Writing Exercises

314. Of all the factoring methods covered in this chapter (GCF, grouping, undo FOIL, ‘ac’ method, special products) which is the easiest for you? Which is the hardest? Explain your answers.

Answers

Answer 1

Of all the factoring methods covered in this chapter, the easiest method for me is the GCF (Greatest Common Factor) method. This method involves finding the largest number that can divide all the terms in an expression evenly. It is relatively straightforward because it only requires identifying the common factors and then factoring them out.

On the other hand, the hardest method for me is the ‘ac’ method. This method is used to factor trinomials in the form of ax^2 + bx + c, where a, b, and c are coefficients. The ‘ac’ method involves finding two numbers that multiply to give ac (the product of a and c), and add up to give b. This method can be challenging because it requires trial and error to find the correct pair of numbers.

To summarize, the GCF method is the easiest because it involves finding common factors and factoring them out, while the ‘ac’ method is the hardest because it requires finding specific pairs of numbers through trial and error. It is important to practice and understand each method to become proficient in factoring.

Learn more about factor trinomials from the given link:

https://brainly.com/question/30944033

#SPJ11


Related Questions

Letf : {0,112 {0,1}}.f(x) = x0. 1) What is the range of the function? 2) Is f one-to-one? Justify your answer. 3) Is f onto? Justify your answer. 4) Isf a bijection? Justify your answer. Letf : Z → Z where f(x) = x2 + 12. Let g: Z → Z where g(x) = x + 13. = gof(1) = fºg(-3) = = g • f(x) = o fog(x) =

Answers

The range of the function f is {0, 1}. No, f is not one-to-one since different inputs can yield the same output.

For the function f: {0, 1} → {0, 1}, where f(x) = x^0, we can analyze its properties:

The range of the function f is {0, 1}, as the function outputs either 0 or 1 for any input in the domain.The function f is not one-to-one because different inputs can yield the same output. Since x^0 is always 1 for any non-zero value of x, both 0 and 1 in the domain map to 1 in the range.The function f is onto because every element in the range {0, 1} has a corresponding input in the domain. Both 0 and 1 are covered by the function.The function f is not a bijection since it is not one-to-one. A bijection requires a function to be both one-to-one and onto. In this case, since different inputs map to the same output, f does not satisfy the one-to-one condition and is therefore not a bijection.

Regarding the second part of your question (f: Z → Z and g: Z → Z), the expressions "gof(1)" and "fºg(-3)" are not provided, so further analysis or calculation is needed to determine their values.

To learn more about “domain” refer to the https://brainly.com/question/26098895

#SPJ11

which three criteria should you consider when prioritizing stakeholders?

Answers

When prioritizing stakeholders, there are various criteria to consider. In general, three of the most important criteria are:

1. Power/Influence: Some stakeholders influence an organization's success more than others. As a result, evaluating how important a stakeholder is to your company's overall success is critical. This is known as power or influence.

2. Legitimacy: Legitimacy refers to how a stakeholder is perceived by others. A stakeholder who is respected, highly regarded, or trusted by other stakeholders is more legitimate than one who is not.

3. Urgency: This criterion assesses how quickly a stakeholder's request should be addressed. Some stakeholders may be able to wait longer than others for a response, while others may require immediate attention.

When determining the priority level of a stakeholder, it is critical to assess the urgency of their request.

#SPJ11

Learn more about prioritizing stakeholders and criteria https://brainly.com/question/32739513

Let u=(1−1,91),v=(81,8+1),w=(1+i,0), and k=−i. Evaluate the expressions in parts (a) and (b) to verify that they are equal. (a) u⋅v (b) v⋅u

Answers

Both (a) and (b) have the same answer, which is 61.81.

Let u = (1 − 1, 91), v = (81, 8 + 1), w = (1 + i, 0), and k = −i. We need to evaluate the expressions in parts (a) and (b) to verify that they are equal.

The dot product (u · v) and (v · u) are equal, whereu = (1 - 1,91) and v = (81,8 + 1)(a) u · v.

We will begin by calculating the dot product of u and v.

Here's how to do it:u · v = (1 − 1, 91) · (81, 8 + 1) = (1)(81) + (-1.91)(8 + 1)u · v = 81 - 19.19u · v = 61.81(b) v · u.

Similarly, we will calculate the dot product of v and u. Here's how to do it:v · u = (81, 8 + 1) · (1 − 1,91) = (81)(1) + (8 + 1)(-1.91)v · u = 81 - 19.19v · u = 61.81Both (a) and (b) have the same answer, which is 61.81. Thus, we have verified that the expressions are equal.

Both (a) and (b) have the same answer, which is 61.81. Hence we can conclude that the expressions are equal.

To know more about dot product visit:

brainly.com/question/23477017

#SPJ11

if a = 2, 0, 2 , b = 3, 2, −2 , and c = 0, 2, 4 , show that a ⨯ (b ⨯ c) ≠ (a ⨯ b) ⨯ c. a ⨯ (b ⨯ c) =

Answers

The vectors resulting from the calculations of a ⨯ (b ⨯ c) and (a ⨯ b) ⨯ c do not have the same values. We can conclude that these two vector products are not equal.

To evaluate a ⨯ (b ⨯ c), we can use the vector triple product. Let's calculate it step by step:

a = (2, 0, 2)

b = (3, 2, -2)

c = (0, 2, 4)

First, calculate b ⨯ c:

b ⨯ c = (2 * (-2) - 2 * 4, -2 * 0 - 3 * 4, 3 * 2 - 2 * 0)

= (-8, -12, 6)

Next, calculate a ⨯ (b ⨯ c):

a ⨯ (b ⨯ c) = (0 * 6 - 2 * (-12), 2 * (-8) - 2 * 6, 2 * (-12) - 0 * (-8))

= (24, -28, -24)

Therefore, a ⨯ (b ⨯ c) = (24, -28, -24).

Now, let's calculate (a ⨯ b) ⨯ c:

a ⨯ b = (0 * (-2) - 2 * 2, 2 * 3 - 2 * (-2), 2 * 2 - 0 * 3)

= (-4, 10, 4)

(a ⨯ b) ⨯ c = (-4 * 4 - 4 * 2, 4 * 0 - (-4) * 2, (-4) * 2 - 10 * 0)

= (-24, 8, -8)

Therefore, (a ⨯ b) ⨯ c = (-24, 8, -8).

