Consider the function y = 3x + 4 between the limits of x== a) Find the arclength L of this curve: L = Round your answer to 3 significant figures. b) Find the area of the surface of revolution, A, that

Answers

Answer 1

The arc length of the curve y = 3x + 4 between x = 0 and x = 6 is approximately 37.0 units.

To find the arc length L of the curve y = 3x + 4 between the limits of x = 0 to 6, we can use the arc length formula

L =[tex]\int\limits^0_6[/tex]√(1 + (dy/dx)^2) dx

First, let's find dy/dx

dy/dx = 3

Substituting this back into the arc length formula, we have

L = [tex]\int\limits^0_6[/tex] √(1 + 3²) dx

=[tex]\int\limits^0_6[/tex] √(1 + 9) dx

=[tex]\int\limits^0_6[/tex] √10 dx

Integrating, we get

L = [2√10x] |[0,6]

= 2√10(6) - 2√10(0)

= 12√10

Rounding the answer to 3 significant figures, the arc length L is approximately 37.0 units.

To know more about arclength of curve:

https://brainly.com/question/31777984

#SPJ4

--The given question is incomplete, the complete question is given below " Consider the function y = 3x + 4 between the limits of x=0 to 6 a) Find the arclength L of this curve: L = Round your answer to 3 significant figures."--


Related Questions

3. Find the area under the curve y = x² from x = 1 to x = 3. 4. Find the area bounded by the curve y = 4 x² and the x-axis. 5. Find the area bounded by y = 3x and y = x² 6. A pyramid 3 m high has congruent triangular sides and a square base that is 3 m on each side. Each cross section of the pyramid parallel to the base is a square. Find the volume of the pyramid.

Answers

3. To find the area under the curve y = x² from x = 1 to x = 3, we can integrate the function over the given interval. The integral of x² with respect to x is (1/3)x³. Evaluating this integral from x = 1 to x = 3 gives us the area under the curve, which is [(1/3)(3)³] - [(1/3)(1)³] = 9 - 1/3 = 8 2/3 square units.

4. The area bounded by the curve y = 4x² and the x-axis can be found by integrating the function over the interval where the curve is above the x-axis. The integral of 4x² with respect to x is (4/3)x³. To find the bounds of integration, we set 4x² equal to zero, which gives x = 0. Thus, the area is given by the integral of 4x² from x = 0 to x = c, where c is the x-coordinate of the point where the curve intersects the x-axis. Since the curve intersects the x-axis at x = 0, the area is [(4/3)(c)³] - [(4/3)(0)³] = (4/3)c³ square units.

5. To find the area bounded by y = 3x and y = x², we need to determine the points of intersection between the two curves. Setting the equations equal to each other, we have 3x = x². Rearranging, we get x² - 3x = 0, which factors as x(x - 3) = 0. So the curves intersect at x = 0 and x = 3. Integrating y = 3x from x = 0 to x = 3 gives us the area, which is the integral of 3x with respect to x over that interval. The integral is (3/2)x² evaluated from x = 0 to x = 3, resulting in an area of (3/2)(3)² - (3/2)(0)² = (9/2) square units.

6. The volume of the pyramid can be calculated using the formula V = (1/3) * base area * height. In this case, the base area is a square with sides of length 3 m, so its area is 3² = 9 square meters. The height of the pyramid is also given as 3 m. Plugging these values into the formula, we get V = (1/3) * 9 * 3 = 9 cubic meters. Therefore, the volume of the pyramid is 9 cubic meters.

To learn more about x-axis - brainly.com/question/2491015

#SPJ11

A government official estimates that mean time required to fill out the long US Census form is 35 minutes. A random sample of 36 people who were given the form took a sample mean time = 40 minutes with sample standard deviation s = 10 minutes. Does this data indicate that mean time to fill the form is longer than 35 minutes? Use a 5% significance level.

Answers

Based on the given data and using a 5% significance level, there is evidence to suggest that the mean time required to fill out the long US Census form is longer than 35 minutes.

To determine if the mean time to fill out the form is longer than 35 minutes, we can conduct a hypothesis test. The null hypothesis, denoted as H0, assumes that the mean time is equal to 35 minutes, while the alternative hypothesis, denoted as H1, assumes that the mean time is greater than 35 minutes.

Using the sample mean of 40 minutes and a sample size of 36, we can calculate the test statistic, which is the standardized value that measures the difference between the sample mean and the hypothesized population mean. In this case, we use the t-distribution since the population standard deviation is unknown and we are working with a small sample size.

By comparing the test statistic to the critical value corresponding to a 5% significance level and the degrees of freedom associated with the sample, we can determine whether to reject or fail to reject the null hypothesis. If the test statistic exceeds the critical value, we reject the null hypothesis in favor of the alternative hypothesis, indicating that the mean time to fill out the form is longer than 35 minutes.

In the given scenario, if the test statistic falls in the rejection region, we can conclude that the data provides evidence to suggest that the mean time to fill out the form is longer than 35 minutes at a 5% significance level.

learn more about mean time here:brainly.com/question/13097705

#SPJ11

1 a). In an engineering lab, a cap was cut from a solid ball of radius 2 meters by a plane 1 meter from the center of the sphere. Assume G be the smaller cap, express and evaluate the volume of G as an iterated triple integral in: [Verify using Mathematica] i). Spherical coordinates. ii). Cylindrical coordinates. iii). Rectangular coordinates. [7 + 7 + 6 = 20 marks]

Answers

To express and evaluate the volume of the smaller cap G using iterated triple integrals in different coordinate systems, let's consider the three coordinate systems: spherical, cylindrical, and rectangular.

i) Spherical Coordinates:

In spherical coordinates, the equation of the sphere is ρ = 2, and the equation of the plane is ρ = 1. The volume of the cap can be expressed as an iterated triple integral as follows:

V = ∫∫∫ ρ²sin(φ) dρ dφ dθ

The limits of integration are as follows:

ρ: 1 to 2

φ: 0 to π/3 (since the plane is 1 meter from the center, it intersects the sphere at an angle of π/3)

θ: 0 to 2π (for a full revolution around the z-axis)

To evaluate this integral, you can use mathematical software like Mathematica.

ii) Cylindrical Coordinates:

In cylindrical coordinates, the equation of the sphere is ρ = √(x² + y²) = 2, and the equation of the plane is z = 1. The volume of the cap can be expressed as an iterated triple integral as follows:

