Without using a calculator, determine if it is possible to form a triangle with the given side lengths. Explain.

√99 yd, √48 yd, √65 yd

Answers

Answer 1

No, it is not possible to form a triangle with the given side lengths of √99 yd, √48 yd, and √65 yd.

To determine if it is possible to form a triangle, we need to check if the sum of any two sides is greater than the third side. In this case, let's compare the given side lengths:

√99 yd < √48 yd + √65 yd

9.95 yd < 6.93 yd + 8.06 yd

9.95 yd < 14.99 yd

Since the sum of the two smaller side lengths (√48 yd and √65 yd) is not greater than the longest side length (√99 yd), the triangle inequality theorem is not satisfied. Therefore, it is not possible to form a triangle with these side lengths.

Learn more about Triangle

brainly.com/question/2773823

brainly.com/question/29083884

#SPJ11


Related Questions

Find the general integral for each of the following first order partial differential

p cos(x + y) + q sin(x + y) = z

Answers

The general integral for the given first-order partial differential equation is given by the equation:

p e^-(x+y) + g(y) = z, where g(y) is an arbitrary function of y.

To find the general solution for the first-order partial differential equation:

p cos(x + y) + q sin(x + y) = z,

where p, q, and z are constants, we can apply an integrating factor method.

First, let's rewrite the equation in a more convenient form by multiplying both sides by the integrating factor, which is the exponential function with the exponent of -(x + y):

e^-(x+y) * (p cos(x + y) + q sin(x + y)) = e^-(x+y) * z.

Next, we simplify the left-hand side using the trigonometric identity:

p cos(x + y) e^-(x+y) + q sin(x + y) e^-(x+y) = e^-(x+y) * z.

Now, we can recognize that the left-hand side is the derivative of the product of two functions, namely:

(d/dx)(p e^-(x+y)) = e^-(x+y) * z.

Integrating both sides with respect to x:

∫ (d/dx)(p e^-(x+y)) dx = ∫ e^-(x+y) * z dx.

Applying the fundamental theorem of calculus, the right-hand side simplifies to:

p e^-(x+y) + g(y),

where g(y) represents the constant of integration with respect to x.

Therefore, the general solution to the given partial differential equation is:

p e^-(x+y) + g(y) = z,

where g(y) is an arbitrary function of y.

In conclusion, the general integral for the given first-order partial differential equation is given by the equation:

p e^-(x+y) + g(y) = z, where g(y) is an arbitrary function of y.

Learn more about differential equation  here:-

https://brainly.com/question/33433874

#SPJ11

Find the area of triangle ABC (in the picture) ASAP PLS HELP

Answers

Answer: 33

Step-by-step explanation:

Area ABC = Area of largest triangle - all the other shapes.

Area of largest = 1/2 bh

Area of largest = 1/2 (6+12)(8+5)

Area of largest = 1/2 (18)(13)

Area of largest = 117

Other shapes:

Area Left small triangle = 1/2 bh

Area Left small triangle = 1/2 (8)(6)

Area Left small triangle = (4)(6)

Area Left small triangle = 24

Area Right small triangle = 1/2 bh

Area Right small triangle = 1/2 (12)(5)

Area Right small triangle =30

Area of rectangle = bh

Area of rectangle = (6)(5)

Area of rectangle = 30

area of ABC = 117 - 24 - 30 - 30

Area of ABC = 33

(a) Discuss the use of Planck's law and Wien's displacement law in radiation. b) The spectral transmissivity of plain and tinted glass can be approximated as follows: Plain glass: T λ
​ =0.90.3≤λ≤2.5μm Tinted glass: T λ
​ =0.90.5≤λ≤1.5μm Outside the specified wavelength ranges, the spectral transmissivity is zero for both glasses. Compare the solar energy that could be transmitted through the glasses. (c) Consider a 20-cm-diameter spherical ball at 800 K suspended in air freely. Assuming the ball closely approximates a blackbody, determine (i) the total blackbody emissive power, (ii) the total amount of radiation emitted by the ball in 5 min, and (iii) the spectral blackbody emissive power at a wavelength of 3μm

Answers

Planck's law and Wien's displacement law are both used to explain and describe the behavior of electromagnetic radiation in a body. The plain glass would transmit 1.98 times more solar energy than the tinted glass. The total blackbody emissive power is 127 W. The total amount of radiation emitted by the ball in 5 min is 38100 J. The spectral blackbody emissive power at a wavelength of 3μm is 1.85 × 10-8 W/m3.

(a) Planck's law and Wien's displacement law are both used to explain and describe the behavior of electromagnetic radiation in a body.

Planck's law gives a relationship between the frequency and the intensity of the radiation that is emitted by a blackbody. This law describes the spectral density of electromagnetic radiation emitted by a black body in thermal equilibrium at a given temperature.

Wien's displacement law relates the wavelength of the maximum intensity of the radiation emitted by a blackbody to its temperature. The law states that the product of the wavelength of the maximum emission and the temperature of the blackbody is a constant.

Both laws play an important role in the study of radiation and thermodynamics.

(b) The amount of solar energy transmitted through plain and tinted glass can be compared using the spectral transmissivity of each.

The spectral transmissivity is the fraction of incident radiation that is transmitted through the glass at a given wavelength. The solar spectrum is roughly between 0.3 and 2.5 micrometers, so we can calculate the total energy transmitted by integrating the spectral transmissivity over this range.

For plain glass:

Total energy transmitted = ∫0.3μm2.5μm Tλ dλ
= ∫0.3μm2.5μm 0.9 dλ
= 0.9 × 2.2
= 1.98

For tinted glass:

Total energy transmitted = ∫0.5μm1.5μm Tλ dλ
= ∫0.5μm1.5μm 0.9 dλ
= 0.9 × 1
= 0.9

Therefore, the plain glass would transmit 1.98 times more solar energy than the tinted glass.

(c) (i) The total blackbody emissive power can be calculated using the Stefan-Boltzmann law, which states that the total energy radiated per unit area by a blackbody is proportional to the fourth power of its absolute temperature.

Total blackbody emissive power = σT4A
where σ is the Stefan-Boltzmann constant, T is the temperature in Kelvin, and A is the surface area.

