Solve x/5 - 1/2 = x/6 (make sure to type the number only)
X/5 -1/2 = x/6
Find the least common denominator of the 3 denominators:5,2,6
The limited is 30
Multiply all 3 fractions by 30:
6x -15 = 5x
Subtract 6x from both sides:
-15 = -x
Multiply both sides by -1:
X = 15
The graph below shows the quadratic function f, and the table below shows the quadratic function g.
x -1 0 1 2 3 4 5
g(x) 13 8 5 4 5 8 13
Which statement is true?
A.
The functions f and g have the same axis of symmetry and the same y-intercept.
B.
The functions f and g have different axes of symmetry and different y-intercepts.
C.
The functions f and g have the same axis of symmetry, and the y-intercept of f is greater than the y-intercept of g.
D.
The functions f and g have the same axis of symmetry, and the y-intercept of f is less than the y-intercept of g.
Answer:
D
Step-by-step explanation:
The true statement is:
The functions f and g have the same axis of symmetry, and the y-intercept of f is greater than the y-intercept of g.
What is Function?A mathematical phrase, rule, or law that establishes the link between an independent variable and a dependent variable (the dependent variable). In mathematics, functions exist everywhere, and they are crucial for constructing physical links in the sciences.
As, per the graph and table is:
From the graph of f(x):
Axis of symmetry will be at x = 2
The maximum value of f(x) = 10
From the table of g(x):
Axis of symmetry will be at x = 2
The minimum value of g(x) = 4
thus, The functions f and g have the same axis of symmetry, and the y-intercept of f is greater than the y-intercept of g.
Learn more about Function here:
https://brainly.com/question/9753280
#SPJ7
For a certain casino slot machine, the odds in favor of a win are given as 17 to 83. Express the indicated degree of likelihood as a probability value between 0 and 1 inclusive.
Step-by-step explanation:
83P (E)=17-17P (E),
P (E)=17/100=0.17
Two samples from the same population both have M = 84 and s2 = 20, but one sample has n = 10 and the other has n = 20 scores. Both samples are used to evaluate a hypothesis stating that μ = 80 and to compute Cohen’s d. How will the outcomes for the two samples compare?
Complete Question
Two samples from the same population both have M = 84 and s2 = 20, but one sample has n = 10 and the other has n = 20 scores. Both samples are used to evaluate a hypothesis stating that μ = 80 and to compute Cohen’s d. How will the outcomes for the two samples compare?
a.
The larger sample is more likely to reject the hypothesis and will produce a larger value for Cohen’s d.
b.
The larger sample is more likely to reject the hypothesis, but the two samples will have the same value for Cohen’s d.
c.
The larger sample is less likely to reject the hypothesis and will produce a larger value for Cohen’s d.
d.
The larger sample is less likely to reject the hypothesis, but the two samples will have the same value for Cohen’s d.
Answer:
The Cohen's d value is [tex]d = 0.895[/tex]
The correct option is b
Step-by-step explanation:
From the question we are told that
The sample mean of each population is [tex]M = 84[/tex]
The variance of each population is [tex]s^2 = 20[/tex]
The first sample size is [tex]n_1 = 10[/tex]
The second sample size is [tex]n_2 = 20[/tex]
The null hypothesis is [tex]H_o : \mu = 80[/tex]
Generally the standard deviation is mathematically evaluated as
[tex]s = \sqrt{20 }[/tex]
=> [tex]s = 4.47[/tex]
The first test statistics is evaluated as
[tex]t_1 = \frac{M - \mu }{ \frac{\sigma }{ \sqrt{n_1} } }[/tex]
=> [tex]t_1 = \frac{84 - 80 }{ \frac{4.47 }{ \sqrt{10} } }[/tex]
=> [tex]t_1 = 2.8298[/tex]
The second test statistics is evaluated as
[tex]t_2 = \frac{M - \mu }{ \frac{\sigma }{ \sqrt{n_2} } }[/tex]
=> [tex]t_2 = \frac{84 - 80 }{ \frac{4.47 }{ \sqrt{20} } }[/tex]
=> [tex]t_2 = 4.0[/tex]
The sample with the larger test statistics (sample size) will more likely reject the null hypothesis
Generally the Cohen's d value is mathematically evaluated as
[tex]d = \frac{M - \mu }{s }[/tex]
=> [tex]d = \frac{ 84 - 80 }{4.47 }[/tex]
=> [tex]d = 0.895[/tex]
Given that the the sample mean and sample size are the same for both sample the Cohen's d value will be the same
The diameter, D, of a sphere is 7.8mm. Calculate the sphere's volume, V.