In conclusion, a ⨯ (b ⨯ c) = (24, -28, -24), while (a ⨯ b) ⨯ c = (-24, 8, -8). Hence, a ⨯ (b ⨯ c) is not equal to (a ⨯ b) ⨯ c.

For more question on vectors visit:

https://brainly.com/question/15519257

#SPJ8

Note the correct and the complete question is

Q- If a = 2, 0, 2, b = 3, 2, −2, and c = 0, 2, 4, show that a ⨯ (b ⨯ c) ≠ (a ⨯ b) ⨯ c.

What is the equation for g, which is f(x) = 2x2 + 3x − 1 reflected across the y-axis?



A. G(x) = 2x2 + 3x − 1


B. G(x) = −2x2 − 3x + 1


C. G(x) = 2x2 − 3x − 1


D. G(x) = −2x2 − 3x − 1

Answers

[tex]G(x)=f(-x)\\\\G(x)=2(-x)^2+3(-x)-1\\\\G(x)=\boxed{2x^2-3x-1}[/tex]

ten employees of a company are to be assigned to 10 different managerial posts, one to each post. in how many ways can these posts be filled?

Answers

There are 3,628,800 ways in which the posts can be filled. To find the number of ways these posts can be filled, we can use the concept of permutations.

Since there are 10 employees and 10 managerial posts, we can start by selecting one employee for the first post. We have 10 choices for this.

Once the first post is filled, we move on to the second post. Since one employee has already been assigned, we now have 9 employees to choose from.

Following the same logic, for each subsequent post, the number of choices decreases by 1. So, for the second post, we have 9 choices; for the third post, we have 8 choices, and so on.

We continue this process until all 10 posts are filled. Therefore, the total number of ways these posts can be filled is calculated by multiplying the number of choices for each post together.

So, the number of ways = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 3,628,800.

Hence, there are 3,628,800 ways in which the posts can be filled.

To know more about permutations visit:

https://brainly.com/question/3867157

#SPJ11

Biologists tagged 72 fish in a lake on January 1 . On There are approximately fish in the lake. February 1 , they returned and collected a random sample of 44 fish, 11 of which had been previously tagged. On the basis of this experiment, approximately how many fish does the lake have?

Answers

Biologists tagged 72 fish in a lake on January 1. On February 1, they returned and collected a random sample of 44 fish, 11 of which had been previously tagged. The main answer is approximately 198. :

Total number of fish tagged in January = 72Total number of fish collected in February = 44Number of fish that were tagged before = 11So, the number of fish not tagged in February = 44 - 11 = 33According to the capture-recapture method, if n1 organisms are marked in a population and released back into the environment, and a subsequent sample (n2) is taken, of which x individuals are marked (the same as in the first sample), the total population can be estimated by the equation:

N = n1 * n2 / xWhere:N = Total populationn1 = Total number of organisms tagged in the first samplingn2 = Total number of organisms captured in the second samplingx = Number of marked organisms captured in the second samplingPutting the values in the formula, we have:N = 72 * 44 / 11N = 288Thus, the total number of fishes in the lake is 288 (which is only an estimate). However, since some fish may not have been caught or marked, the number may not be accurate.

To know more about Biologists visit:

https://brainly.com/question/28447833

#SPJ11

In a lottery game, a player picks six numbers from 1 to 29 . If the player matches all six numbers, they win 30,000 dollars. Otherwise, they lose $1. What is the expected value of this game? \$ Question Help: DPost to forum . Question 10 A bag contains 1 gold marbles, 7 silver marbles, and 26 black marbles. Someone offers to play this game: You randomly select one marble from the bag. If it is gold, you win $3. If it is silver, you win $2. If it is black, you lose $1. What is your expected value if you play this game?

Answers

In a lottery game, a player picks six numbers from 1 to 29.

If the player matches all six numbers, they win $30,000. Otherwise, they lose $1.

The expected value of the game is to be calculated.

Here is the explanation; Probability of winning = [tex]Probability of getting all six numbers correct = (1/29) * (1/28) * (1/27) * (1/26) * (1/25) * (1/24) = 0.0000000046[/tex]Probabiliy of losing = Probability of not getting all six numbers correct [tex]= 1 - 0.0000000046 = 0.9999999954[/tex]Expected value of the game = (Probability of winning * Prize for winning) + (Probability of losing * Amount lost)Expected value = [tex](0.0000000046 * 30000) + (0.9999999954 * -1)[/tex]Expected value = 0.000138 - 0.9999999954Expected value = -0.999861Answer: The expected value of this game is -$0.999861.Note: In the given game, a player can either win $3, $2, or lose $1 depending on the marble selected.

The expected value of this game is calculated using the formula; Expected value = (Probability of winning * Prize for winning) + (Probability of losing * Amount lost)

[tex]The probability of getting a gold marble = 1/34The probability of getting a silver marble = 7/34The probability of getting a black marble = 26/34[/tex]

[tex]Now, Expected value = (1/34 * 3) + (7/34 * 2) + (26/34 * -1)Expected value = 0.088 + 0.411 - 0.765Expected value = -$0.266.[/tex]

To know more about the word probability visits :

https://brainly.com/question/31828911

#SPJ11

Evaluate the following integral usings drigonomedric subsdidution. ∫ t 2
49−t 2

dt

(4.) What substidution will be the mast helpfol for evaluating this integral? A. +=7secθ B. t=7tanθ c+=7sinθ (B) rewrite the given indegral using this substijution. ∫ t 2
49−t 2

dt

=∫([?)dθ (C) evaluade the indegral. ∫ t 2
49−t 2

dt

=

Answers

To evaluate the integral ∫(t^2)/(49-t^2) dt using trigonometric substitution, the substitution t = 7tanθ (Option B) will be the most helpful.

By substituting t = 7tanθ, we can rewrite the given integral in terms of θ:

∫(t^2)/(49-t^2) dt = ∫((7tanθ)^2)/(49-(7tanθ)^2) * 7sec^2θ dθ.

Simplifying the expression, we have:

∫(49tan^2θ)/(49-49tan^2θ) * 7sec^2θ dθ = ∫(49tan^2θ)/(49sec^2θ) * 7sec^2θ dθ.

The sec^2θ terms cancel out, leaving us with:

∫49tan^2θ dθ.

To evaluate this integral, we can use the trigonometric identity tan^2θ = sec^2θ - 1:

∫49tan^2θ dθ = ∫49(sec^2θ - 1) dθ.