Here, the diameter of the ball is given, so we need to calculate its surface area:

Surface area of sphere = 4πr2
where r is the radius.

r = 10 cm = 0.1 m

Surface area of sphere = 4π(0.1 m)2
= 0.04π m2

Total blackbody emissive power = σT4A
= (5.67 × 10-8 W/m2 K4)(800 K)4(0.04π m2)
= 127 W

(ii) The total amount of radiation emitted by the ball in 5 min can be calculated by multiplying the emissive power by the time:

Total radiation emitted = PΔt
= (127 W)(5 min)(60 s/min)
= 38100 J

(iii) The spectral blackbody emissive power at a wavelength of 3μm can be calculated using Planck's law:

Blackbody spectral radiance = 2hc2λ5ehcλkT-1
where h is Planck's constant, c is the speed of light, k is Boltzmann's constant, T is the temperature in Kelvin, and λ is the wavelength.

At a wavelength of 3μm = 3 × 10-6 m and a temperature of 800 K, we have:

Blackbody spectral radiance = 2hc2λ5ehcλkT-1
= 2(6.626 × 10-34 J s)(3 × 108 m/s)2(3 × 10-6 m)5exp[(6.626 × 10-34 J s)(3 × 108 m/s)/(3 × 10-6 m)(1.38 × 10-23 J/K)(800 K)]-1
= 1.85 × 10-8 W/m3

Therefore, the spectral blackbody emissive power at a wavelength of 3μm is 1.85 × 10-8 W/m3.

Learn more about the Planck's law from the given link-

https://brainly.com/question/13265362

#SPJ11

In an experimental study, random error due to individual differences can be reduced if a(n) _____ is implemented.

Answers

In an experimental study, random error due to individual differences can be reduced if a(n) control group is implemented.

One effective way to reduce random error due to individual differences in an experimental study is to include a control group. A control group serves as a baseline comparison group that does not receive the experimental treatment. By having a control group, researchers can isolate and measure the effects of the independent variable more accurately.

The control group provides a point of reference to assess the impact of individual differences on the study's outcome. Since both the experimental group and control group are subject to the same conditions, any observed differences can be attributed to the experimental treatment rather than individual variations.

This helps to minimize the influence of confounding variables and random error associated with individual differences.

By comparing the outcomes of the experimental group and control group, researchers can gain insights into the specific effects of the treatment while controlling for individual differences. This improves the internal validity of the study by reducing the potential bias introduced by individual variability.

In summary, including a control group in an experimental study helps to reduce random error due to individual differences by providing a comparison group that is not exposed to the experimental treatment. This allows researchers to isolate and measure the effects of the independent variable more accurately.

Learn more about Implemented

https://brainly.com/question/32093242

https://brainly.com/question/32181414

#SPJ11

What is the value of the expression (-8)^5/3

Answers

The value of the expression (-8)^5/3 can be calculated as follows:

(-8)^5/3 = (-8)^(5 * 1/3) = (-8)^1.6667

(-8)^1.6667 = (1/2)^1.6667 * 8^1.6667

(1/2)^1.6667 ~= 0.3646

8^1.6667 = 8^5/3

Therefore, the final value is:

(-8)^5/3 = 0.3646 * 8^5/3

(-8)^5/3 ~= 1.2498

This means that the value of the expression (-8)^5/3 is approximately 1.25. In scientific notation, this would be written as:

(-8)^5/3 ≈ 1.25 * 10^(3/5)

Where 1.2498 is the estimated value of the expression (-8)^5/3, and 10^(3/5) is used to express the final answer in terms of scientific notation.

Are the vectors
[2] [5] [23]
[-2] [-5] [-23]
[1] [1] [1]
linearly independent?
If they are linearly dependent, find scalars that are not all zero such that the equation below is true. If they are linearly independent, find the only scalars that will make the equation below true.
[2] [5] [23] [0]
[-2] [-5] [-23] = [0]
[1] [1] [1] [0]

Answers

The non-zero scalars that satisfy the equation are:

c1 = 1/2

c2 = 1

c3 = 0

To determine if the vectors [2, 5, 23], [-2, -5, -23], and [1, 1, 1] are linearly independent, we can set up the following equation:

c1 * [2] + c2 * [5] + c3 * [23] = [0]

[-2] [-5] [-23]

[1] [1] [1]

Where c1, c2, and c3 are scalar coefficients.

Expanding the equation, we get the following system of equations:

2c1 - 2c2 + c3 = 0

5c1 - 5c2 + c3 = 0

23c1 - 23c2 + c3 = 0

To determine if these vectors are linearly independent, we need to solve this system of equations. We can express it in matrix form as:

| 2 -2 1 | | c1 | | 0 |

| 5 -5 1 | | c2 | = | 0 |

| 23 -23 1 | | c3 | | 0 |

To find the solution, we can row-reduce the augmented matrix:

| 2 -2 1 0 |

| 5 -5 1 0 |

| 23 -23 1 0 |

After row-reduction, the matrix becomes:

| 1 -1/2 0 0 |

| 0 0 1 0 |

| 0 0 0 0 |

From this row-reduced form, we can see that there are infinitely many solutions. The parameterization of the solution is:

c1 = 1/2t

c2 = t

c3 = 0

Where t is a free parameter.

Since there are infinitely many solutions, the vectors [2, 5, 23], [-2, -5, -23], and [1, 1, 1] are linearly dependent.

To find non-zero scalars that satisfy the equation, we can choose any non-zero value for t and substitute it into the parameterized solution. For example, let's choose t = 1:

c1 = 1/2(1) = 1/2

c2 = (1) = 1

c3 = 0

Therefore, the non-zero scalars that satisfy the equation are:

c1 = 1/2

c2 = 1

c3 = 0

Learn more about linearly independent here

https://brainly.com/question/14351372

#SPJ11

Solve the system of equation
4x+y−z=13
3x+5y+2z=21
2x+y+6z=14

Answers

Answer:

x = 3, y = 2 and z = 1.

Step-by-step explanation:

4x+y−z=13

3x+5y+2z=21

2x+y+6z=14

Subtract the third equation from the first:

2x - 7z = -1 ...........   (A)

Multiply the first equation by - 5:

-20x - 5y + 5z = -65

Now add the above to equation 2:

-17x + 7z = -44 ...... (B)

Now add (A) and (B)

-15x = -45

So:

x = 3.

Substitute x = 3 in equation A:

2(3) - 7z = -1

-7z = -7

z = 1.

Finally substitute these values of x and z in the first equation:

4x+y−z=13

4(3) +y - 1 = 13

y = 13 + 1 - 12

y = 2.

Checking these results in equation 3:

2x+y+6z=14:-

2(3) + 2 + 6(1) = 6 + 2 + 6 = 14

- checks out.