Use the Value 3.15 for pie.
Answer:
249.14 mm³
Step-by-step explanation:
r = diameter/2
= 7.8 /2
volume = 4/3 π r³
= 4/3 * 3.15 * (7.8/2)³
= 249.14 mm³
The points (0,3) and (1,12) are solutions of an exponential function. What is the equation of the exponential function?
Answer:
[tex]f(x) =3\,*\,\,4^x[/tex]
Step-by-step explanation:
to find the equation of an exponential function, just points on the function's graph are needed.
Recall that the exponential function has a general expression given by:
[tex]f(x) = a \,e^{b\,x}[/tex]
so we impose the condition for the function going through the first point (0,3) as:
[tex]f(0) = a \,e^{b\,(0)}= 3\\a\,e^0=3\\a\,(1)=3\\a = 3[/tex]
Now,knowing the parameter a, we can find the parameter b using the other point:
[tex]f(1) = 3 \,e^{b\,x}= 12\\3\,e^{b\,(1)}=12\\e^b=12/3\\e^b=4\\b=ln(4)[/tex]
Therefore, the function can be written as:
[tex]f(x) = 3 \,e^{ln(4)\,x}=3\,\,\,4^x[/tex]
Answer:
C)
h(x) = 3(4)x
Is 3.6 a integer or a whole number?
36 is a whole number.
Answer:
The number 3.6 is a rational number.
All numbers that can be represented as fractions made of two integers (whole numbers) are considered to be
As a bowling instructor, you calculate your students' averages during tournaments. In 5 games, one bowler had the following scores: 143, 156, 172, 133, and 167. What was that bowler's average?
Answer:
154.2
Step-by-step explanation:
To find the average of the bowlers scores, you have to find the mean by adding the values and dividing by the number of values.
To find the bowlers average add the scores and divide by the number of games.
143+156+172+133+167/5=154.2 is the average score for the bowler.
so, sunny is 16 he is 132 pounds
the song my time lasts 3:33 and sunny is falling for an entire 3 minutes
the gravitational pull which is pulling sunny back down to the ground is about 10m/s²
we have the new height of the hospital, is 49312,674 meters, or 161.787 feet
upon theory, sunny died upon coming to contact with the ground if you fall head first from 100 feet you're bound to die
you can break just your legs from falling from atleast 16-18 feet so imagine that
??????
can someone help me answer this??
Answer:
hkkr
need school the long said
Answer:
That would indicate 20.0 ml
id appreciate a rating thanks XP
Which are perfect squares? Check all that apply. 9 , 24 , 16 , 200 , 169 , 625
Answer:
A. 9
C. 16
E. 169
F. 625
Step-by-step explanation:
Which of the following is the correct set notation for the set of perfect squares between 1 and 100 (including 1 and 100)?