Expanding the integral, we have:

49∫sec^2θ dθ - 49∫dθ.

The integral of sec^2θ is tanθ, and the integral of 1 is θ. Therefore, we have:

49tanθ - 49θ + C,

where C is the constant of integration.

In summary, by making the substitution t = 7tanθ, we rewrite the integral and evaluate it to obtain 49tanθ - 49θ + C.

Learn more about integration here:

brainly.com/question/31744185

#SPJ11

Complete question:

Evaluate the following integral using trigonometric substitution. ∫ t 2

49−t 2dt. What substitution will be the most helpful for evaluating this integral?

(A)A. +=7secθ B. t=7tanθ c+=7sinθ

(B) rewrite the given integral using this substitution. ∫ t 249−t 2dt=∫([?)dθ (C) evaluate the integral. ∫ t 249−t 2dt=

Write a vector equation that is equivalent to the system of equations 4x1​+x2​+3x3​=9x1​−7x2​−2x3​=28x1​+6x2​−5x3​=15​

Answers

The vector equation that is equivalent to the given system of equations is:

[x1, x2, x3] = [-59/112, -3/28, 29/112]t + [-1/16, -5/56, 11/112]u + [-31/112, 11/28, -3/112]v,

where t, u, and v are any real numbers.

The system of equations:

4x1 + x2 + 3x3 = 9

x1 - 7x2 - 2x3 = 28

x1 + 6x2 - 5x3 = 15

can be written in matrix form as AX = B, where:

A =  [4   1   3]

[1  -7  -2]

[1   6  -5]

X = [x1]

[x2]

[x3]

B = [9]

[28]

[15]

To convert this into a vector equation, we can write:

X = A^(-1)B,

where A^(-1) is the inverse of the matrix A. We can find the inverse by using row reduction or an inverse calculator. After performing the necessary calculations, we get:

A^(-1) = [-59/112  -3/28   29/112]

[-1/16   -5/56   11/112]

[-31/112  11/28  -3/112]

So the vector equation that is equivalent to the given system of equations is:

[x1, x2, x3] = [-59/112, -3/28, 29/112]t + [-1/16, -5/56, 11/112]u + [-31/112, 11/28, -3/112]v,

where t, u, and v are any real numbers.

Learn more about vector here:

https://brainly.com/question/24256726

#SPJ11

\( 1+x^{2} y^{2}+z^{2}=\cos (x y z) \)

Answers

The partial derivatives \(\frac{{\partial z}}{{\partial x}}\) and \(\frac{{\partial z}}{{\partial y}}\) can be found using implicit differentiation. The values are \(\frac{{\partial z}}{{\partial x}} = -2xy\) and \(\frac{{\partial z}}{{\partial y}} = -2xz\).

To find \(\frac{{\partial z}}{{\partial x}}\) and \(\frac{{\partial z}}{{\partial y}}\), we can use implicit differentiation. Differentiating both sides of the equation \(Cos(Xyz) = 1 + X^2Y^2 + Z^2\) with respect to \(x\) while treating \(y\) and \(z\) as constants, we obtain \(-Sin(Xyz) \cdot (yz)\frac{{dz}}{{dx}} = 2XY^2\frac{{dx}}{{dx}}\). Simplifying this equation gives \(\frac{{dz}}{{dx}} = -2xy\).

Similarly, differentiating both sides with respect to \(y\) while treating \(x\) and \(z\) as constants, we get \(-Sin(Xyz) \cdot (xz)\frac{{dz}}{{dy}} = 2X^2Y\frac{{dy}}{{dy}}\). Simplifying this equation yields \(\frac{{dz}}{{dy}} = -2xz\).

In conclusion, the partial derivatives of \(z\) with respect to \(x\) and \(y\) are \(\frac{{\partial z}}{{\partial x}} = -2xy\) and \(\frac{{\partial z}}{{\partial y}} = -2xz\) respectively. These values represent the rates of change of \(z\) with respect to \(x\) and \(y\) while holding the other variables constant.

Learn more about derivatives here:

https://brainly.com/question/25324584

#SPJ11

Correct question:

If Cos(Xyz)=1+X^(2)Y^(2)+Z^(2), Find Dz/Dx And Dz/Dy .

Determine the number of real number roots to the equation y = 2x^2 − x + 10 a. Infinite real number roots b. Two distinct real number roots c. One distinct real number root d. No real number root

Answers

The number of real number roots to the equation y = 2x² - x + 10 is no real number root. The answer is option (d).

To find the number of real number roots, follow these steps:

To determine the number of real number roots, we have to find the discriminant of the quadratic equation, discriminant = b² - 4ac, where a, b, and c are the coefficients of the equation y = ax² + bx + c So, for y= 2x² - x + 10, a = 2, b = -1 and c = 10. Substituting these values in the formula for discriminant we get discriminant= b² - 4ac = (-1)² - 4(2)(10) = 1 - 80 = -79 < 0.Since the value of the discriminant is negative, the quadratic equation has no real roots.

Hence, the correct option is (d) No real number root.

Learn more about discriminant:

brainly.com/question/2507588

#SPJ11

show that any vector field of the form f(x,y,z)=f(y,z)i g(x,z)j h(x,y)k is incompressible

Answers

Vector fields, of the form f(x,y,z) = f(y,z)i + g(x,z)j + h(x,y)k, are incompressible.

In vector calculus, an incompressible vector field is one whose divergence is equal to zero.

Given a vector field

F = f(x,y,z)i + g(x,y,z)j + h(x,y,z)k,

the divergence is defined as the scalar function

div F = ∂f/∂x + ∂g/∂y + ∂h/∂z

where ∂f/∂x, ∂g/∂y, and ∂h/∂z are the partial derivatives of the components of the vector field with respect to their respective variables.

A vector field is incompressible if and only if its divergence is zero.

The question asks us to show that any vector field of form f(x,y,z) = f(y,z)i + g(x,z)j + h(x,y)k is incompressible.

Let's apply the definition of the divergence to this vector field:

div F = ∂f/∂x + ∂g/∂y + ∂h/∂z

We need to compute the partial derivatives of the components of the vector field with respect to their respective variables.

∂f/∂x = 0 (since f does not depend on x)

∂g/∂y = 0 (since g does not depend on y)

∂h/∂z = 0 (since h does not depend on z)

Therefore, div F = 0, which means that the given vector field is incompressible.