If h(x) is the inverse of f(x), what is the value of h(f(x))?
O 0
O 1
Ox
O f(x)

Answers

Since h(x) is the inverse of f(x), applying h to f(x) will yield x. Therefore, the value of h(f(x)) is f(x), as it corresponds to the original input.

If h(x) is the inverse of f(x), it means that when we apply h(x) to f(x), we should obtain x as the result. In other words, h(f(x)) should be equal to x.

Therefore, the value of h(f(x)) is x, which means that the inverse function h(x) "undoes" the effect of f(x) and brings us back to the original input.

To understand this concept better, let's break it down step by step:

1. Start with the given function f(x).

2. Apply the inverse function h(x) to f(x).

3. The result of h(f(x)) should be x, as h(x) undoes the effect of f(x).

4. None of the given options (0, 1, x, f(x)) explicitly indicate the value of x, except for the option f(x) itself.

5. Therefore, the value of h(f(x)) is f(x), as it corresponds to x, which is the desired result.

In conclusion, the value of h(f(x)) is f(x).

For more such questions on yield, click on:

https://brainly.com/question/31302775

#SPJ8

Let UCR be the Q vector space: U = { a+b√2b+c√3+d√6|a,b,c,d € Q} Exercise 15. It turns out that dim(U) = 4. Using this result, show that every elementy EU must be the root of some rational polynomial P(x) = Q[x] with deg(P) ≤ 4.

Answers

Since dim(U) = 4, which means the dimension of the vector space U is 4, it implies that any element y in U can be represented as the root of a rational polynomial P(x) = Q[x] with a degree less than or equal to 4.

The vector space U is defined as U = {a + b√2 + c√3 + d√6 | a, b, c, d ∈ Q}, where Q represents the field of rational numbers. We are given that the dimension of U is 4, which means that there exist four linearly independent vectors that span the space U.

Since every element y in U can be expressed as a linear combination of these linearly independent vectors, we can represent y as y = a + b√2 + c√3 + d√6, where a, b, c, d are rational numbers.

Now, consider constructing a rational polynomial P(x) = Q[x] such that P(y) = 0. Since y belongs to U, it can be written as a linear combination of the basis vectors of U. By substituting y into P(x), we obtain P(y) = P(a + b√2 + c√3 + d√6) = 0.

By utilizing the properties of polynomials, we can determine that the polynomial P(x) has a degree less than or equal to 4. This is because the dimension of U is 4, and any polynomial of higher degree would result in a linearly dependent set of vectors in U.

Therefore, every element y in U must be the root of some rational polynomial P(x) = Q[x] with a degree less than or equal to 4.

Learn more about: vector space

brainly.com/question/30531953

#SPJ11

In the figure, the square ABCD and the AABE are standing on the same base AB and between the same parallel lines AB and DE. If BD = 6 cm, find the area of AEB.​

Answers

To find the area of triangle AEB, we use base AB (6 cm) and height 6 cm. Applying the formula (1/2) * base * height, the area is 18 cm².

To find the area of triangle AEB, we need to determine the length of the base AB and the height of the triangle. Since both square ABCD and triangle AABE is standing on the same base AB, the length of AB remains the same for both.

We are given that BD = 6 cm, which means that the length of AB is also 6 cm. Now, to find the height of the triangle, we can consider the height of the square. Since AB is the base of both the square and the triangle, the height of the square is equal to AB.

Therefore, the height of triangle AEB is also 6 cm. Now we can calculate the area of the triangle using the formula: Area = (1/2) * base * height. Plugging in the values, we get Area = (1/2) * 6 cm * 6 cm = 18 cm².

Thus, the area of triangle AEB is 18 square centimeters.

For more questions on the area of a triangle

https://brainly.com/question/30818408

#SPJ8

∼(P∨Q)⋅∼[R=(S∨T)] Yes No
∼[(P∨Q)∨∼(MD∼N)∙∼(R=T)] Yes No

Answers

a. Yes, the simplified expression ∼(P∨Q)⋅∼[R=(S∨T)] is a valid representation of the original expression.

b. No, the expression ∼[(P∨Q)∨∼(MD∼N)∙∼(R=T)] is not a valid expression. It contains a mixture of logical operators (∼, ∨, ∙) and brackets that do not follow standard logical notation. The use of ∙ between negations (∼) and the placement of brackets are not clear and do not conform to standard logical conventions.

a. Break down the expression ∼(P∨Q)⋅∼[R=(S∨T)] into smaller steps for clarity:

1. Simplify the negation of the logical OR (∨) in ∼(P∨Q).

  ∼(P∨Q) means the negation of the statement "P or Q."

2. Simplify the expression R=(S∨T).

  This represents the equality between R and the logical OR of S and T.

3. Negate the expression from Step 2, resulting in ∼[R=(S∨T)].

  This means the negation of the statement "R is equal to S or T."

4. Multiply the expressions from Steps 1 and 3 using the logical AND operator "⋅".

  ∼(P∨Q)⋅∼[R=(S∨T)] means the logical AND of the negation of "P or Q" and the negation of "R is equal to S or T."

Combining the steps, the simplified expression is:

∼(P∨Q)⋅∼[R=(S∨T)]

Please note that without specific values or further context, this is the simplified form of the given expression.

b. Break down the expression ∼[(P∨Q)∨∼(MD∼N)∙∼(R=T)] and simplify it step by step:

1. Simplify the negation inside the brackets: ∼(MD∼N) and ∼(R=T).

  These negations represent the negation of the statements "MD is not N" and "R is not equal to T", respectively.

2. Apply the conjunction (∙) between the negations from Step 1: ∼(MD∼N)∙∼(R=T).

  This means taking the logical AND between "MD is not N" and "R is not equal to T".

3. Apply the logical OR (∨) between (P∨Q) and the conjunction from Step 2.

  The expression becomes (P∨Q)∨∼(MD∼N)∙∼(R=T), representing the logical OR between (P∨Q) and the conjunction from Step 2.

4. Apply the negation (∼) to the entire expression from Step 3: ∼[(P∨Q)∨∼(MD∼N)∙∼(R=T)].

  This means negating the entire expression "[(P∨Q)∨∼(MD∼N)∙∼(R=T)]".

Learn more about standard logical notation visit

brainly.com/question/29949119

#SPJ11

Since the question is incomplete, so complete question is:

Imani and her family are discussing how to pay for her college education. The cost of tuition at the college that Imani wants to attend is $5,000 per semester. Imani’s parents will pay 70% of the tuition cost every semester and she will pay the rest. Imani has one year to save for enough money to attend her first two semesters of college. What is the minimum amount of money she should save every month in order to reach his goal?