Select the correct answer below:
{p2∣p∈ℤ and 1≤p≤10}
{p2∣p∈ℤ and 1
Answer:
[tex]\{P^2: P\ E\ Z\ and\ 1\leq p\leq 10\}[/tex]
Step-by-step explanation:
Given
Range: = 1 to 100 (Inclusive)
Required
Determine the notation that represents the perfect square in the given range
Represent the range with P
P = 1 to 100
Such that the perfect squares will be P² and integers
In set notation, integers are represented with Z
The set notation becomes
[tex]\{P^2: P\ E\ Z\ and\ 1\leq p\leq 10\}[/tex]
The [tex]\leq[/tex] shows that 1 and 100 are inclusive of the set
plzzz help me quick will give goood rate
Answer:
Average rate of change of the function will be = (-1.5)
Step-by-step explanation:
Average rate of change of a function f(x) is determined by the formula,
Average rate of change = [tex]\frac{f(b)-f(a)}{b-a}[/tex] If a < x < b
We have to find the average rate of change of a function g(t) between the interval [-3, 1]
From the given table,
For t = -3,
g(-3) = 6
For t = 1,
g(1) = 0
Therefore, average rate of change of the function in the given interval
= [tex]\frac{g(1)-g(-3)}{1-(-3)}[/tex]
= [tex]\frac{0-6}{1+3}[/tex]
= [tex]-\frac{3}{2}[/tex]
= - 1.5
PLEASE HELP !!! (5/5) -50 POINTS-
Answer:
at least one solution
Step-by-step explanation:
Consistent solutions have at least one solution, but may have more than one solution. Intersecting lines and Lines that are the same are consistent solutions
Answer:
[tex]\boxed{Atleast\ one \ Solution}[/tex]
Step-by-step explanation:
A consistent system of equations have at least one solution. It can be more than that. There are no compulsions.
What is the area of the right triangle with sides 10,26 and 24
Answer:
[tex]\boxed {\boxed {\sf 120 \ units^2}}[/tex]
Step-by-step explanation:
We are asked to find the area of a triangle. The formula for calculating this is:
[tex]a= \frac{1}{2} bh[/tex]
This is a right triangle, so the base and height are the legs of the triangle. The 2 smallest sides are the legs because the longest side is the hypotenuse. Since the side lengths are 10, 26, and 24, the base and height must be 10 units and 24 units.
b= 10 unitsh= 24 unitsSubstitute these values into the formula.
[tex]a= \frac{ 1}{2} ( 10 \ units)(24 \ units)[/tex]
Multiply the numbers in parentheses.
[tex]a= \frac{1}{2}(240 \ units^2)[/tex]
Multiply by 1/2 or divide by 2.
[tex]a= 120 \ units^2[/tex]
The area of the triangle is 120 units squared.
PLEASE ANSWER ASAP!!!
Equation in the picture
Solve for r in the equation in the picture. You must use the LCD (Least Common Denominator) to simplify. You can also use cross products to solve.
Must show work
A. r = 19
B. r = 21
C. r = 25
D. r = 30
any unrelated answer will be reported
Answer:
r = 19
Step-by-step explanation:
( r-5) /2 = ( r+2) /3
The least common denominator is 6
3/3 *( r-5) /2 = ( r+2) /3 * 2/2
3( r-5) /6 = 2( r+2) /6
Since the denominators are the same, the numerators are the same
3( r-5) = 2(r+2)
Distribute
3r -15 = 2r+4
Subtract 2r from each side
3r-2r -15 = 2r+4-2r
r-15 =4
Add 15 to each side
r-15+15 = 4+15
r = 19
The domain of the following relation has how many elements?
[(1/2, 3.14/6), (1/2, 3.14/4), (1/2, 3.14/3), (1/2,3.14/2)]
a. 0
b. 1
c. 4
Answer:
b. 1
Step-by-step explanation:
All first coordinates are 1/2.
Answer: b. 1
4 + 1n(x-1)=3 solve for x
[tex]\\ \sf \longmapsto 4+10(x-1)=3[/tex]
[tex]\\ \sf \longmapsto 4+10x-10=3[/tex]
[tex]\\ \sf \longmapsto 10x-6=3[/tex]
[tex]\\ \sf \longmapsto 10x=3+6[/tex]
[tex]\\ \sf \longmapsto 10x=9[/tex]
[tex]\\ \sf \longmapsto x=\dfrac{9}{10}[/tex]
Please answer this correctly without making mistakes
Answer:
2 13/15 miles
Step-by-step explanation:
Hey there!
Well first we need to find the distance between Lancaster and Hillsdale and Lancaster to Silvergrove.
9 + 7 13/15
= 16 13/15
LS is just 14 miles.