In conclusion, we have shown that any vector field of form f(x,y,z) = f(y,z)i + g(x,z)j + h(x,y)k is incompressible. We did this by computing the divergence of the vector field and seeing that it is equal to zero. This implies that the vector field is incompressible, as per the definition of incompressibility.

To know more about partial derivatives visit:

brainly.com/question/28750217

#SPJ11

the state of california has a mean annual rainfall of 22 inches, whereas the state of new york has a mean annual rainfall of 42 inches. assume that the standard deviation for both states is 4 inches. a sample of 30 years of rainfall for california and a sample of 45 years of rainfall for new york has been taken. if required, round your answer to three decimal places.

Answers

There is evidence to suggest that the mean annual rainfall for the state of California and the state of New York is different.

The state of California has a mean annual rainfall of 22 inches, whereas the state of New York has a mean annual rainfall of 42 inches. Assume that the standard deviation for both states is 4 inches. A sample of 30 years of rainfall for California and a sample of 45 years of rainfall for New York have been taken. If required, round your answer to three decimal places.

The value of the z-statistic for the difference between the two population means is -9.6150.

The critical value of z at 0.01 level of significance is 2.3263.

The p-value for the hypothesis test is p = 0.000.

As the absolute value of the calculated z-statistic (9.6150) is greater than the absolute value of the critical value of z (2.3263), we can reject the null hypothesis and conclude that the difference in mean annual rainfall for the two states is statistically significant at the 0.01 level of significance (or with 99% confidence).

Therefore, there is evidence to suggest that the mean annual rainfall for the state of California and the state of New York is different.

Learn more about critical value visit:

brainly.com/question/32607910

#SPJ11

Solve the following integrals ∫ c

x 2
+y 2

dsr(t)=(4cost,4sint,3t)
∫ c

(x−y)dx+(x+y)dy(counterclockwise)

Vertices (0,0)(1,0)(0,1)

Answers

The value of the line integral along the curve \(C\) is \(0\). To solve the given integrals, we need to find the parameterization of the curve \(C\) and calculate the line integral along \(C\). The curve \(C\) is defined by the vertices \((0,0)\), \((1,0)\), and \((0,1)\), and it is traversed counterclockwise.

We parameterize the curve using the equation \(r(t) = (4\cos(t), 4\sin(t), 3t)\). Then, we evaluate the integrals by substituting the parameterization into the corresponding expressions. To calculate the line integral \(\int_C (x-y)dx + (x+y)dy\), we first parameterize the curve \(C\) using the equation \(r(t) = (4\cos(t), 4\sin(t), 3t)\), where \(t\) ranges from \(0\) to \(2\pi\) to cover the entire curve. This parameterization represents a helix in three-dimensional space.

We then substitute this parameterization into the integrand to get:

\(\int_C (x-y)dx + (x+y)dy = \int_0^{2\pi} [(4\cos(t) - 4\sin(t))(4\cos(t)) + (4\cos(t) + 4\sin(t))(4\sin(t))] \cdot (-4\sin(t) + 4\cos(t))dt\)

Simplifying the expression, we have:

\(\int_C (x-y)dx + (x+y)dy = \int_0^{2\pi} (-16\sin^2(t) + 16\cos^2(t)) \cdot (-4\sin(t) + 4\cos(t))dt\)

Expanding and combining terms, we get:

\(\int_C (x-y)dx + (x+y)dy = \int_0^{2\pi} (-64\sin^3(t) + 64\cos^3(t))dt\)

Using trigonometric identities to simplify the integrand, we have:

\(\int_C (x-y)dx + (x+y)dy = \int_0^{2\pi} 64\cos(t)dt\)

Integrating with respect to \(t\), we find:

\(\int_C (x-y)dx + (x+y)dy = 64\sin(t)\Big|_0^{2\pi} = 0\)

Therefore, the value of the line integral along the curve \(C\) is \(0\).

Learn more about Integrals here : brainly.com/question/31744185

#SPJ11

what is the smallest positive integer that is the sum of a multiple of $15$ and a multiple of $21$? (remember that multiples can be negative.)

Answers

The smallest positive integer that is the sum of a multiple of 15 and a multiple of 21 can be found by finding the least common multiple (LCM) of 15 and 21. The LCM represents the smallest positive integer that is divisible by both 15 and 21. Therefore, the LCM of 15 and 21 is the answer to the given question.

To find the smallest positive integer that is the sum of a multiple of 15 and a multiple of 21, we need to find the least common multiple (LCM) of 15 and 21.

The LCM is the smallest positive integer that is divisible by both 15 and 21.

To find the LCM of 15 and 21, we can list the multiples of each number and find their common multiple:

Multiples of 15: 15, 30, 45, 60, 75, ...

Multiples of 21: 21, 42, 63, 84, ...

From the lists, we can see that the common multiple of 15 and 21 is 105. Therefore, the smallest positive integer that is the sum of a multiple of 15 and a multiple of 21 is 105.

To learn more about least common multiple visit:

brainly.com/question/11533141

#SPJ11

Answer: 3

Since multiples can be negative, our answer is 3.

Suppose that \( f(3)=4 \) and \( f^{\prime}(3)=-5 \). Find \( h^{\prime}(3) \). Round your answer to two decimal places. (a) \( h(x)=\left(3 f(x)-5 e^{x / 9}\right)^{2} \) \( h^{\prime}(3)= \) (b) \(

Answers

The value of h'(3) is - 158.44

To find h'(3), we need to differentiate the function h(x) = (3f(x) - 5e⁽ˣ/⁹⁾)² with respect to x and evaluate it at x = 3.

Given:

h(x) = (3f(x) - 5e⁽ˣ/⁹⁾)²

Let's differentiate h(x) using the chain rule and the power rule:

h'(x) = 2(3f(x) - 5e⁽ˣ/⁹⁾)(3f'(x) - (5/9)e⁽ˣ/⁹⁾)

Now we substitute x = 3 and use the given information f(3) = 4 and f'(3) = -5:

h'(3) = 2(3f(3) - 5e⁽¹/⁹⁾)(3f'(3) - (5/9)e⁽¹/⁹⁾)

      = 2(3(4) - 5∛e)(3(-5) - (5/9)∛e)

      = 2(12 - 5∛e)(-15 - (5/9)∛e)

To obtain a numerical approximation, we can evaluate this expression using a calculator or software. Rounded to two decimal places, h'(3) is approximately:

Therefore, h'(3) ≈ - 158.44

Learn more about Function here

https://brainly.com/question/32584845

#SPJ4

Complete question is below

Suppose that f(3)=4 and f'(3)=-5. Find h'(3). Round your answer to two decimal places. (a)h(x)=(3 f(x)-5 e⁽ˣ/⁹⁾)²

h'(3) =

please show work clearly Construct a power series for the function \( f(x)=\frac{1}{(x-22)(x-21)} \). Provide your answer below:

Answers

To construct a power series for the function \( f(x)=\frac{1}{(x-22)(x-21)} \), we can use the concept of partial fraction decomposition and the geometric series expansion.