Answers

Imani should save $3,000/12 = $250 every month to reach her goal of attending her first two semesters of college.

To determine the minimum amount of money Imani should save every month, we need to calculate the remaining 30% of the tuition cost that she is responsible for.

The tuition cost per semester is $5,000. Since Imani's parents will pay 70% of the tuition cost, Imani is responsible for the remaining 30%.

30% of $5,000 is calculated as:

(30/100) * $5,000 = $1,500

Imani needs to save $1,500 every semester. Since she has one year to save for two semesters, she needs to save a total of $1,500 * 2 = $3,000.

Since there are 12 months in a year, Imani should save $3,000/12 = $250 every month to reach her goal of attending her first two semesters of college.

Learn more about Tuition cost here

https://brainly.com/question/14615760

#SPJ11

Which of the following is true? Enter a, b, c, d, or e. a. Irrationals ={qp∣p,q∈ all INT } b. 2.59 is irrational c. 1.2345678… is rational d. {( Natural Numbers )∩ (Whole Numbers )} ={ Natural Numbers } e. 4√16 is irrational

Answers

Irrationals [tex]={qp∣p,q∈ all INT }[/tex] Explanation:Irrational numbers are those numbers where p and q are integers and q≠0.the fourth option is true.[tex]4√16 = 4*4 = 16[/tex], which is a rational number since it can be expressed in the form of p/q, where p=16 and q=1, which are integers. Hence the fifth option is false.The correct option is a.

The set of all irrational numbers is denoted by Irrationals. Hence the first option is true.2.59 is not an irrational number since it can be represented in the form of p/q, where p=259 and q=100, which are integers. Hence the second option is false.1.2345678… is a repeating decimal number which can be expressed in the form of p/q, where p=12345678 and q=99999999, which are integers. Hence the third option is false.

The set of natural numbers is denoted by N, whereas the set of whole numbers is denoted by W. The set of all natural numbers intersecting with the set of whole numbers is denoted by N ∩ W. Since N is a subset of W, the intersection of these two sets will give us the set of natural numbers. Hence

To know more about integers visit:

https://brainly.com/question/490943

#SPJ11



The formula H=1/r (ln P- ln A) models the number of hours it takes a bacteria culture to decline, where H is the number of hours, r is the rate of decline, P is the initial bacteria population, and A is the reduced bacteria population.A scientist determines that an antibiotic reduces a population of 20,000 bacteria to 5000 in 24 hours. Find the rate of decline caused by the antibiotic.

Answers

The rate of decline caused by the antibiotic is approximately 0.049.

Given formula is H = 1/r (ln P - ln A)

where, H = number of hours

r = rate of decline

P = initial bacteria population

A = reduced bacteria population

We have to find the rate of decline caused by the antibiotic when an antibiotic reduces a population of 20,000 bacteria to 5000 in 24 hours.

Let’s substitute the values into the given formula.

24 = 1/r (ln 20000 - ln 5000)

24r = ln 4 (Substitute ln 20000 - ln 5000 = ln(20000/5000) = ln 4)

r = ln 4/24 = 0.0487 or 0.049 approx

Therefore, the rate of decline caused by the antibiotic is approximately 0.049.

Hence, the required solution is the rate of decline caused by the antibiotic is approximately 0.049.

Know more about rate here,

https://brainly.com/question/28287556

#SPJ11

The national people meter sample has 4,000 households, and 250
of those homes watched program A on a given Friday Night. In other
words _______ of all households watched program A.

Answers

The national people meter sample has 4,000 households, and 250

of those homes watched program A on a given Friday Night. In other

words 6.25% of all households watched program A.

To determine the fraction of all households that watched program A, we divide the number of households that watched program A by the total number of households in the sample.

Fraction of households that watched program A = Number of households that watched program A / Total number of households in the sample

Fraction of households that watched program A = 250 / 4000

Fraction of households that watched program A ≈ 0.0625

Therefore, approximately 6.25% of all households watched program A.

Learn more about sample at brainly.com/question/24466382

#SPJ11

What is the yield to maturity of a ten-year, $1000 bond with a 5.2% coupon rate and semi-annual coupons if this bond is currently trading for a price of $884?
5.02%
6.23%
6.82%
12.46%
G
5.20%

Answers

The yield to maturity of a ten-year, $1000 bond with a 5.2% coupon rate and semi-annual coupons, if the =bond is currently trading for a price of $884, is 6.23%. Thus, option a and option b is correct

Yield to maturity (YTM) is the anticipated overall return on a bond if it is held until maturity, considering all interest payments. To calculate YTM, you need to know the bond's price, coupon rate, face value, and the number of years until maturity.

The formula for calculating YTM is as follows:

YTM = (C + (F-P)/n) / ((F+P)/2) x 100

Where:

C = Interest payment

F = Face value

P = Market price

n = Number of coupon payments

Given that the bond has a coupon rate of 5.2%, a face value of $1000, a maturity of ten years, semi-annual coupon payments, and is currently trading at a price of $884, we can calculate the yield to maturity.

First, let's calculate the semi-annual coupon payment:

Semi-annual coupon rate = 5.2% / 2 = 2.6%

Face value = $1000

Market price = $884

Number of years remaining until maturity = 10 years

Number of semi-annual coupon payments = 2 x 10 = 20

Semi-annual coupon payment = Semi-annual coupon rate x Face value

Semi-annual coupon payment = 2.6% x $1000 = $26

Now, we can calculate the yield to maturity using the formula:

YTM = (C + (F-P)/n) / ((F+P)/2) x 100

YTM = (2 x $26 + ($1000-$884)/20) / (($1000+$884)/2) x 100

YTM = 6.23%

Therefore, If a ten-year, $1000 bond with a 5.2% coupon rate and semi-annual coupons is now selling at $884, the yield to maturity is 6.23%.

Learn more about yield to maturity

https://brainly.com/question/26376004

#SPJ11


Which is the area of the rectangle?

A. 7,935 square units
B. 11,500 square units
C. 13,248 square units
D. 14,835 square units

Answers

Answer:

C. 13,248 square units

Step-by-step explanation:

You need to use the Pythagoras theorem to find the missing side.
a^2+b^2=c^2
c^2-a^2=b^2
115^2-69^2=92^2
92+100=192
192*69=13,248

She must determine height of the clock tower using a 1.5 m transit instrument (calculations are done 1.5 m above level ground) from a distance 100 m from the tower she found the angle of elevation to be 19 degrees. How high is the clock tower from 1 decimal place?