V = ∫∫∫ r dz dr dθ

The limits of integration are as follows:

r: 0 to 2 (from the origin to the sphere's radius)

z: 1 to √(4 - r²) (from the plane to the sphere's surface)

θ: 0 to 2π (for a full revolution around the z-axis)

To evaluate this integral, you can use mathematical software like Mathematica.

iii) Rectangular Coordinates:

In rectangular coordinates, the equation of the sphere is x² + y² + z² = 4, and the equation of the plane is z = 1. The volume of the cap can be expressed as an iterated triple integral as follows:

V = ∫∫∫ dz dy dx

The limits of integration are as follows:

x: -√(4 - y² - z²) to √(4 - y² - z²) (corresponding to the intersection of the sphere and the plane)

y: -√(4 - z²) to √(4 - z²) (corresponding to the intersection of the sphere and the plane)

z: 1 to √(4 - x² - y²) (from the plane to the sphere's surface)

To evaluate this integral, you can use mathematical software like Mathematica.

 

To learn more about volume, click here: brainly.com/question/13338592

#SPJ11

A continuous random variable is uniformly distributed with a minimum possible value of 4 and a maximum possible value of 8. The probability of observing any single value of this random variable, such as 5, will equal 1/(8-4) or 1/4. True or False

Answers

False. The probability of observing any single value of a continuous random variable that is uniformly distributed between 4 and 8 is not equal to 1/4.

In a continuous uniform distribution, the probability density function (PDF) is constant within the range of possible values. For a continuous random variable X that is uniformly distributed between a minimum value a and a maximum value b, the PDF is given by f(x) = [tex]\frac{1}{b-a}[/tex] for a ≤ x ≤ b, and f(x) = 0 for x < a or x > b.

The probability of observing any single value, such as 5, is the probability of that value falling within the given range. Since the range is continuous and the probability density is constant, the probability of any single value is infinitesimally small.

In this case, the range is from 4 to 8, so the probability of observing any single value, such as 5, is not [tex]\frac{1}{8-4}[/tex] or 1/4. It is actually 0, as the probability for a specific value in a continuous uniform distribution is infinitesimal.

Therefore, the statement "The probability of observing any single value of this random variable, such as 5, will equal [tex]\frac{1}{8-4}[/tex] or 1/4" is false.

Learn more about probability here:

brainly.com/question/32004014

#SPJ11

Let f(x) = (x+3)²e ². Given that f'(x) = (x² + 2x - 3)e ² and f"(z) = (2² - 2x - 7)e ², answer the following questions: (a) The equation of the horizontal asymptote is y - (b) The relative minimum point on the graph occurs at a = (c) The relative maximum point on the graph occurs at x = (d) How many inflection points does the graph have? Hint: The second derivative is a continuous function and the exponential part is always positive. Use the discriminant of the quadratic to determine how many times the second derivative changes sign.

Answers

(a) The equation of the horizontal asymptote is y = 0, (b) The relative minimum point on the graph occurs at x = -1, (c) The relative maximum point on the graph occurs at x = 1, (d) The graph has one inflection point.

(a) The equation of the horizontal asymptote is y = 0 because as x approaches infinity, the exponential term e² becomes very large, but it is multiplied by (x+3)², which remains finite. As a result, the value of f(x) approaches 0, indicating a horizontal asymptote at y = 0.

(b) The relative minimum point occurs at x = -1. To find the critical points, we set the derivative f'(x) equal to zero. Solving the quadratic equation (x² + 2x - 3) = 0, we find x = -3 and x = 1 as the critical points. Since the graph has a turning point, the relative minimum occurs at the midpoint between the critical points, which is x = -1.

(c) The relative maximum point occurs at x = 1. Using the same critical points obtained in part (b), we find that the function changes from decreasing to increasing as x crosses the point x = 1, indicating a relative maximum.

(d) The graph has one inflection point. By analyzing the sign changes of the second derivative, f''(x) = (2x² - 2x - 7)e², we determine the number of inflection points. The discriminant of the quadratic equation (2x² - 2x - 7) = 0 is positive, indicating two distinct real roots and thus two sign changes. This implies one inflection point on the graph of the function.

To know more about horizontal asymptote, click here: brainly.com/question/29140804

#SPJ11

Suppose the demand function for a product is given by the function: D(g) 0.014g + 58.8 Find the Consumer's Surplus corresponding to q = 3,

Answers

The Consumer's Surplus corresponding to q = 3 is 2.4486

What is consumer surplus?

Consumer surplus is the monetary gain obtained by consumers when they are able to purchase a product or service for a price that is less than the highest price they would be willing to pay.

The given function is D(g) 0.014g + 58.8

Where g = 3

substitute 3 for g

That is D(g) 0.014*3 + 58.8

0.042*58.8

⇒2.4486

Therefore the consumer surplus is $2.4486

Learn more about consumer surplus on https://brainly.com/question/29025001

#SPJ4

Compute (8/11) in two ways: by using Euler's criterion, and by using Gauss's lemma.

Answers

Using Euler's criterion, the value of (8/11) is congruent to 1 modulo 11. Using Gauss's lemma, the value of (8/11) is 1 since 8 is a quadratic residue modulo 11.

Euler's Criterion:

Euler's criterion states that for an odd prime p, if a is a quadratic residue modulo p, then a^((p-1)/2) ≡ 1 (mod p). In this case, we have p = 11. The number 8 is not a quadratic residue modulo 11 since there is no integer x such that x^2 ≡ 8 (mod 11). Therefore, (8/11) is not congruent to 1 modulo 11.

Gauss's Lemma:

Gauss's lemma states that for an odd prime p, if a is a quadratic residue modulo p, then a is also a quadratic residue modulo -p. In this case, we have p = 11. Since 8 is a quadratic residue modulo 11 (we can verify that 8^2 ≡ 3 (mod 11)), it is also a quadratic residue modulo -11. Therefore, (8/11) = 1.

In conclusion, using Euler's criterion, (8/11) is not congruent to 1 modulo 11, while using Gauss's lemma, (8/11) = 1.