Now we can do,
16 13/15 - 14
= 2 13/15 miles
Hope this helps :)
Simplify to create an equivalent expression. 4(-15-3p)-4(-p+5)
Answer:
- 8p - 80
Step-by-step explanation:
Given
4(- 15 - 3p) - 4(- p + 5) ← distribute both parenthesis
= - 60 - 12p + 4p - 20 ← collect like terms
= - 8p - 80
Answer:
-8p -80
Step-by-step explanation:
4(-15-3p)-4(-p+5)
Distribute
-60 -12p +4p -20
Combine like terms
-60-20 -8p +4p
-80-8p
-8p -80
6x47
Which multiple of 10 is closest to 47?
Answer:
50 is your answer:)Step-by-step explanation:
Answer:
50
Step-by-step explanation:
50 is the multiple of 10 that is closest to 47.
Carolyn and Paul are playing a game starting with a list of the integers $1$ to $n.$ The rules of the game are: $\bullet$ Carolyn always has the first turn. $\bullet$ Carolyn and Paul alternate turns. $\bullet$ On each of her turns, Carolyn must remove one number from the list such that this number has at least one positive divisor other than itself remaining in the list. $\bullet$ On each of his turns, Paul must remove from the list all of the positive divisors of the number that Carolyn has just removed. $\bullet$ If Carolyn cannot remove any more numbers, then Paul removes the rest of the numbers. For example, if $n=6,$ a possible sequence of moves is shown in this chart: \begin{tabular}{|c|c|c|} \hline Player & Removed \# & \# remaining \\ \hline Carolyn & 4 & 1, 2, 3, 5, 6 \\ \hline Paul & 1, 2 & 3, 5, 6 \\ \hline Carolyn & 6 & 3, 5 \\ \hline Paul & 3 & 5 \\ \hline Carolyn & None & 5 \\ \hline Paul & 5 & None \\ \hline \end{tabular} Note that Carolyn can't remove $3$ or $5$ on her second turn, and can't remove any number on her third turn. In this example, the sum of the numbers removed by Carolyn is $4+6=10$ and the sum of the numbers removed by Paul is $1+2+3+5=11.$ Suppose that $n=6$ and Carolyn removes the integer $2$ on her first turn. Determine the sum of the numbers that Carolyn removes.
Answer:
The sum of the numbers that Carolyn removes is 5.
Step-by-step explanation:
The provided instruction for the game are:
Carolyn always has the first turn. Carolyn and Paul alternate turns.On each of her turns, Carolyn must remove one number from the list such that this number has at least one positive divisor other than itself remaining in the list.On each of his turns, Paul must remove from the list all of the positive divisors of the number that Carolyn has just removed.If Carolyn cannot remove any more numbers, then Paul removes the rest of the numbers.The value of n is supposed as 6.
And it is also provided that Carolyn removes the integer 2 on her first turn.
The table displaying the outcomes of the game are as follows:
Player Removed Remaining
Carolyn 2 1, 3, 4, 5, 6
Paul 1 3, 4, 5, 6
Carolyn 3 4, 5, 6
Paul 6 4, 5
Carolyn None 4, 5
Paul 4, 5 None
The sum of the numbers that Carolyn removes is:
S = 2 + 3 = 5
Thus, the sum of the numbers that Carolyn removes is 5.
I believe the answer is 8, but I am not sure.
Five more than the square of a number Five more than twice a number Five less than the product of 3 and a number Five less the product of 3 and a number Twice the sum of a number and 5 The sum of twice a number and 5 The product of the cube of a number and 5 The cube of the product of 5 and a number. 5 + x2 5 + 2x 5 - 3x 3x - 5 2x + 5 2(x + 5) 5x3 (5x)3 WILL MARK BRAINLIEST AND DON'T PUT A FAKE ANSWER TO GET POINTS EITHER CUS I NEED HELP
Answer:
BelowStep-by-step explanation: Let all unknown no be x
Five more than the square of a number
= [tex]5 + x^2[/tex]
Five more than twice a number ;
[tex]5+2x\\= 2x+5[/tex]
Five less than the product of 3 and a number ;
[tex]5- 3x\\= 3x-5[/tex]
Twice the sum of a number and 5 ;
[tex]2(x+5)\\[/tex]
The sum of twice a number and 5 ;
[tex]2x+5[/tex]
The product of the cube of a number and 5;
[tex]x^3 \times 5\\=5x^3[/tex]
The cube of the product of 5 and a number ;
[tex](5\times x)^3\\(5x)^3[/tex]
Help and show work plz
Answer:
30
Step-by-step explanation:
If we have 4 integers that have an average of 9, then all the numbers will add up to [tex]9\cdot4=36[/tex].