We start by decomposing the function into partial fractions: \( f(x)=\frac{A}{x-22} + \frac{B}{x-21} \). By finding the values of A and B, we can rewrite the function in a form that allows us to use the geometric series expansion. We have \( f(x)=\frac{A}{x-22} + \frac{B}{x-21} = \frac{A(x-21) + B(x-22)}{(x-22)(x-21)} \). Equating the numerators, we get \( A(x-21) + B(x-22) = 1 \). By comparing coefficients, we find A = -1 and B = 1.

Now, we can rewrite the function as \( f(x)=\frac{-1}{x-22} + \frac{1}{x-21} \). We can then use the geometric series expansion: \( \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \). By substituting \( x = \frac{-1}{22}(x-22) \) and \( x = \frac{-1}{21}(x-21) \) into the expansion, we can obtain the power series representation for \( f(x) \).

Learn more about power series here: https://brainly.com/question/29896893

#SPJ11

Find the domain of the vector function r
(t)=⟨t 3
, −5−t

, −4−t

⟩ Domain: {t∣ ≤t≤

Answers

In interval notation, we can express the domain as (-∞, ∞). This means that any value of t, from negative infinity to positive infinity, can be used as an input for the vector function r(t) without encountering any mathematical inconsistencies.

The domain of the vector function r(t) = ⟨t^3, -5 - t, -4 - t⟩ can be determined by considering the restrictions or limitations on the variable t. The answer, expressed as an inequality or a set of values, can be summarized as follows:

To find the domain of the vector function r(t), we need to determine the valid values of t that allow the function to be well-defined. In this case, we observe that there are no explicit restrictions or limitations on the variable t.

Therefore, the domain of the vector function is all real numbers. In interval notation, we can express the domain as (-∞, ∞). This means that any value of t, from negative infinity to positive infinity, can be used as an input for the vector function r(t) without encountering any mathematical inconsistencies or undefined operations.

Learn more about vector function here:

brainly.com/question/29761259

#SPJ11

Write the equation of the line that represents the linear approximation to the following function at the given point a. b. Use the linear approximation to estimate the given quantity. c. Compute the percent error in the approximation, 100⋅ ∣ exact ∣
∣ approximation-exact ∣

, where the exact value is given by a calculator. f(x)=5−2x 2
at a =3;f(2.9) a. L(x)= b. Using the linear approximation, f(2.9)≈ (Type an integer or a decimal.) c. The percent error in the approximation is %. (Round to three decimal places as needed.)

Answers

A) The equation of the line that represents the linear approximation to the function at a = 3 is L(x) = -12x + 23.

B) Using the linear approximation, f(2.9) ≈ -11.8. C) The percent error in the approximation is approximately 5.6%.

a. To find the equation of the line that represents the linear approximation to the function f(x) = 5 - 2x^2 at a = 3, we need to use the point-slope form of a linear equation. The point-slope form is given by:

y - y1 = m(x - x1)

where (x1, y1) is the given point, and m is the slope of the line.

First, let's find the slope of the line. The slope represents the derivative of the function at the point a. Taking the derivative of f(x) with respect to x, we get:

f'(x) = d/dx (5 - 2x^2)

= -4x

Now, let's evaluate the derivative at a = 3:

f'(3) = -4(3)

= -12

So, the slope of the line is -12.

Using the point-slope form with (x1, y1) = (3, f(3)), we can find the equation of the line:

y - f(3) = -12(x - 3)

y - (5 - 2(3)^2) = -12(x - 3)

y - (5 - 18) = -12(x - 3)

y - (-13) = -12x + 36

y + 13 = -12x + 36

Rearranging the equation, we have:

L(x) = -12x + 23

So, the equation of the line that represents the linear approximation to the function at a = 3 is L(x) = -12x + 23.

b. To estimate f(2.9) using the linear approximation, we substitute x = 2.9 into the equation we found in part (a):

L(2.9) = -12(2.9) + 23

= -34.8 + 23

= -11.8

Therefore, using the linear approximation, f(2.9) ≈ -11.8.

c. To compute the percent error in the approximation, we need the exact value of f(2.9) obtained from a calculator. Let's assume the exact value is -12.5.

The percent error is given by:

percent error = 100 * |exact - approximation| / |exact|

percent error = 100 * |-12.5 - (-11.8)| / |-12.5|

percent error = 100 * |-0.7| / 12.5

percent error ≈ 5.6%

Therefore, the percent error in the approximation is approximately 5.6%.

Know more about percent error here,

https://brainly.com/question/3105259

#SPJ11

) Irene plans to retire on December 31st, 2019. She has been preparing to retire by making annual deposits, starting on December 31 st, 1979 , of $2350 into an account that pays an effective rate of interest of 8.2%. She has continued this practice every year through December 31 st, 2000 . Her is to have $1.5 million saved up at the time of her retirement. How large should her annual deposits be (from December 31 st, 2001 until December 31 , 2019) so that she can reach her goal? Answer =$

Answers

Irene should make annual deposits of approximately $36,306.12 from December 31st, 2001 until December 31st, 2019 in order to reach her retirement goal of $1.5 million.

To calculate the annual deposits Irene should make from December 31st, 2001 until December 31st, 2019 in order to reach her retirement goal of $1.5 million, we can use the future value of an annuity formula.

The formula to calculate the future value (FV) of an annuity is:

FV = P * [(1 + r)^n - 1] / r

Where:

FV = Future value of the annuity (in this case, $1.5 million)

P = Annual deposit amount

r = Interest rate per period

n = Number of periods (in this case, the number of years from 2001 to 2019, which is 19 years)

Plugging in the values into the formula:

1.5 million = P * [(1 + 0.082)^19 - 1] / 0.082

Now we can solve for P:

P = (1.5 million * 0.082) / [(1 + 0.082)^19 - 1]

Using a calculator or spreadsheet, we can calculate the value of P:

P ≈ $36,306.12

Therefore, Irene should make annual deposits of approximately $36,306.12 from December 31st, 2001 until December 31st, 2019 in order to reach her retirement goal of $1.5 million.