Answers

Step-by-step explanation:

We can use trigonometry to solve this problem. Let's draw a diagram:

```

A - observer (1.5 m above ground)

B - base of the clock tower

C - top of the clock tower

D - intersection of AB and the horizontal ground

E - point on the ground directly below C

C

|

|

|

|

| x

|

|

|

-------------

|

|

|

|

|

|

|

|

|

B

|

|

|

|

|

|

|

|

|

|

|

A

```

We want to find the height of the clock tower, which is CE. We have the angle of elevation ACD, which is 19 degrees, and the distance AB, which is 100 m. We can use tangent to find CE:

tan(ACD) = CE / AB

tan(19) = CE / 100

CE = 100 * tan(19)

CE ≈ 34.5 m (rounded to 1 decimal place)

Therefore, the height of the clock tower is approximately 34.5 m.

Solid A and solid B are
mathematically similar. The ratio
of the volume of A to the volume
of B is 125: 64
If the surface area of A is 400 cm
what is the surface of B?

Answers

The surface area of solid B is 1024 cm².

If the solids A and B are mathematically similar, it means that their corresponding sides are in proportion, including their volumes and surface areas.

Given that the ratio of the volume of A to the volume of B is 125:64, we can express this as:

Volume of A / Volume of B = 125/64

Let's assume the volume of A is V_A and the volume of B is V_B.

V_A / V_B = 125/64

Now, let's consider the surface area of A, which is given as 400 cm².

We know that the surface area of a solid is proportional to the square of its corresponding sides.

Surface Area of A / Surface Area of B = (Side of A / Side of B)²

400 / Surface Area of B = (Side of A / Side of B)²

Since the solids A and B are mathematically similar, their sides are in the same ratio as their volumes:

Side of A / Side of B = ∛(V_A / V_B) = ∛(125/64)

Now, we can substitute this value back into the equation for the surface area:

400 / Surface Area of B = (∛(125/64))²

400 / Surface Area of B = (5/4)²

400 / Surface Area of B = 25/16

Cross-multiplying:

400 * 16 = Surface Area of B * 25

Surface Area of B = (400 * 16) / 25

Surface Area of B = 25600 / 25

Surface Area of B = 1024 cm²

As a result, solid B has a surface area of 1024 cm2.

for such more question on surface area

https://brainly.com/question/20771646

#SPJ8

Could I please get assistance with this question. Create a mini cricket/rugby clinic explanation where you teach learners about cricket/rugby while incorporating Mathematics or English literacy. Your explanation should be informative and insightful.

Answers

To create a mini cricket/rugby clinic explanation that incorporates Mathematics or English literacy, you could try the following:
Introduce the sport of cricket/rugby and explain its history and rules.

Use cricket/rugby as a context for teaching Mathematics or English literacy. For example:
Mathematics: You can use cricket/rugby statistics to teach learners about probability, percentages, and data analysis. For instance, you can ask learners to calculate the batting average of a cricket player or the conversion rate of a rugby team. You can also ask learners to solve word problems related to cricket/rugby, such as "If a cricket team scores 240 runs in 50 overs, what is their run rate per over?"

English literacy: You can use cricket/rugby as a context for teaching learners about reading comprehension, writing, and vocabulary. For instance, you can ask learners to read a cricket/rugby article and summarize it in their own words. You can also ask learners to write a persuasive essay on why cricket/rugby is the best sport. Additionally, you can teach learners cricket/rugby-specific vocabulary, such as "wicket," "boundary," "try," and "conversion."

Use cricket/rugby drills and exercises to reinforce the Mathematics or English literacy concepts you have taught. For example:

Mathematics: You can ask learners to measure the distance between the wickets or the length of the cricket pitch using a tape measure. You can also ask learners to count the number of runs scored in a cricket match or the number of tries scored in a rugby match.

English literacy: You can ask learners to write a cricket/rugby-themed story or poem using the vocabulary they have learned. You can also ask learners to read a cricket/rugby rulebook and explain the rules in their own words.

Overall, incorporating Mathematics or English literacy into a cricket/rugby clinic can make the learning experience more engaging and meaningful for learners. By using cricket/rugby as a context for teaching these subjects, learners can see the real-world applications of what they are learning and develop a deeper understanding of the concepts.

prove, using albegra, that the difference between the squares of consecutive even numbers is always a multiple of 4

Answers

Let's start by representing the two consecutive even numbers as x and x+2. Then, the difference between their squares can be expressed as:

(x+2)^2 - x^2

Expanding the squares and simplifying, we get:

(x^2 + 4x + 4) - x^2

Which simplifies further to:

4x + 4

Factoring out 4, we get:

4(x + 1)                

This shows that the difference between the squares of consecutive even numbers is always a multiple of 4. Therefore, we have proven algebraically that the statement is true for all even numbers.          

Answer:

See below for proof.

Step-by-step explanation:

An even number is an integer (a whole number that can be either positive, negative, or zero) that is divisible by 2 without leaving a remainder. Therefore:

2n is an even number.

Consecutive even numbers are a sequence of even numbers that increase by 2 with each successive number. Therefore:

2n + 2 is the consecutive even number of 2n.

The difference between the squares of consecutive even numbers can be written algebraically as:

[tex](2n + 2)^2 - (2n)^2[/tex]

Use algebraic manipulation to rewrite the expression:

[tex]\begin{aligned}(2n + 2)^2 - (2n)^2&=(2n+2)(2n+2)-(2n)(2n)\\&=4n^2+4n+4n+4-4n^2\\&=4n^2-4n^2+4n+4n+4\\&=8n+4\\&=4(2n+1)\end{aligned}[/tex]

As the common factor of 4 can be factored out of the expression, this proves that the difference between the squares of consecutive even numbers is always a multiple of 4.

Projectile motion
Height in feet, t seconds after launch

H(t)=-16t squared+72t+12
What is the max height and after how many seconds does it hit the ground?

Answers

The maximum height reached by the projectile is 12 feet, and it hits the ground approximately 1.228 seconds and 3.772 seconds after being launched.

To find the maximum height reached by the projectile and the time it takes to hit the ground, we can analyze the given quadratic function H(t) = -16t^2 + 72t + 12.

The function H(t) represents the height of the projectile at time t seconds after its launch. The coefficient of t^2, which is -16, indicates that the path of the projectile is a downward-facing parabola due to the negative sign.