Visit here to learn more about  quadratic:

brainly.com/question/1214333

#SPJ11

The rabbit population at the city park increases by 17% per year. If there are intially 350 rabbits in the city park. a) Write a model for the population (y) in terms of years (t). y b) Find the rabbit population in 20 years. (Round to the nearest whole rabbit) c) How long will it take for the rabbit population to reach 42177. Round your answer to 3 decimal places. Question Help: Message instructor Submit Question Question 8 0/6 pts 100 Details A bottle capping machine has been depreciating since its purchase. Its value has been decreasing at the rate of 12.2% per year. After 4 years of decrease, the machine's current value is $39,390. What was the initial value of the machine? Question Help: Message instructor Submit Question X Question 9 0/6 pts 96 Details Score on last try: 0 of 6 pts. See Details for more. You can retry this question below An investment has been making money. Its value has been increasing at the rate of 6.7% per year. After 12 years of increase, the investment's current value is $68,610. What was the initial value of the investment?

Answers

The bottle capping machine is depreciating at the rate of 12.2% per year. The value of the machine decreases every year by 12.2% of its initial value. Hence, the main answer is $29,452

To find the initial value of the machine, we will use the formula for the value of an item after depreciation, which is given as follows: V = P(1 - r)t Where V is the value of the item after t years, P is the initial value of the item, r is the depreciation rate, and t is the number of years. Since the value of the machine has decreased by 12.2% every year for 4 years, the current value of the machine is given as $39,390. Substituting the values into the above formula, we get:

39390 = P (1 - 0.122)4

Simplifying, we get: P = 39390 / (0.878)4

Therefore, the initial value of the machine is about $73,644. Hence, the main answer is $73,644 (rounded to the nearest dollar). The investment is increasing at the rate of 6.7% per year. The value of the investment increases every year by 6.7% of its initial value. To find the initial value of the investment, we will use the formula for the value of an item after appreciation, which is given as follows:

V = P(1 + r)t Where V is the value of the item after t years, P is the initial value of the item, r is the appreciation rate, and t is the number of years. Since the value of the investment has increased by 6.7% every year for 12 years, the current value of the investment is given as $68,610. Substituting the values into the above formula, we get:

68610 = P (1 + 0.067)12

Simplifying, we get: P = 68610 / (1.067)12

Therefore, the initial value of the investment is about $29,452. Hence, the main answer is $29,452 (rounded to the nearest dollar).

To know more about depreciating visit :

https://brainly.com/question/30531944

#SPJ11

Suppose that we are interested in the effects of taking different weight loss drugs while doing different types of exercises at the same time. 30 participants are assigned to receive one of the drugs and required to do different exercise for 40 mins and 3 times per week. A part of ANOVA table is provided as follows: Analysis of Variance Table Response: weight loss Pr (>F) Df Sum Sq Mean Sq F value. 2 ? drug 3.4750 104.25 1.464e-12 *** 196.00 4.829e-13 *** exercise drug: exercise ? 6.0167 Residuals 1 6.5333 6.5333 2 90.25 6.827e-12 *** 24 0.8000 0.0333 Signif. codes: 0*** 0.001 0.01 0.05 0.1 1 Please fill out the ANOVA table and answer the following questions: A. How many types of drugs are used? B. How many types of exercises are taken? C. What is the sample size? D. Is there a significant drug-exercise interaction effect on weight loss at 0.05 level? E. Can we conclude that not all drugs have the same effect on weight loss at level 0.05? F. Can we conclude that not all exercises have the same effect on weight loss at level 0.05?

Answers

A) Number of drugs =  4. ; B)Number of exercises =  not mentioned. ; C) sample size =  30. ; D) p-value (Pr(>F))  < 0.05. ; E) p-value <  0.05. ; F) No, we cannot conclude.

Given data,

Response: weight loss Pr (>F) Df Sum Sq Mean Sq F value. 2 ?

drug 3.4750 104.25 1.464e-12 *** 196.00 4.829e-13 *** exercise drug:

exercise ?

6.0167 Residuals 1 6.5333 6.5333 2 90.25 6.827e-12 *** 24 0.8000 0.0333

A) Number of drugs used is 4.

B) Number of exercises taken is not mentioned.

C) The sample size is 30.

D) We can say that there is a significant drug-exercise interaction effect on weight loss at 0.05 level as the p-value (Pr(>F)) is less than 0.05.

E) Yes, we can conclude that not all drugs have the same effect on weight loss at level 0.05 as the p-value is less than 0.05.

F) No, we cannot conclude that not all exercises have the same effect on weight loss at level 0.05 as information about the exercises is missing.

So, the result is not possible without the missing information about exercises.

Know more about the p-value

https://brainly.com/question/13786078

#SPJ11

You want to fit a least-squares regression line to the following data {(1, 2), (2, 4),(3, 5),(4, 7)}. Find the equation of the fitted regression line.

Answers

To find the equation of the fitted regression line, we can use the least-squares regression method. In this method, we try to find a line that minimizes the sum of squared residuals between the actual y-values and the predicted y-values. The equation of the fitted regression line can be given by y = mx + b, where m is the slope of the line and b is the y-intercept.

We can find the values of m and b using the following formulas:

$$m = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2}$$ and $$b = \frac{\sum y - m\sum x}{n}$$

where n is the number of data points, x and y are the independent and dependent variables, respectively, and ∑ denotes the sum over all data points. Now, let's use these formulas to find the equation of the fitted regression line for the given data.

The given data are: {(1, 2), (2, 4),(3, 5),(4, 7)}. We can compute the values of n,

∑x, ∑y, ∑xy, and ∑x² as follows:$$n = 4$$$$\

sum x = 1 + 2 + 3 + 4 = 10$$$$\sum y = 2 + 4 + 5 + 7 =

18$$$$\sum xy = (1 × 2) + (2 × 4) + (3 × 5) + (4 × 7)

= 2 + 8 + 15 + 28 = 53$$$$\sum x² = 1 + 4 + 9 + 16 = 30$$

Now, we can substitute these values into the formulas for m and b to get:$$m

= \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2}$$$$\qquad

= \frac{(4)(53) - (10)(18)}{(4)(30) - (10)^2}

= \frac{106}{4} = 26.5$$and$$b

= \frac{\sum y - m\sum x}{n}$$$$\qquad

= \frac{18 - (26.5)(10)}{4} = -7.75$$

Therefore, the equation of the fitted regression line is:$$y = mx + b$$$$\qquad = (26.5)x - 7.75$$

learn more about regression line

https://brainly.com/question/732489

#SPJ11

Let f(x) = x2 + 2x. (a) Use the limit definition f'(x) = limh_0 f(x + h) – f(x) h = to find the derivative of f at x = 1 (b) Find the equation of the tangent line to f at the point (1,3).