To learn more about approximately visit: brainly.com/question/31695967

#SPJ11

Graph the following equation. 5x - 3y = -15 Use the graphing tool to graph the equation.

Answers

To graph the equation 5x - 3y = -15, we can rearrange it into slope-intercept form

Which is y = mx + b, where m is the slope and b is the y-intercept.

First, let's isolate y:

5x - 3y = -15

-3y = -5x - 15

Divide both sides by -3:

y = (5/3)x + 5

Now we have the equation in slope-intercept form. The slope (m) is 5/3, and the y-intercept (b) is 5.

To graph the equation, we'll plot the y-intercept at (0, 5), and then use the slope to find additional points.

Using the slope of 5/3, we can determine the rise and run. The rise is 5 (since it's the numerator of the slope), and the run is 3 (since it's the denominator).

Starting from the y-intercept (0, 5), we can go up 5 units and then move 3 units to the right to find the next point, which is (3, 10).

Plot these two points on a coordinate plane and draw a straight line passing through them. This line represents the graph of the equation 5x - 3y = -15.

To learn more about graph here:

https://brainly.com/question/30842552

#SPJ4



Write an ordered pair that is a solution of each system of inequalities.

x ≥ 2 , 5x + 2y ≤ 9

Answers

One possible ordered pair that is a solution to the system of inequalities is (2, -1/2).

In mathematics, inequalities are mathematical statements that compare the values of two quantities. They express the relationship between numbers or variables and indicate whether one is greater than, less than, or equal to the other.

Inequalities can involve variables as well. For instance, x > 2 means that the variable x is greater than 2, but the specific value of x is not known. In such cases, solving the inequality involves finding the range of values that satisfy the given inequality.

Inequalities are widely used in various fields, including algebra, calculus, optimization, and real-world applications such as economics, physics, and engineering. They provide a way to describe relationships between quantities that are not necessarily equal.

To find an ordered pair that is a solution to the given system of inequalities, we need to find a point that satisfies both inequalities.

First, let's consider the inequality x ≥ 2. This means that x must be equal to or greater than 2. We can choose any value for y that we want.

Now, let's consider the inequality 5x + 2y ≤ 9. To find a point that satisfies this inequality, we can choose a value for x that is less than or equal to 2 (since x ≥ 2) and solve for y.

Let's choose x = 2. Plugging this into the inequality, we have:

5(2) + 2y ≤ 9
10 + 2y ≤ 9
2y ≤ -1
y ≤ -1/2

So, one possible ordered pair that is a solution to the system of inequalities is (2, -1/2).

To know  more about inequalities visit:

https://brainly.com/question/20383699

#SPJ11

When given two points to determine the equation of a line, either of the given points can be used to put the equation into point-slope form.

Answers

To put the equation of a line into point-slope form, use either of the given points and the slope: y - y1 = m(x - x1).

When given two points to determine the equation of a line, point-slope form can be used. Point-slope form is represented as y - y1 = m(x - x1), where (x1, y1) denotes one of the given points, and m represents the slope of the line. To convert the equation into point-slope form, you can select either of the points and substitute its coordinates into the equation along with the calculated slope.

This form allows you to easily express a linear relationship between variables and graph the line accurately. It is a useful tool in various applications, such as analyzing data, solving problems involving lines, or determining the equation of a line given two known points.

To know more about slope,

https://brainly.com/question/3605446#

#SPJ11

Find the surface area of f(x,y)=2x ^3/2 +4y^ 3/2
over the rectangle R=[0,4]×[0,3]. Write the integral that you use, and then use a calculator/computer to evaluate it.

Answers

We find the surface area of f(x, y) over the rectangle R to be approximately 32.62 square units.

To find the surface area of the function f(x, y) = 2x^(3/2) + 4y^(3/2) over the rectangle R = [0, 4] × [0, 3], we can use the formula for surface area integration.

The integral to evaluate is the double integral of √(1 + (df/dx)^2 + (df/dy)^2) over the rectangle R, where df/dx and df/dy are the partial derivatives of f with respect to x and y, respectively. Evaluating this integral requires the use of a calculator or computer.

The surface area of the function f(x, y) over the rectangle R can be calculated using the double integral:

Surface Area = ∫∫R √(1 + (df/dx)^2 + (df/dy)^2) dA,

where dA represents the differential area element over the rectangle R.

In this case, f(x, y) = 2x^(3/2) + 4y^(3/2), so we need to calculate the partial derivatives: df/dx and df/dy.

Taking the partial derivative of f with respect to x, we get df/dx = 3√x/√2.

Taking the partial derivative of f with respect to y, we get df/dy = 6√y/√2.

Now, we can substitute these derivatives into the surface area integral and integrate over the rectangle R = [0, 4] × [0, 3].

Using a calculator or computer to evaluate this integral, we find the surface area of f(x, y) over the rectangle R to be approximately 32.62 square units.

learn more about surface area here:

brainly.com/question/29298005

#SPJ11

if sin(x) = 1 3 and sec(y) = 5 4 , where x and y lie between 0 and 2 , evaluate the expression. cos(2y)

Answers

if sin(x) = 1 3 and sec(y) = 5 4 , where x and y lie between 0 and 2 , then cos(2y) is  17/25.

To evaluate the expression cos(2y), we need to find the value of y and then substitute it into the expression. Given that sec(y) = 5/4, we can use the identity sec^2(y) = 1 + tan^2(y) to find tan(y).

sec^2(y) = 1 + tan^2(y)

(5/4)^2 = 1 + tan^2(y)

25/16 = 1 + tan^2(y)

tan^2(y) = 25/16 - 1

tan^2(y) = 9/16

Taking the square root of both sides, we get:

tan(y) = ±√(9/16)

tan(y) = ±3/4

Since y lies between 0 and 2, we can determine the value of y based on the quadrant in which sec(y) = 5/4 is positive. In the first quadrant, both sine and cosine are positive, so we take the positive value of tan(y):

tan(y) = 3/4

Using the Pythagorean identity tan^2(y) = sin^2(y) / cos^2(y), we can solve for cos(y):

(3/4)^2 = sin^2(y) / cos^2(y)

9/16 = sin^2(y) / cos^2(y)

9cos^2(y) = 16sin^2(y)

9cos^2(y) = 16(1 - cos^2(y))

9cos^2(y) = 16 - 16cos^2(y)

25cos^2(y) = 16

cos^2(y) = 16/25

cos(y) = ±4/5

Since x lies between 0 and 2, we can determine the value of x based on the quadrant in which sin(x) = 1/3 is positive. In the first quadrant, both sine and cosine are positive, so we take the positive value of cos(x):

cos(x) = 4/5

Now, to evaluate cos(2y), we substitute the value of cos(y) into the double-angle formula:

cos(2y) = cos^2(y) - sin^2(y)

cos(2y) = (4/5)^2 - (1/3)^2

cos(2y) = 16/25 - 1/9

cos(2y) = (144 - 25)/225

cos(2y) = 119/225

cos(2y) = 17/25

Therefore, the value of cos(2y) is 17/25.