If we want the greatest number possible, the other 3 need to be the lowest possible.
Since they are all different, the lowest possible values of the first 3 numbers are 1, 2, and 3.
[tex]1 + 2 + 3 = 6[/tex]
[tex]36 - 6 = 30[/tex]
So 30 is the greatest value of one of the integers.
Hope this helped!
11) Five must be the solution to 2x + 3 = 13 because 2(5) + 3 = 13.
Answer:
Yes, your right!
What are the zeros of the quadratic function represented by this graph?
У
A
6
2
X
-6
- 2
6
2-
-6-
A.
1 and 3
OB.
-3 and -1
C.
-3 and 1
D. -1 and 3
Look where the parabola crosses the x axis. This is where the x intercepts are located. The term "x intercept" is the same as "root" and also the term "zero".
How to calculate pvalue
Answer:
If your test statistic is positive, first find the probability that Z is greater than your test statistic (look up your test statistic on the Z-table, find its corresponding probability, and subtract it from one). Then double this result to get the p-value.
Answer:
The p-value is calculated using the sampling distribution of the test statistic under the null hypothesis, the sample data, and the type of test being done (lower-tailed test, upper-tailed test, or two-sided test). The p-value for: a lower-tailed test is specified by: p-value = P(TS ts | H 0 is true) = cdf(ts)
Step-by-step explanation:
May this answer is helpful for you
A baseball player has a batting average of 0.26. What is the probability that he has exactly 6 hits in his next 7 at bats
Answer:
0.0016
Step-by-step explanation:
Batting average, p = 0.26
n = 7
x = 6
With p = 0.26 as success rate
1-p is equal to failure rate which is = 0.74
We have to solve this by using the binomial distribution formula.
P(X= x)
= nCx * p^x * (1-p)^(n-x)
P(X = 6)
=7C6 × 0.26^6 ×(1-0.26)^(7-6)
= 7 × 0.0003089 × 0..74¹
= 0.0016
So probability that he has exactly 6 hits in his next 7 bats is equal to 0.0016.
When conducting a hypothesis test concerning the population mean, and the population standard deviation is unknown, the value of the test statistic is calculated as __________.
Answer:
the value of the test statistic is calculated as "T - distribution" with the formula;
t = (x-bar - μ)/(s/√n)
Step-by-step explanation:
We are told that the standard deviation is unknown. But normally, we use a z-distribution if the standard deviation is known.
However, in a hypothesis test for a population mean where the population standard deviation is unknown is still conducted in the same way like we do when we know the population standard deviation. The only difference in this case is that we will use the t-distribution rather than the standard normal z-distribution.
The t-distribution formula used is;
t = (x-bar - μ)/(s/√n)
Assume that blood pressure readings are normally distributed with a mean of 117and a standard deviation of 6.4.If 64people are randomly selected, find the probability that their mean blood pressure will be less than 119.Round to four decimal places.
Answer:
0.9938
Step-by-step explanation:
We can find this probability using a test statistic.
The test statistic to use is the z-scores
Mathematically;
z-score = (x-mean)/SD/√n
from the question, x = 119 , mean = 117 , SD = 6.4 and n = 64
Plugging these values in the z-score equation above, we have;
z-score = (119-117)/6.4/√64
z-score = 2/6.4/8
z-score = 2.5
The probability we want to find is;
P(z < 2.5)
we can get this value from the standard normal distribution table
Thus; P(z < 2.5) = 0.99379
Which to four decimal places = 0.9938