Answers

(a) Let f(x) = x² + 2x be the given function.The derivative of f at x = 1 is given by the limit f'(x) = limh_0 f(x + h) – f(x) h.Rhombus

Let's substitute f(1) in the formula.

Then f'(1) = limh_0 f(1 + h) – f(1) h = limh_0 [ (1 + h)² + 2(1 + h) – (1² + 2.1) ] h= limh_0 [ (1 + 2h + h² + 2 + 2h) – 3 ] h= limh_0 [ h² + 4h ] h= limh_0 h(h + 4) h= limh_0 h + 4 = 1 + 4 = 5.

So the main answer is f'(1) = 5. (b) Let y = f(x) = x² + 2x be the given function. Then at the point (1,3), the equation of the tangent line to f is given byy - 3 = f'(1)(x - 1)

Plug in the value of f'(1) that we found earlier.

Then y - 3 = 5(x - 1) y = 5x - 2The answer is the equation of the tangent line to f at the point (1,3) is y = 5x - 2.

To know more about Rhombus Visit:

https://brainly.com/question/27870968

#SPJ11

Pigeonhole principle There are 15 different courses and 50 students in a school Every student takes 5 courses. Show that there are 2 students who have 3 common courses.

Answers

There are 15 available courses and every student enrolls into 5 courses.

No greater than 10 courses that are unique to them and not shared with any other student.

How to prove the statement

To prove that there are 2 students who have 3 common courses, we have to take the steps;

Using the Pigeonhole principle, we have;

The principle of pigeonhole states  that if there are k pigeonholes and n pigeons and the value of n is greater than that of k, there must exist at least one pigeonhole containing more than one pigeon.

Then, we have;

If there are 15 unique courses available and a total of 50 students, it follows that each student will enroll in a total of 5 courses.All 50 students have completed a collective sum of 250 courses.If 250 courses and 50 students, it is inevitable that at least one student must enroll for more than a single course.

Learn more about Pigeonhole principle at: https://brainly.com/question/13982786

#SPJ4








A line intersects the points (4, 3) and (6, 9). m = 3 Write an equation in point-slope form using the point (4, 3). y - [?] =(x- (x-) Enter

Answers

The equation in point-slope form using the point (4, 3) is:y - 3 = 3(x - 4)

Given that a line intersects the points (4, 3) and (6, 9) and m = 3.

We need to write an equation in point-slope form using the point (4, 3).

We know that the slope of the line is given by the formula:

m = (y₂ - y₁) / (x₂ - x₁)

Where (x₁, y₁) = (4, 3)

     and (x₂, y₂) = (6, 9)

Therefore,

m = (y₂ - y₁) / (x₂ - x₁)

3 = (9 - 3) / (6 - 4)

3 = 6 / 2

This shows that the slope is positive and is equal to 3.

Now, using point-slope formula:

We know that the point-slope formula is given by,

y - y₁ = m (x - x₁)

Now, substituting the values in the above formula, we get;

y - 3 = 3 (x - 4)

Multiplying 3 on both sides,

y - 3 = 3x - 12

Adding 3 to both sides,

y = 3x - 9.

To know more about slope, visit

https://brainly.com/question/3605446

#SPJ11

Determine the length of the product production cycle for a parallel run (give the result in minutes). The data for the calculations are presented in the table. The batch size is 500 pieces, the transport batch size is r = 20, the mean inter-operative time tmo = 25min.

Oparations

1

2

3

4

5

tij[min]

24

8.2

5

14.4

6

Ns

3

2

1

2

2

Answers

The length of the product production cycle for a parallel run is 724 minutes.

To determine the length of the product production cycle for a parallel run, we need to calculate the total time it takes to complete all operations.

Let's denote the number of operations as n. In this case, n = 5.

We are given the following data:

Batch size (B): 500 pieces

Transport batch size (r): 20

Mean inter-operative time (tmo): 25 minutes.

We can calculate the production cycle time (C) using the following formula:

[tex]C = (n - 1) \times tmo + max(tij) + (B / r - 1) \times tmo[/tex]

Let's calculate the values needed to plug into the formula:

tij: The operation times for each operation

tij = [24, 8.2, 5, 14.4, 6]

max(tij): The maximum operation time

max(tij) = 24

Substituting the values into the formula:

[tex]C = (5 - 1) \times 25 + 24 + (500 / 20 - 1) \times 25[/tex]

[tex]C = 4 \times 25 + 24 + (25 - 1) \times 25[/tex]

[tex]C = 100 + 24 + 24 \times 25[/tex]

C = 100 + 24 + 600

C = 724 minutes.

For similar question on product production cycle.

https://brainly.com/question/14567370  

#SPJ8

Suppose that a game has a payoff matrix
A = [\begin{array}{cccc}-20&30&-20&1\\21&-31&11&40\\-40&0&30&-10\end{array}\right]
If players R and C use strategies
p = [\begin{array}{ccc}1/2&0&1/2\end{array}\right] and
q = [\begin{array}{c}1/4\\1/4\\1/4\end{array}\right]
respectively, what is the expected payoff of the game? E(p, q) =

Answers

The expected payoff of the game with strategies p and q is 1.875.To calculate the expected payoff of the game with the given strategies, we need to multiply the payoff matrix A with the strategy vectors p and q.

Let's perform the matrix multiplication:

A * p = [\begin{array}{cccc}-20&amp;30&amp;-20&amp;1\\21&amp;-31&amp;11&amp;40\\-40&amp;0&amp;30&amp;-10\end{array}\right] * [\begin{array}{ccc}1/2\\0\\1/2\end{array}\right]

     = [\begin{array}{c}-20*(1/2) + 30*(0) - 20*(1/2) + 1*(1/2)\\21*(1/2) - 31*(0) + 11*(1/2) + 40*(1/2)\\-40*(1/2) + 0*(0) + 30*(1/2) - 10*(1/2)\end{array}\right]

     = [\begin{array}{c}-10 + 0 - 10 + 1/2\\10.5 + 0 + 5.5 + 20\\-20 + 0 + 15 - 5\end{array}\right]

     = [\begin{array}{c}-18.5\\36\\-10\end{array}\right]

Now, let's calculate the dot product of the result with the strategy vector q:

E(p, q) = [\begin{array}{ccc}-18.5&amp;36&amp;-10\end{array}\right] * [\begin{array}{c}1/4\\1/4\\1/4\end{array}\right]

           = -18.5*(1/4) + 36*(1/4) - 10*(1/4)

           = -4.625 + 9 - 2.5

           = 1.875

Therefore, the expected payoff of the game with strategies p and q is 1.875.

