]\boxed{\sf {SO_3^{2-}\atop Sulphate\:ion}+{H_2O\atop Water}\longrightarrow {H_2SO_4\atop Sulphuric\:acid}}[/tex]
What are periodic trends if ionic radii
Answer:
Explan ionization energy, atomic radius, and electron affinityation:
This question most likely has answer choices. The possible answer choices are as followed:
Ionic radii tend to increase down a group.Ionic radii tend to decrease across a period.Anionic radii tend to increase across a period.Cationic radii tend to decrease across a period.Ionic radii increase when switching from cations to anions in a period.The answers are Ionic radii tend to increase down a group, Cationic radii tend to decrease across a period, and Ionic radii increase when switching from cations to anions in a period (1st, 4th, and 5th options).
a. Name a chemical or product that was once considered safe but is now considered
harmful. (1 point)
-
Answer:
Bisphenol A (BPA)
Explanation:
Bisphenol A (BPA) is a chemical additive commonly found in resins and plastics, such as water bottles or food containers. It can also be found in household electronics, medical devices, dental fillings and sales receipts, just to name a few other applications.
Hydrazine, , emits a large quantity of energy when it reacts with oxygen, which has led to hydrazine used as a fuel for rockets: How many moles of each of the gaseous products are produced when 20.1 g of pure hydrazine is ignited in the presence of 20.1 g of pure oxygen
Answer:
[tex]1.25~mol~H_2O[/tex] and [tex]0.627~mol~N_2[/tex]
Explanation:
Our goal for this question is the calculation of the number of moles of the molecules produced by the reaction of hydrazine ([tex]N_2H_4[/tex]) and oxygen ([tex]O_2[/tex]). So, we can start with the reaction between these compounds:
[tex]N_2H_4~+~O_2~->~N_2~+~H_2O[/tex]
Now we can balance the reaction:
[tex]N_2H_4~+~O_2~->~N_2~+~2H_2O[/tex]
In the problem, we have the values for both reagents. Therefore we have to calculate the limiting reagent. Our first step, is to calculate the moles of each compound using the molar masses values (32.04 g/mol for [tex]N_2H_4[/tex] and 31.99 g/mol for [tex]O_2[/tex]):
[tex]20.1~g~N_2H_4\frac{1~mol~N_2H_4}{32.04~g~N_2H_4}=0.627~mol~N_2H_4[/tex]
[tex]20.1~g~O_2\frac{1~mol~O_2}{31.99~g~O_2}=0.628~mol~O_2[/tex]
In the balanced reaction we have 1 mol for each reagent (the numbers in front of [tex]O_2[/tex] and [tex]N_2H_4[/tex] are 1). Therefore the smallest value would be the limiting reagent, in this case, the limiting reagent is [tex]N_2H_4[/tex].
With this in mind, we can calculate the number of moles for each product. In the case of [tex]N_2[/tex] we have a 1:1 molar ratio (1 mol of [tex]N_2[/tex] is produced by 1 mol of [tex]N_2H_4[/tex]), so:
[tex]0.627~mol~N_2H_4\frac{1~mol~N_2}{1~mol~N_2H_4}=~0.627~mol~N_2[/tex]
We can follow the same logic for the other compound. In the case of [tex]H_2O[/tex] we have a 1:2 molar ratio (2 mol of [tex]H_2O[/tex] is produced by 1 mol of [tex]N_2H_4[/tex]), so:
[tex]0.627~mol~N_2H_4\frac{2~mol~H_2O}{1~mol~N_2H_4}=~1.25~mol~H_2O[/tex]
I hope it helps!