You can learn more about quadrant at

https://brainly.com/question/28587485

#SPJ11

Show whether \( f(x)=\frac{x^{2}-x}{x^{2}-1} \) is a continuous function or not on all the real numbers \( \Re ? \)

Answers

The function [tex]\( f(x) = \frac{x^2 - x}{x^2 - 1} \)[/tex] is not continuous on all real numbers [tex]\( \mathbb{R} \)[/tex] due to a removable discontinuity at[tex]\( x = 1 \)[/tex] and an essential discontinuity at[tex]\( x = -1 \).[/tex]

To determine the continuity of the function, we need to check if it is continuous at every point in its domain, which is all real numbers except[tex]( x = 1 \) and \( x = -1 \)[/tex] since these values would make the denominator zero.

a) At [tex]\( x = 1 \):[/tex]

If we evaluate[tex]\( f(1) \),[/tex]we get:

[tex]\( f(1) = \frac{1^2 - 1}{1^2 - 1} = \frac{0}{0} \)[/tex]

This indicates a removable discontinuity at[tex]\( x = 1 \),[/tex] where the function is undefined. However, we can simplify the function to[tex]\( f(x) = 1 \) for \( x[/tex]  filling in the discontinuity and making it continuous.

b) [tex]At \( x = -1 \):[/tex]

If we evaluate[tex]\( f(-1) \),[/tex]we get:

[tex]\( f(-1) = \frac{(-1)^2 - (-1)}{(-1)^2 - 1} = \frac{2}{0} \)[/tex]

This indicates an essential discontinuity at[tex]\( x = -1 \),[/tex] where the function approaches positive or negative infinity as [tex]\( x \)[/tex] approaches -1.

Therefore, the function[tex]\( f(x) = \frac{x^2 - x}{x^2 - 1} \)[/tex] is not continuous on all real numbers[tex]\( \mathbb{R} \)[/tex] due to the removable discontinuity at [tex]\( x = 1 \)[/tex] and the essential discontinuity at [tex]\( x = -1 \).[/tex]

Learn more about real numbers here:

https://brainly.com/question/31715634

#SPJ11

Find the area of the surface generated when the given curve is revolved about the given axis. y=10x−3, for 1/2≤x≤ 3/2 ; about the y-axis (Hint: Integrate with respect to y.) The surface area is square units. (Type an exact answer, using π as needed.)

Answers

The surface area of the given solid is 4π/3 [√(101)(3√3 - 1)/8] square units.

Given the equation of the curve y = 10x - 3 and the limits of integration are from x = 1/2 to x = 3/2, the curve will revolve around the y-axis. We need to find the area of the surface generated by the curve when it is revolved about the y-axis. To do this, we will use the formula for the surface area of a solid of revolution which is:

S = 2π ∫ a b y ds where ds is the arc length, given by:

ds = √(1+(dy/dx)^2)dx

So, to find the surface area, we first need to find ds and then integrate with respect to y using the given limits of integration. Since the equation of the curve is given as y = 10x - 3, differentiating with respect to x gives

dy/dx = 10

Integrating ds with respect to x gives:

ds = √(1+(dy/dx)^2)dx= √(1+10^2)dx= √101 dx

Integrating the above equation with respect to y, we get:

ds = √101 dy

So the equation for the surface area becomes:

S = 2π ∫ 1/2 3/2 y ds= 2π ∫ 1/2 3/2 y √101 dy

Now, integrating the above equation with respect to y, we get:

S = 2π (2/3 √101 [y^(3/2)]) | from 1/2 to 3/2= 4π/3 [√(101)(3√3 - 1)/8] square units.

Therefore, the surface area of the given solid is 4π/3 [√(101)(3√3 - 1)/8] square units.

To learn more about surface area visit : https://brainly.com/question/16519513

#SPJ11

the hypotenuse of a right triangle is long. the longer leg is longer than the shorter leg. find the side lengths of the triangle.

Answers

The side lengths of the triangle are:

Longer side= 36m, shorter side= 27m and hypotenuse=45m

Here, we have,

Let x be the longer leg of the triangle

According to the problem, the shorter leg of the triangle is 9 shorter than the longer leg, so the length of the shorter leg is x - 9

The hypotenuse is 9 longer than the longer leg, so the length of the hypotenuse is x + 9

We know that in a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the other two sides. So we can use the Pythagorean theorem:

(x + 9)² = x² + (x - 9)²

Expanding and simplifying the equation:

x² + 18x + 81 = x² + x² - 18x + 81

x²-36x=0

x=0 or, x=36

Since, x=0 is not possible in this case, we consider x=36 as the solution.

Thus, x=36, x-9=27 and x+9=45.

Read more about right angle triangles:

brainly.com/question/12381687

#SPJ4

2. Find the area of the region bounded by \( f(x)=3-x^{2} \) and \( g(x)=2 x \).

Answers

To find the area of the region bounded by the curves \(f(x) = 3 - x^2\) and \(g(x) = 2x\), we determine the points of intersection between two curves and integrate the difference between the functions over that interval.

To find the points of intersection, we set \(f(x) = g(x)\) and solve for \(x\):

\[3 - x^2 = 2x\]

Rearranging the equation, we get:

\[x^2 + 2x - 3 = 0\]

Factoring the quadratic equation, we have:

\[(x + 3)(x - 1) = 0\]

So, the two curves intersect at \(x = -3\) and \(x = 1\).

To calculate the area, we integrate the difference between the functions over the interval from \(x = -3\) to \(x = 1\):

\[A = \int_{-3}^{1} (g(x) - f(x)) \, dx\]

Substituting the given functions, we have:

\[A = \int_{-3}^{1} (2x - (3 - x^2)) \, dx\]

Simplifying the expression and integrating, we find the area of the region bounded by the curves \(f(x)\) and \(g(x)\).