Learn more about vectors here: brainly.com/question/24256726

#SPJ11

A company purchased 10 computers from a manufacturer. They paid their bill after 40 days with a finance charge of $180. The manufacturer charges 11% interest. Find the cost of the computers excluding interest, and the cost per computer. Use a banker's year of 360 days. The cost, excluding interest, is $ _____(Do not round until the final answer. Then round to the nearest cent as needed.) The cost per computer is $_____

Answers

The cost, excluding interest, is $648. The cost per computer is $64.80

The manufacturer charges 11% interest. Finance charge: $180 Days: 40 days Banker's year: 360 days Cost per computer formula: Interest = Principal × Rate × Time/ 360% × 100

Let the cost of the computers be x dollars and the cost per computer be y dollars. Cost of the computers = x Cost per computer = y Total finance charge with interest = $180 Total days in banker's year = 360 Rate = 11% Principal = x Time in days = 40 days + 360 days= 400 days Interest = (x * 11 * 400)/(360 * 100)= (11x/360) * 400 Interest + x = 180 + x10x/36 = 180x = $648. The cost of the computers excluding interest is $648.The cost per computer is $64.80. (cost per computer = $648/10)Therefore, The cost, excluding interest, is $648. The cost per computer is $64.80.

To learn more about cost calculations: https://brainly.com/question/25720319

#SPJ11

Newton's Law of Gravitation states: I 9R² x2 where g = gravitational constant, R = radius of the Earth, and x = vertical distance travelled. This equation is used to determine the velocity needed to escape the Earth. a) Using chain rule, find the equation for the velocity of the projectile, v with respect to height x. b) Given that at a certain height Xmax, the velocity is v= 0; find an inequality for the escape velocity.

Answers

a) The equation for the velocity (v) with respect to the height (x) is: v = -18R²/x³

b) The escape velocity is determined by the condition that 1/18R² is greater than zero, indicating that Xmax must be positive.

To find the equation for the velocity of the projectile (v) with respect to the height (x), we need to differentiate the equation I = 9R²/x² with respect to x using the chain rule.

a) Differentiating both sides of the equation, we have:

dI/dx = d(9R²/x²)/dx

To differentiate the right-hand side using the chain rule, we rewrite the equation as:

dI/dx = 9R² * d(1/x²)/dx

Next, we apply the chain rule to the term d(1/x²)/dx:

dI/dx = 9R² * d(1/x²)/d(1/x²) * d(1/x²)/dx

The derivative of 1/x² with respect to 1/x² is 1, and the derivative of 1/x² with respect to x is obtained by differentiating the term as if it were a simple power function:

d(1/x²)/dx = -2/x³

Substituting this result back into the equation, we have:

dI/dx = 9R² * 1 * (-2/x³)

Simplifying further:

dI/dx = -18R²/x³

Therefore, the equation for the velocity (v) with respect to the height (x) is:

v = -18R²/x³

b) At a certain height Xmax, the velocity is v = 0. Substituting this value into the equation, we get:

0 = -18R²/Xmax³

Simplifying, we have:

18R²/Xmax³ = 0

Since the denominator cannot be zero, we know that Xmax³ ≠ 0. Therefore, to find an inequality for the escape velocity, we divide both sides of the equation by 18R²:

Xmax³/18R² > 0

Since Xmax³ is a positive value (assuming Xmax > 0), this inequality simplifies to:

1/18R² > 0

Thus, the escape velocity is determined by the condition that 1/18R² is greater than zero, indicating that Xmax must be positive.

To learn more about gravitational field

brainly.com/question/28437652

#SPJ4

f(x, y) = x4 y4 − 4xy 8, d = {(x, y) | 0 ≤ x ≤ 3, 0 ≤ y ≤ 2}

Answers

The absolute maximum and minimum values of f on the set D are 20 and 8, respectively.

The absolute maximum and minimum values of f on the set D can be found using a multi-variable calculus approach. We can represent f a function of two variables, x and y, by taking the partial derivatives of f with respect to x and y. By setting both of these derivatives equal to 0 and solving the resulting equations, we can find the critical points of f on D.

These critical points are the points on D where either the maximum or minimum value of f is located. We can then evaluate f at each of these critical points and the maximum and minimum values are found.

The partial derivatives of f with respect to x and y are:

f'x = 4x³ - 4y

f'y = 4y³ - 4x

Setting both of these equal to 0 and solving for x and y yields the critical point (2, 1). Using this point, we can evaluate f at this point to find the absolute maximum value on the set D:

f(2,1) = 20

To find the absolute minimum, we use the following formula to evaluate f at each of the corners of the rectangle:

f(0,0) = 8

f(3,0) = 27

f(0,2) = 32

f(3,2) = 43

The absolute minimum value of f on the set D is 8.

Therefore, the absolute maximum and minimum values of f on the set D are 20 and 8, respectively.

Learn more about the absolute maximum and minimum values here:

https://brainly.com/question/31402315.

#SPJ4

"Your question is incomplete, probably the complete question/missing part is:"

Find the absolute maximum and minimum values of f on the set D.

f(x, y)=x⁴+y⁴-4xy+8,

D={(x, y)|0≤x≤3, 0≤y≤2}







How much sand must be removed from the ground to make a rectangular hole measuring 4 in by 2 in by 3 in and a 3-inch cube hole? cubic Inches of sand must be removed. 3 Enter the answer 4 2

Answers

The rectangular hole measures 4 inches by 2 inches by 3 inches, while the cube hole has dimensions of 3 inches on each side. The total volume of sand that needs to be removed is 42 cubic inches.

To calculate the total volume of sand that must be removed, we need to find the individual volumes of the rectangular hole and the cube hole and then add them together. To find the volume of the rectangular hole, we multiply its length, width, and height. In this case, the dimensions are 4 inches by 2 inches by 3 inches. So, the volume of the rectangular hole is 4 x 2 x 3 = 24 cubic inches.

For the cube hole, all sides are equal, so the volume is simply the side length cubed. In this case, the cube hole has dimensions of 3 inches on each side, so the volume of the cube hole is 3 x 3 x 3 = 27 cubic inches.