To determine the maximum height, we look for the vertex of the parabola. The x-coordinate of the vertex can be found using the formula x = -b / (2a), where a and b are the coefficients of t^2 and t, respectively. In this case, a = -16 and b = 72. Substituting these values, we get x = -72 / (2 * -16) = 9/2.

To find the corresponding y-coordinate (the maximum height), we substitute the x-coordinate into the function: H(9/2) = -16(9/2)^2 + 72(9/2) + 12. Simplifying this expression gives H(9/2) = -324 + 324 + 12 = 12 feet.

Hence, the maximum height reached by the projectile is 12 feet.

Next, to determine the time it takes for the projectile to hit the ground, we set H(t) equal to zero and solve for t. The equation -16t^2 + 72t + 12 = 0 can be simplified by dividing all terms by -4, resulting in 4t^2 - 18t - 3 = 0.

This quadratic equation can be solved using the quadratic formula: t = (-b ± √(b^2 - 4ac)) / (2a), where a = 4, b = -18, and c = -3. Substituting these values, we get t = (18 ± √(18^2 - 4 * 4 * -3)) / (2 * 4).

Simplifying further, we have t = (18 ± √(324 + 48)) / 8 = (18 ± √372) / 8.

Using a calculator, we find that the solutions are t ≈ 1.228 seconds and t ≈ 3.772 seconds.

Therefore, the projectile hits the ground approximately 1.228 seconds and 3.772 seconds after its launch.

To learn more about projectile

https://brainly.com/question/8104921

#SPJ8

The midpoint of AB is M (1,2). If the coordinates of A are (-1,3), what are the coordinates of B?

Answers

Answer:

(3,0)

Step-by-step explanation:

To answer this, just find what was added to A to get to the midpoint, then add that to the midpoint for B.

So first, find how to get from (-1,3) to (1,2). If you add together -1 + 2, the answer is 1, the x value of the midpoint. If you subtract 3 - 1, the answer is 2, the y value of the midpoint.

Now, we just apply these to the midpoint, which should get us to the coordinates of B.

1 + 2 = 3

2 - 2 = 0

(3,0)

So, the coordinates of B are (3,0).

2) (10) Sue has a total of $20,000 to invest. She deposits some of her money in an account that returns 12% and the rest in a second account that returns 20%. At the end of the first year, she earned $3460 a) Give the equation that arises from the total amount of money invested. b) give the equation that results from the amount of interest she earned. c) Convert the system or equations into an augmented matrix d) Solve the system using Gauss-Jordan Elimination. Show row operations for all steps e) Answer the question: How much did she invest in each account?

Answers

From the solution, we can determine that Sue invested $1,750 in the account that returns 12% and $18,250 in the account that returns 20%.

a) Let x represent the amount of money invested in the account that returns 12% and y represent the amount of money invested in the account that returns 20%. The equation that arises from the total amount of money invested is:

x + y = 20,000

b) The interest earned from the account that returns 12% is given by 0.12x, and the interest earned from the account that returns 20% is given by 0.20y. The equation that arises from the amount of interest earned is:

0.12x + 0.20y = 3,460

c) Converting the system of equations into an augmented matrix:

[1 1 | 20,000]

[0.12 0.20 | 3,460]

d) Solving the system using Gauss-Jordan Elimination:

Row 2 - 0.12 * Row 1:

[1 1 | 20,000]

[0 0.08 | 1,460]

Divide Row 2 by 0.08:

[1 1 | 20,000]

[0 1 | 18,250]

Row 1 - Row 2:

[1 0 | 1,750]

[0 1 | 18,250]

Know more about augmented matrix here:

https://brainly.com/question/30403694

#SPJ11

The median mass of 200 packages is 5.6KG. Two of the packages have a mass of 5.6KG. a) How many packages have a mass greater than 5.6KG? b) What percentage of the packages have a mass less than 5.6KG?

Answers

There are 100 packages with a mass greater than 5.6 kg out of the total 200 packages, and approximately 51% of the packages have a mass less than 5.6 kg, including the two packages with a mass of exactly 5.6 kg.

a) To determine how many packages have a mass greater than 5.6 kg, we need to consider the median. The median is the value that separates the lower half from the upper half of a dataset.

Since two packages have a mass of 5.6 kg, and the median is also 5.6 kg, it means that there are 100 packages with a mass less than or equal to 5.6 kg.

Since the total number of packages is 200, we subtract the 100 packages with a mass less than or equal to 5.6 kg from the total to find the number of packages with a mass greater than 5.6 kg. Therefore, there are 200 - 100 = 100 packages with a mass greater than 5.6 kg.

b) To find the percentage of packages with a mass less than 5.6 kg, we need to consider the cumulative distribution. Since the median mass is 5.6 kg, it means that 50% of the packages have a mass less than or equal to 5.6 kg. Additionally, we know that two packages have a mass of exactly 5.6 kg.

Therefore, the percentage of packages with a mass less than 5.6 kg is (100 + 2) / 200 * 100 = 51%. This calculation includes the two packages with exactly 5.6KG and the 100 packages with a mass less than or equal to 5.6KG, out of the total 200 packages.

To learn more about cumulative distribution

https://brainly.com/question/30657052

#SPJ8

Show that if (an) is a convergent sequence then for, any fixed index p, the sequence (an+p) is also convergent.

Answers

If (an) is a convergent sequence, then for any fixed index p, the sequence (an+p) is also convergent.

To show that if (an) is a convergent sequence, then for any fixed index p, the sequence (an+p) is also convergent, we need to prove that (an+p) has the same limit as (an).

Let's assume that (an) converges to a limit L as n approaches infinity. This can be represented as:

lim (n→∞) an = L

Now, let's consider the sequence (an+p) and examine its behavior as n approaches infinity:

lim (n→∞) (an+p)

Since p is a fixed index, we can substitute k = n + p, which implies n = k - p. As n approaches infinity, k also approaches infinity. Therefore, we can rewrite the above expression as:

lim (k→∞) ak

This represents the limit of the original sequence (an) as k approaches infinity. Since (an) converges to L, we can write:

lim (k→∞) ak = L

Hence, we have shown that if (an) is a convergent sequence, then for any fixed index p, the sequence (an+p) also converges to the same limit L.

This result holds true because shifting the index of a convergent sequence does not affect its convergence behavior. The terms in the sequence (an+p) are simply the terms of (an) shifted by a fixed number of positions.