Learn more about points of intersection here:

brainly.com/question/29188411

#SPJ11

Other Questions
KATES CAKE BUSINESS CONSTRAINTS AND INCOME PREDICTIONS - Kate makes two types of cake; chocolate and carrot. She is able to bake 50 cakes at the most each week. - It takes her 30 minutes to prepare each chocolate cake and 35 minutes to prepare each carrot cake. - Kate has 1620 minutes [27 hours] available to prepare these cakes per week. - She has a regular order for 12 chocolate and 10 carrot cakes each week that she must deliver. - Kate makes a profit of $12 from each chocolate cake and $16 dollars from each carrot cake. INTRODUCTION: CAKE BAKING Kate has a business baking and selling chocolate cakes and carrot cakes. She would like to investigate the number of each cake she should make in order to make the best use of her time and maximise the profit from her small business. In this assessment task you need to find the number of each type of cake that Kate should bake in order to maximise her profit. Show all the graphs and equations that you have used and any relevant calculations. Clearly communicate your method using appropriate mathematical statements. TASK 1. Use the information in Resource 1 (Kates cake business constraints and income predictions) to write a report which identifies: - the maximum profit that Kate can make. - the number of chocolate cakes and carrot cakes that Kate needs to sell to maximise the profit. 2. As Kate gets more efficient at making cakes she is able to reduce the time it takes her to prepare a chocolate cake down to 24 minutes, and the time to prepare a carrot cake down to 32 minutes. She also decides to reduce the overall preparation time that she spends down to 1320 minutes [22 hours]. How will these reduced times affect the number of each cake that she bakes and the overall profit? - Use the adjusted times to identify the maximum profit that Kate can make. - Identify the number of chocolate cakes and carrot cakes that Kate now needs to sell to maximise the profit. At every instant the ratio of the magnitude of the electric to the magnetic field in an electromagnetic wave in vacuum is equal toa) the speed of radio wavesb) the speed of lightc) the speed of gamma raysd) all of the abovee) only (a) and (b) above you have a full electrical (generator) failure on a modern jet aircraft. you have 2 voltmeters, one ac powered and the other dc powered. what indications will the voltmeters show? Which structure does NOT contribute to the development of the vagina? a. Urogenital sinus: gives rise to the sinovaginal bulb (lower part of the vagina) b. Paramesonephric duct (Mllerian tube): gives rise to the upper part of the vagina and vaginal fornices. c. Mesonephric duct: gives rise to the lower part of the vagina and vaginal fornices. Which of the following statements is the definition of the term genital ridges? a. A pair of longitudinal ridges on the celomic epithelium at the medial aspect of the mesonephric ridges. b. They are formed by proliferation of the celomic epithelium and a condensation of the underiying mesenchyme. The cardiac biastema: (Choose the answer below that has the numbers on these statements that are true. 1 . mainly forms in the parietal mesoderm 2 . is induced by the anterior endoderm 3. is a part of the anterior endoderm 4 . lies ventral to the pericardiac cavity before the rotation 1. 1+2+3 2.1+3 3. 2+4 4. 4 5. 1+2+3+4 A separately excited DC generator has a field resistance of 55 ohm, an armature resistance of 0.214 ohm, and a total brush drop of 4 V. At no-load the generated voltage is 265 V and the full-load current is 83 A. The field excitation voltage is 118 V, and the friction, windage, and core losses are 1.4 kW. Calculate the power output. Show the numerical answer rounded to 3 decimals in W. Answers must use a point and not a comma, eg. 14 523.937 and not 14 523.937 when yusuf arrived in raleigh, nc, he briefly experienced a sense of disorientation and discomfort in his new environment because he was unfamiliar with this new environment and the the rules and norms for doing this. this experience yusuf had is known as: Solve the given equation by the zero-factor property. \[ 49 x^{2}-14 x+1=0 \] solve the given initial-value problem. the de is homogeneous. (x2 2y2) dx dy = xy, y(1) = 2 which command is used to list all columns in ms sql server? a. describe b. select c. show d. list e. all of the above f. none of the above Is it true or false that a real symmetric matrix whose only eigenvalues are 1 is orthogonal? (Justify your answer) Use your own words to answer the following questions: a) What are different methods of changing the value of the Fermi function? [5 points] b) Calculate in the following scenarios: Energy level at positive infinity [5 points] Energy level is equal to the Fermi level [5 points] how might the template be modified to accommodate other types of project management methodologies like agile? How do white blood cells prevent bacteria on the glass from infecting her blood? they bring more oxygen to the site for repair. they destroy pathogens that enter the wound. they form the platelet plug. they cause blood vessels to constrict. a stock investor deposited $2,000 five years ago in a non-dividend paying stock. today the stock is valued at $3,077. what annual rate of return has this investor earned (use annual compounding)? Sketch the Bode Plot of the following System (5) H (5) [H (5) > Y H, H. (s) = S+1 Stlo H(s) = +100 S+1000 Calculate the value of the Bode Plot in the break Points. Deduce the Bode plot of GT (as) = (5+1) (5+10o) (S+10000) (5+10) (5+1000) (5+100000) small, full-line discount retailers with limited merchandise at low prices are___ What is the 3dB bandwidth of the LTI system with impulseresponse: h(t) = e-2tu(t). Parameter u(t) is a unit stepfunction. Solve Poisson equation 12V = -Ps/, 0 SX S5, 0 Sy s5, assuming that there are insulating gaps at the corners of the rectangular region and subject to boundary conditions u(0,y) = 0, u(5, y) = sin(y) u(x,0) = x, u(x,5) = -3 = for er = - 9 and = {(v=5), Ps (y 5)x [nC/m] 15XS 4, 1 Sy s4 elsewhere The weight of an object can be described by two integers: pounds and ounces (where 16 ounces equals one pound). Class model is as follows:public class Weight{private int pounds;private int ounces;public Weight(int p, int o){pounds = p + o / 16;ounces = o % 16;}Implement a method called compareTo, which compares the weight of one object to another.i.e.Weight w1 = new Weight(10,5);Weight w2 = new Weight(5,7);if(w1.compareTo(w2) >0 ).....else..... Living in a dangerous neighborhood is an example of a(n) _____ stressor, whereas taking an entrance exam for graduate school is an example of a stressful event.