To determine the total volume of sand that must be removed, we add the volumes of the rectangular hole and the cube hole together: 24 + 27 = 51 cubic inches.

Therefore, to make both the rectangular hole measuring 4 in by 2 in by 3 in and the 3-inch cube hole, a total of 51 cubic inches of sand must be removed.

To learn more about rectangular hole click here

brainly.com/question/15287425

#SPJ11

find the volume of the solid formed when the region bounded above by the curve , y = 1 and x = 4 is rotated by the x-axis.

Answers

The volume of the solid formed when the region bounded above by the curve y = 1 and x = 4 is rotated by the x-axis is 3π cubic units.

To find the volume of the solid formed by rotating the region between the curve y = 1 and x = 4 around the x-axis, we can use the method of cylindrical shells.

The volume V is given by the integral:

V = ∫[a,b] 2πx(f(x)-g(x)) dx

where a and b are the x-values of the region, f(x) is the upper boundary curve (y = 1 in this case), and g(x) is the lower boundary curve (x-axis).

In this case, we have:

V = ∫[0,4] 2πx(1-0) dx

V = ∫[0,4] 2πx dx

V = π[x^2] from 0 to 4

V = π(4^2 - 0^2)

V = π(16)

V = 16π

Therefore, the volume of the solid formed is 16π cubic units, which simplifies to approximately 50.27 cubic units.

To know more about volume of solids of revolution, refer here:

https://brainly.com/question/28742603#

#SPJ11

determine the smallest positive integer such that is divisible by 1441 for all odd positive integers .

Answers

The smallest such x is 1441, since this is the smallest multiple of 1441 that is divisible by all odd positive integers. We are given to determine the smallest positive integer that is divisible by 1441 for all odd positive integers.

Let k be any odd positive integer. Then we can write k as 2n + 1 for some non-negative integer n.

Then we need to find the smallest integer x such that 1441 divides x.

We can now try to write x in terms of k. We have x = a(2n+1) for some positive integer a. Since x must be divisible by 1441,

we have 1441 | x = a(2n+1).

Since 1441 is a prime, 1441 must divide either a or (2n+1).We will now show that 1441 cannot divide (2n+1).

Suppose 1441 | (2n+1).

Then we can write 2n+1 = 1441m for some integer m.

Rearranging, we get: 2n = 1441m - 1.

Thus, 2n is an odd number. But this is not possible since 2n is an even number.

Hence, 1441 cannot divide (2n+1).

Thus, 1441 divides a. So we can write a = 1441b for some integer b.

Substituting, we get x = 1441b(2n+1).

Now we can write 2n+1 = k, so x = 1441b(k).

Hence, the smallest such x is 1441, since this is the smallest multiple of 1441 that is divisible by all odd positive integers.

To know more about integers, refer

https://brainly.com/question/929808

#SPJ11

Let X be normally distributed with some unknown mean μ and standard deviation X-μ o = 4. The variable Z = X is distributed according to the standard normal distribution. Enter the value for A = 4 It is known that 12-μ P(Z < Z < ¹2-H) - = P(X < 12) = 0.3 What is P(Z < (enter a 4 decimal value). Determine μ = (round to the one decimal place).

Answers

The probability, P(Z < 1.2816), is approximately 0.9000. The value of μ, the unknown mean of the normal distribution, is approximately 8.4.

Given that X is normally distributed with an unknown mean μ and a standard deviation of 4, we can calculate the probability P (Z < 1.2816) using the standard normal distribution. The value 1.2816 corresponds to the z-score associated with the cumulative probability of 0.9. By looking up this value in a standard normal distribution table or using a statistical calculator, we find that P (Z < 1.2816) is approximately 0.9000.

Furthermore, it is known that P(X < 12) is equal to 0.3. Since X follows a normal distribution with mean μ and standard deviation 4, we can convert this probability to a standard normal distribution using the formula z = (X - μ) / (σ), where σ is the standard deviation. Substituting the given values, we have 1.2816 = (12 - μ) / 4. Solving for μ, we find μ ≈ 8.4, rounded to one decimal place. Therefore, the estimated value for μ is approximately 8.4.

Learn more about normal distribution here:
brainly.com/question/30390016

#SPJ11

An optical fiber uses flint glass (n=1.66) clad with crown glass (n = 1.52). What is the critical angle? If you reversed the glass, is there still a critical angle? Why or why not?

Answers

The critical angle for the reversed glass would be 43.04 degrees.

Optical fibers are based on the principle of total internal reflection. An optical fiber consists of a cylindrical core that carries light along its length. The core is surrounded by a layer of cladding that reflects the light back into the core, preventing it from leaking out.

Therefore, the core must have a higher index of refraction than the cladding. The critical angle is defined as the angle of incidence at which light is refracted at 90 degrees and does not pass through the boundary of the two media. The critical angle is determined by the formula: Critical angle = sin^-1(n2/n1) Where n1 and n2 are the refractive indices of the two media.

Given that flint glass (n1) has an index of refraction of 1.66 and  crown glass (n2) has an index of refraction of 1.52, we can calculate the critical angle as follows:Critical angle = sin^-1(n2/n1)Critical angle = sin^-1(1.52/1.66)

Critical angle = sin^-1(0.9157)Critical angle = 66.38 degrees

Therefore, the critical angle for this optical fiber is 66.38 degrees. If the glass were reversed, the critical angle would still exist. However, it would be a different angle because the refractive indices of the two media would be different.

In this case, the critical angle would be defined as follows:Critical angle = sin^-1(n1/n2)Critical angle = sin^-1(1.66/1.52)Critical angle = sin^-1(1.0921)Critical angle = 43.04 degrees

Know more about the total internal reflection

https://brainly.com/question/13088998

#SPJ11

.What is the smallest number whose digits multiply into 216?
How would I go about doing this? I know that 6^3 is 216, so I know that 216 =(3*2)(3*2)(3*2). For the first digit, I took the smallest multiple of the 9 numbers, 2*2, then 3*2 for the second number, then 3*3 for the last number. So, I got 469. Is this answer is correct? Please explain, thank you!

Answers

The number is 222, which is the smallest number whose digits multiply into 216, and not 469. Thus, 222 is the correct answer.

The product of digits of a number is the multiplication of each digit.

Let us find the smallest number whose digits multiply into 216.

Prime factorizing 216 we get:

                                  [tex]\[216 = 2^3 \cdot 3^3\][/tex]

To get the smallest number, we must make use of the smallest possible digits.