Learn more about convergent sequence

brainly.com/question/32549533

#SPJ11

4. [6 marks] Consider the following linear transformations of the plane: T₁ = "reflection across the line y = -x" "rotation through 90° clockwise" T2= T3 = "reflection across the y aris" (a) Write down matrices A₁, A2, A3 that correspond to the respective transforma- tions. (b) Use matrix multiplication to determine the geometric effect of a rotation through 90° clockwise followed by a reflection across the line y = -x, i.e., T2 followed by T₁. (c) Use matrix multiplication to determine the combined geometric effect of T₁ followed by T2 followed by T3.

Answers

(a) The matrices A₁, A₂, and A₃ corresponding to the transformations T₁, T₂, and T₃, respectively, are:

A₁ = [[0, -1], [-1, 0]]

A₂ = [[0, 1], [-1, 0]]

A₃ = [[-1, 0], [0, 1]]

(b) The geometric effect of a rotation through 90° clockwise followed by a reflection across the line y = -x (T₂ followed by T₁) can be determined by matrix multiplication.

(c) The combined geometric effect of T₁ followed by T₂ followed by T₃ can also be determined using matrix multiplication.

Step 1: To find the matrices corresponding to the transformations T₁, T₂, and T₃, we need to understand the geometric effects of each transformation.

- T₁ represents the reflection across the line y = -x. This transformation changes the sign of both x and y coordinates, so the matrix A₁ is [[0, -1], [-1, 0]].

- T₂ represents the rotation through 90° clockwise. This transformation swaps the x and y coordinates and changes the sign of the new x coordinate, so the matrix A₂ is [[0, 1], [-1, 0]].

- T₃ represents the reflection across the y-axis. This transformation changes the sign of the x coordinate, so the matrix A₃ is [[-1, 0], [0, 1]].

Step 2: To determine the geometric effect of T₂ followed by T₁, we multiply the matrices A₂ and A₁ in that order. Matrix multiplication of A₂ and A₁ yields the result:

A₂A₁ = [[0, -1], [1, 0]]

Step 3: To find the combined geometric effect of T₁ followed by T₂ followed by T₃, we multiply the matrices A₃, A₂, and A₁ in that order. Matrix multiplication of A₃, A₂, and A₁ gives the result:

A₃A₂A₁ = [[0, -1], [-1, 0]]

Therefore, the combined geometric effect of T₁ followed by T₂ followed by T₃ is the same as the geometric effect of a rotation through 90° clockwise followed by a reflection across the line y = -x.

Learn more about Matrices

brainly.com/question/30646566

#SPJ11

Choose 1 of the following application problems to solve. Your work should include each of the following to earn full credit.
a) Label the given values from the problem
b) Identify the finance formula to use
c) Write the formula with the values.
d) Write the solution to the problem in a sentence.

Answers

Step 1: The main answer to the question is:

In this problem, we need to calculate the monthly mortgage payment for a given loan amount, interest rate, and loan term.



Step 2:

To calculate the monthly mortgage payment, we can use the formula for calculating the fixed monthly payment for a loan, which is known as the mortgage payment formula. The formula is as follows:

M = P * r * (1 + r)^n / ((1 + r)^n - 1)

Where:

M = Monthly mortgage payment

P = Loan amount

r = Monthly interest rate (annual interest rate divided by 12)

n = Total number of monthly payments (loan term multiplied by 12)

Step 3:

Using the given values from the problem, let's calculate the monthly mortgage payment:

Loan amount (P) = $250,000

Annual interest rate = 4.5%

Loan term = 30 years

First, we need to convert the annual interest rate to a monthly interest rate:

Monthly interest rate (r) = 4.5% / 12 = 0.375%

Next, we need to calculate the total number of monthly payments:

Total number of monthly payments (n) = 30 years * 12 = 360 months

Now, we can substitute these values into the mortgage payment formula:

M = $250,000 * 0.00375 * (1 + 0.00375)^360 / ((1 + 0.00375)^360 - 1)

After performing the calculations, the monthly mortgage payment (M) is approximately $1,266.71.

Therefore, the solution to the problem is: The monthly mortgage payment for a $250,000 loan with a 4.5% annual interest rate and a 30-year term is approximately $1,266.71.

Learn more about mortgage payment .

brainly.com/question/31110884

#SPJ11

what fraction is equivalent to 1/15
Which of the following fractions are equivalent to 1 15

Answers

The fraction equivalent to 1/15 is 1/16.

To determine the fraction that is equivalent to 1/15, follow these steps:

Step 1: Express 1/15 as a fraction with a denominator that is a multiple of 10, 100, 1000, and so on.

We want to write 1/15 as a fraction with a denominator of 100.

Multiply both the numerator and denominator by 6 to achieve this.

1/15 = 6/100

Step 2: Simplify the fraction to its lowest terms.

To reduce the fraction to lowest terms, divide both the numerator and denominator by their greatest common factor.

The greatest common factor of 6 and 100 is 6.

Dividing both numerator and denominator by 6 gives:

1/15 = 6/100 = (6 ÷ 6) / (100 ÷ 6) = 1/16

Therefore, the fraction equivalent to 1/15 is 1/16.

Learn more about fraction

https://brainly.com/question/10354322

#SPJ11

10. 15 min. =
hr.
IS

Answers

Answer:

1/4 hour or 0.25 hour

Step-by-step explanation:

1 hour = 60 minutes

⇒ 1 minute = 1/60 hour

⇒ 15 min = 15/60 hour

= 1/4 hour or 0.25 hour

Other Questions
A company estimates that it will need $164,000 in 6 years to replace a computer. If it establishes a sinking fund by making fixed monthly payments into an account paying 4.5% compounded monthly, how much should each payment be? The amount of each payment should be $ (Round to the nearest cent.) -C Given f(x)=2x+1 and g(x)=3x5, find the following: a. (fg)(x) b. (gg)(x) c. (ff)(x) d. (gf)(x) Enuresis is an elimination disorder in which the child is incontinent of urine and urinates in clothes or in bed after the age when the child is expected to be continent True False QUESTION 14 A disorder whose primary clinical deficit is in cognition that represents a decline from previous functioning is called dementia True False QUESTION 15 Amnesia is a disorder where you cannot recall information or cannot create fresh memories True False QUESTION 16 Shehan is in his early 60s. He has difficulties in remembering basic information such as in Steven earns extra money babysitting. He charges $31.00 for 4 hours and $62.00 for 8 hours.Enter an equation to represent the relationship. Let x represent the number of hours Steven babysits and y represent the amount he charges. 1. Look at a diagram or model of the heart. Which chamber (left or right atrium or ventricie) is the most muscular (i.e., has the thickest myocardium). Why do you think this is the case? 2. Blood flows from the pulmonary veins into the: 3. Blood entering the left ventricle must pass through the Blood exiting the left ventricle must pass through the 4. Chordae tendinae anchor atrioventricular (AV) valves to Semilunar valves Papillary muscles Trabeculae carnae Pectinate muscles valve. valve. . 5. Blood is conducted away from the right ventricle of the heart via the Right coronary artery Pulmonary trunk Pulmonary veins Superior vena cava 6. The layer of the heart wall that contracts to pump blood is the: 7. Describe how blood would flow from the right atrium into the lungs and back to the heart (right atrium-right AV valve right ventricle...) . 8. Match the blood vessel with the body region it supplies: Renal artery Gives rise to gastric, splenic, and hepatic Celiac trunk arteries Superior mesenteric artery Brain Hepatic artery Drains blood from above the heart Splenic artery Drains blood from below the heart Left gastric artery Liver Vertebral artery Lower limb and pelvic region Inferior mesenteric artery Kidney Spleen Common iliac artery Stomach Superior vena cava Small intestine and first part of large Inferior vena cava intestine Last part of large intestine . . 9. Describe how blood would flow from the heart to the medial, anterior surface of the right forearm and back to the heart (left ventricle + aorta - brachiocephalic trunk ...). 10. Describe how blood would flow from the heart to the small intestine and back to the heart. MILITARY ASSIGNMENTThe answers should be typed.a. outline the tendencies of hegemonyb. what are the models of reginal security?c. why security cooperation flourish in some regions?d. compare and contrast elements of national security vs instrument of power. Consider a simplified example of two countries - Singapore and Indonesia - producing two goods telecommunications equipment and electrical circuit apparatus. Using all its resources, Singapore can produce either 50 telecommunications equipment, or 100 electrical circuit apparatus. Using all its resources, Indonesia can produce either 1,000 telecommunications equipment, or 5,000 circuit apparatus.It is found that contrary to the above, there is no complete specialisation in both Singapore and Indonesia. Instead, Singapore partially specialises in telecommunications equipment, producing 40 units, while Indonesia partially specialises in electrical circuit apparatus, producing 4,000 units. Using the Heckscher-Ohlin theory instead of the Ricardian theory, demonstrate this observation. You are required to draw intuitive reference to the real-world context. Elaborate on the consequent trade effects, using diagrams where necessary. When Vicki was hired at her first job after college, she wore her grandmother's necklace during the job interview. She now wears her grandmother's necklace whenever she is needing extra luck, although it doesn't always produce the outcome she is hoping for. What is this an example of A Negative reinforcement B. Positive reinforcement Partial reinforcement D. Coincidental reinforcement 254 kg/h of sliced fresh potato (82.19% moisture, the balance is solids) is fed to a forced convection dryer. The air used for drying enters at 86C, 1 atm, and 10.4% relative humidity. The potatoes exit at only 2 43% moisture content. If the exiting air leaves at 93.0% humidity at the same inlet temperature and pressure, what is the mass ratio of air fed to potatoes fed?Type your answer in 3 decimal places. The payback period is the estimated time for the revenues,savings, and other monetary benefits to completely recover theinitial investment plus a stated rate of return i. Question 15options:True F (14.1) A horizontal power line carries a current of 4560 A from south to north. Earth's magnetic field (85.2 T) is directed toward the north and is inclined downward at 57.0 to the horizontal. Find the (a) magnitude and (b) direction of the magnetic force on 95.0 m of the line due to Earth's field. Let a and b represent real numbers. Describe the possible solution sets of the (linear) equation ax = b.Linear Equation:The linear equation can be solved using the algebraic method or with the help of the graphical method. The equation of the straight line is the linear equation and can have infinite solutions. Why do es it say connection unsuccessful make sure airpods pro is turned on adn in range even though it is Describe the variation in territorial boundaries of persian Empire Tamoxifen, an estrogen antagonist (homologue), will bind to the mutated estrogen receptor fused to the Cre-recombinase, and translocate Cre-recombinase into nucleus.Group of answer choicesTrueFalseCre-loxP system also can be used to eliminate floxed-stop codon and induce expression of a transgene.Group of answer choicesTrueFalse A welder is building a hollow water storage tank made of 3/8" plate steel dimensioned as shown in the diagram. Calculate the weight of the tank, rounded to the nearest pound if x = 21 ft, y = 11 ft, and a steel plate of this thickness weighs 15.3 lbs/ft2. An object's velocity follows the equation = 3+2 +1. What is the object's displacement as a function of time? Part B If a block is moving to the left at a constant velocity, what can one conclude? View Available Hint(s) O There is exactly one force applied to the block. O The net force applied to the block is directed to the left. O The net force applied to the block is zero. O There must be no forces at all applied to the block. Part C A block of mass 2 kg is acted upon by two forces: 3 N (directed to the left) and 4 N (directed to the right). What can you say about the block's motion? View Available Hint(s) OIt must be moving to the left. It must be moving to the right. It must be at rest. It could be moving to the left, moving to the right, or be instantaneously at rest. Part D A massive block is being pulled along a horizontal frictionless surface by a constant horizontal force. The block must be View Available Hint(s) continuously changing direction moving at constant velocity moving with a constant nonzero acceleration. moving with continuously increasing acceleration Part E Two forces, of magnitude 4 N and 10 N, are applied to an object. The relative direction of the forces is unknown. The net force acting on the object Check all that apply. View Available Hint(s) cannot have a magnitude equal to 5 N cannot have a magnitude equal to 10 N O cannot have the same direction as the force with magnitude 10 N must have a magnitude greater than 10 N Plotting the stopping potential i.e. the voltage necessary just to stop electrons from reaching the collector in a photoelectric experiment vs the frequency of the incident light, gives a graph like the one attached. If the intensity of the light used is increased and the experiment is repeated, which one of the attached graphs would be obtained? ( The original graph is shown as a dashed line). Attachments AP 2.pdf A. Graph ( a ). B. Graph (b). c. Graph (c). D. Graph (d). How do I write each of the following(1-8) in standard argument form?1..Instituting a right to health care could lower the cost of health care in the United States.2.A right to health care could save lives3.A right to health care could make medical services affordable for everyone.4.A right to health care could improve public health.5.Providing a right to health care could worsen a doctor shortage.6.A right to health care could lower the quality and availability of disease screening and treatment.7.A right to health care could lower doctors earnings.8.A right to health care could increase the wait time for medical services.