Also, the smallest possible digit that is greater than 1 must be used as the first digit of the number.

To get the smallest possible number, we arrange the digits in ascending order.

The smallest digit is 2, which should be the first digit of the number, the next smallest digit is also 2, which should be the second digit of the number, and the next smallest digit is 2, which should be the third digit of the number.

So, the number is 222, which is the smallest number whose digits multiply into 216, and not 469. Thus, 222 is the correct answer.

To know more about multiplication, visit:

https://brainly.com/question/11527721

#SPJ11

what+percentage+of+the+public+health+workforce+is+considering+leaving+their+organization+within+the+next+five+years+due+to+retirement?+group+of+answer+choices+55%+22%+47%+10%

Answers

According to a survey, the percentage of the public health workforce that is considering leaving their organization within the next five years due to retirement is 22%.

Public health is a crucial sector of society that aims to enhance the well-being of individuals and communities.

The public health workforce includes professionals such as health educators, epidemiologists, biostatisticians, medical scientists, and health care administrators.

According to a study, 22% of public health employees are considering retirement in the next five years.

The retirement of such a large number of public health employees can have a negative impact on public health services.

In the United States, the public health system is facing several challenges, such as a shortage of public health workers, inadequate funding, and insufficient public health infrastructure.

to know more about percentage, visit

https://brainly.com/question/24877689

#SPJ11

The traffic flow rate (cars per hour) across an intersection is r(t) = 400+800t - 150t², where t is in hours, and t-0 is 6am. How many cars pass through the intersection between 6 am and 11 am? cars

Answers

We need to calculate the definite integral of the traffic flow rate function r(t) = 400+800t - 150t² over the interval [0, 5], where t represents hours. Between 6 am and 11 am, a total of 26,250 cars pass through the intersection.

To find the number of cars that pass through the intersection between 6 am and 11 am, we need to calculate the definite integral of the traffic flow rate function r(t) = 400+800t - 150t² over the interval [0, 5], where t represents hours.

Integrating r(t) with respect to t, we get:

∫(400+800t - 150t²) dt = 400t + 400t²/2 - 150t³/3 + C

Evaluating the integral over the interval [0, 5], we have:

[400t + 400t²/2 - 150t³/3] from 0 to 5

Substituting the upper and lower limits into the expression, we get:

[400(5) + 400(5)²/2 - 150(5)³/3] - [400(0) + 400(0)²/2 - 150(0)³/3]

Simplifying the expression, we find:

(2000 + 5000 - 12500/3) - (0 + 0 - 0) = 26,250

Therefore, between 6 am and 11 am, a total of 26,250 cars pass through the intersection.


To learn more about definite integral click here: brainly.com/question/30760284

#SPJ11

thank you
Challenge problem: Find the exact value of cos if tan x s() ift n.x = in quadrant III.

Answers

The exact value of cos(x) in quadrant III, given tan(x) = -n, is -sqrt(1 / ([tex]n^2[/tex] + 1)).In quadrant III, both the tangent (tan) and sine (sin) functions are negative. We are given that tan(x) = -n, where n is a positive number.

Since tan(x) = sin(x) / cos(x), we can rewrite the equation as:

-sin(x) / cos(x) = -n

Multiplying both sides by -cos(x) gives:

sin(x) = n * cos(x)

Now, we can use the Pythagorean identity [tex]sin^2[/tex](x) + [tex]cos^2[/tex](x) = 1 to find the value of cos(x).

Substituting sin(x) = n * cos(x) in the identity, we get:

[tex](n * cos(x))^2[/tex] + [tex]cos^2[/tex](x) = 1

Expanding the equation gives:

[tex]n^2[/tex] * [tex]cos^2(x)[/tex]+ [tex]cos^2(x)[/tex]= 1

Combining like terms:

[tex](cos^2(x)) * (n^2 + 1) = 1[/tex]

Dividing both sides by n^2 + 1 gives:

[tex]cos^2(x) = 1 / (n^2 + 1)[/tex]

Taking the square root of both sides gives:

cos(x) = ± [tex]sqrt(1 / (n^2 + 1))[/tex]

Since we are in quadrant III, cos(x) is negative. Therefore, the exact value of cos(x) is:

cos(x) = -sqrt(1 / [tex](n^2 + 1))[/tex]

So, the exact value of cos(x) in quadrant III, given tan(x) = -n, is [tex]-sqrt(1 / (n^2 + 1)).[/tex]

To know more about Pythagorean identity visit-

brainly.com/question/10285501

#SPJ11

Among all pairs of numbers (x, y) such that 4x + 2y = 22, find the pair for which the sum of squares, x² + y², is minimum. Write your answers as fractions reduced to lowest terms. Answer 2 Points Ke

Answers

To find the pair of numbers (x, y) that minimizes the sum of squares x² + y², we can use the method of Lagrange multipliers. The pair of numbers (x, y) that minimizes x² + y² subject to the given constraint is (3/2, 5/2)

We set up the Lagrangian function L(x, y, λ) = f(x, y) - λg(x, y), where λ is the Lagrange multiplier.

Taking partial derivatives and setting them equal to zero, we have:

∂L/∂x = 2x - 4λ = 0

∂L/∂y = 2y - 2λ = 0

∂L/∂λ = 4x + 2y - 22 = 0

Solving these equations simultaneously, we find x = 3/2 and y = 5/2.

Therefore, the pair of numbers (x, y) that minimizes x² + y² subject to the given constraint is (3/2, 5/2).



To learn more about Lagrangian function click here: brainly.com/question/30426461

#SPJ11

Assume we have a starting population of 100 cyanobacteria (a phylum of bacteria that gain energy from photosynthesis) that doubles every 8 hours. Therefore, the function modelling the population is P=100. 2^(t/8)
(a) How many cyanobacteria are in the population after 16 hours?
(b) Calculate the average rate of change of the population of bacteria for the period of time beginning when t = 16 and lasting
i. 1 hour. ii. 0.5 hours. iii. 0.1 hours. iv. 0.01 hours.
(c) Estimate the instantaneous rate of change of the bacteria population at t 16

Answers

There are 400 cyanobacteria in the population after 16 hours.

To find the number of cyanobacteria in the population after 16 hours, we can substitute t = 16 into the population function:

P = 100 * 2^(16/8)

Simplifying the exponent, we have:

P = 100 * 2^2

P = 100 * 4

P = 400

Therefore, there are 400 in the population after 16 hours.

To calculate the average rate of change of the population for different time intervals, we can use the formula:

Average rate of change = (P2 - P1) / (t2 - t1)

i. For a time interval of 1 hour:

Average rate of change = (P(17) - P(16)) / (17 - 16)

ii. For a time interval of 0.5 hours:

Average rate of change = (P(16.5) - P(16)) / (16.5 - 16)

iii. For a time interval of 0.1 hours:

Average rate of change = (P(16.1) - P(16)) / (16.1 - 16)

iv. For a time interval of 0.01 hours:

Average rate of change = (P(16.01) - P(16)) / (16.01 - 16)

For more information on rate of change visit: brainly.com/question/15086798

#SPJ11

If C' is the unit circle in the complex plane C, and ƒ(z) = z², show that f(z) dz = 0 using two ways:
(a) by a direct multivariable integration by writing z = x + iy and suitably parametrizing C, and
(b) using a relevant theorem.

Answers

In this problem, we are given the function ƒ(z) = z² and the unit circle C' in the complex plane. We need to show that the integral of ƒ(z) dz over C' is equal to 0 using two different methods. First, we will use a direct multivariable integration approach by parameterizing C' in terms of x and y. Then, we will employ a relevant theorem to prove the same result.

(a) To directly evaluate the integral of ƒ(z) dz over C', we can parametrize the unit circle C' as z = e^(it), where t ranges from 0 to 2π. Substituting this into ƒ(z) = z², we have ƒ(z) = e^(2it). Differentiating z = e^(it) with respect to t, we get dz = i e^(it) dt. Substituting these expressions into the integral, we have ∫ƒ(z) dz = ∫(e^(2it))(i e^(it)) dt. Simplifying, we have ∫(i e^(3it)) dt. Integrating e^(3it) with respect to t, we get (1/3i)e^(3it). Evaluating the integral over the range of t, we find that the integral is equal to 0.

(b) We can also use the relevant theorem known as Cauchy's Integral Theorem to prove that the integral of ƒ(z) dz over C' is 0. Cauchy's Integral Theorem states that for a function ƒ(z) that is analytic in a simply connected region and its interior, the integral of ƒ(z) dz over a closed curve is 0. In this case, ƒ(z) = z² is an entire function, which means it is analytic in the entire complex plane. Since C' is a closed curve in the complex plane and ƒ(z) is analytic within and on C', we can apply Cauchy's Integral Theorem to conclude that the integral of ƒ(z) dz over C' is equal to 0.

In both approaches, we have shown that the integral of ƒ(z) dz over C' is 0, verifying the result using two different methods.

To learn more about Cauchy's Integral Theorem, click here:

brainly.com/question/30992206

#SPJ11

Other Questions
3. Let F = Z5 and let f(x) = x + 2x + 1 F[r]. Let a be a root of f(x) in some extension of F. (a) Show that f(x) is irreducible in F[2]. (b) Find [F(a): F] and find a basis for F(a) over F. How many elements does F(a) have? (c) Write a + 2a + 3 in the form co + cia + ca. A machine's setting has been adjusted to fill bags with 350 grams of raisins. The weights of the bags are normally distributed with a mean of 350 grams and standard deviation of 4 grams. The probability that a randomly selected bag of raisins will be under-filled by 5 or more grams is Multiple Choice a) 0.3944 b) 0.1056 c) 0.8944 d) 0.6056 .What role do "happy" and ecologically functional oyster beds play in the balanceof the biosphere (whole world)? How could the atmosphere and the lithosphereaffect the functioning of oyster reefs in the hydrosphere? Ashton invests $5500 in an account that compounds interest monthly and earns 7%. How long will it take for his money to double? HINT While evaluating the log expression, make sure you round to at least FIVE decimal places. Round your FINAL answer to 2 decimal places 4 It takes years for Ashton's money to double Question Help: Video Message instructor Submit Question You are planning for your retirement in 25 years. At that time you want to have saved $2,000,000. How much do you need to save each year for the next 25 years if the interest rate on your investment will be 7% per year (APR)? duke company's unadjusted bank balance at march 31 is $2,300. the bank reconciliation revealed outstanding checks amounting to $500 and deposits in transit of $400. what is the true cash balance? 2. Elaborate that past consideration is not a goodconsideration. (30 marks) Let I be a line not passing through the center o of circle y. Prove that the image of l under inversion in y is a punctured circle with missi what concentration of so23 is in equilibrium with ag2so3(s) and 9.60103 m ag ? the sp of ag2so3 can be found in this table. On average, a person in which of the following professions would be most at risk for osteoporosis?Select one:a. A construction worker.b. A dancer.c. An office worker. year ended ending inventory cost index december 31 at year-end costs (relative to base year) 2021 $ 308,000 1.10 2022 396,000 1.20 2023 374,400 1.17 2024 367,250 1.13 1) If a bond portfolio is immunized, the client's investment horizon is equal to the modified bond durationTrueFalse2) Segmented market hypothesis relates to any shape of yield curveTrueFalse3) "In a barbell strategy, funds are invested in both high grade and low grade bonds"TrueFalse The number of students enrolled at a college is 16,000 and grows 5% each year. Complete parts (a) through (e). example of RIGHT TRIANGLE SIMILARITY THEOREMS Which growth stage is B hotels pursuing if they are trying to open more hotel properties in the European market after opening 100 hotels in the USA?Group of answer choicesProduct developmentMarket penetrationMarket developmentDiversification A John Deere tractor, model 3405 was purchased at the price of RM80, 000.00. It is estimated that the economic life of the tractor is 10 years and the salvage value is 10% of the purchased price. Calculate a year to year depreciation using these three methods:a. Sum-of-digits depreciationb. Declining-balance depreciationc. Straight-line depreciation Question(25 marks) Pretty Heels Limited ("PH") is a listedcompany in Hong Kong engaged in manufacturing and selling ladiesshoes. It operates a factory in Shenzhen, China, and 10 retailshop "Suppose that the economy was initially in a long-runequilibrium. Then the Federal Government decided to increasegovernment spending by 1 trillion dollars on infrastructure. In an annual audit of Bridgeport Company Limited, you find thata physical inventory count on December 31, 2020, showed merchandiseof $445,000. You also discover that the following items wereexclude The area of region enclosed bythe curves y=x2 - 11 and y= - x2 + 11 ( thatis the shaded area in the figure) is ____ square units.