(1 point) For each of the following, carefully determine whether the series converges or not. [infinity] n²-5 (2) Σ n³-1n n=2 A. converges OB. diverges [infinity] 5+sin(n) (b) Σ n4+1 n=1 A. converges B. diverge

Answers

Answer 1

The following, carefully determine whether the series converges or not,  (a) The given series Σ (n³ - 1) / n² converges, (b) The given series Σ (5 + sin(n)) / (n⁴ + 1) diverges.

(a) The given series Σ (n³ - 1) / n² converges

To determine convergence, we can compare the given series to a known convergent or divergent series. Here, we can compare it to the p-series Σ 1/n², where p = 2. Since the exponent of n in the numerator (n³ - 1) is greater than the exponent of n in the denominator (n²), the terms of the given series eventually become smaller than the terms of the p-series. Therefore, by the comparison test, the given series converges.

(b) The given series Σ (5 + sin(n)) / (n⁴ + 1) diverges.

To determine convergence, we can again compare the given series to a known convergent or divergent series. Here, we can compare it to the p-series Σ 1/n⁴, where p = 4. Since the numerator of the given series (5 + sin(n)) is bounded between 4 and 6, while the denominator (n⁴ + 1) grows without bound, the terms of the given series do not approach zero. Therefore, by the divergence test, the given series diverges.

Learn more about convergence here: brainly.com/question/14394994

#SPJ11


Related Questions

Differential Equation: y' + 18y' + 117y = 0 describes a series inductor-capacitor-resistor circuit in electrical engineering. The voltage across the capacitor is y (volts). The independent variable is t (seconds). Boundary conditions at t=0 are: y= 9 volts and y'= 2 volts/sec. Determine the capacitor voltage at t=0.50 seconds. ans:1

Answers

The capacitor voltage at t=0.50 seconds is 1 volt.

What is the value of the capacitor voltage at t=0.50 seconds?

To find the capacitor voltage at t=0.50 seconds, we can solve the given differential equation using the given boundary conditions.

The differential equation is: y' + 18y' + 117y = 0

To solve this equation, we can assume a solution of the form y = e^(rt), where r is a constant.

Taking the derivative of y with respect to t, we have y' = re^(rt).

Substituting these expressions into the differential equation, we get:

re^(rt) + 18re^(rt) + 117e^(rt) = 0

Factoring out e^(rt), we have:

e^(rt) (r + 18r + 117) = 0

Since e^(rt) is never zero, we can solve the equation inside the parentheses:

r + 18r + 117 = 0

19r + 117 = 0

Solving for r, we find r = -117/19.

Now we can write the general solution for y:

y = C * e^(-117/19)t

Using the given boundary conditions, at t=0, y=9 volts. Substituting these values, we can solve for the constant C:

9 = C * e^(-117/19 * 0)

9 = C * e^0

9 = C

Therefore, the particular solution for y is:

y = 9 * e^(-117/19)t

To find the capacitor voltage at t=0.50 seconds, we substitute t=0.50 into the equation:

y(0.50) = 9 * e^(-117/19 * 0.50)

y(0.50) ≈ 1.000

Hence, the capacitor voltage at t=0.50 seconds is approximately 1 volt.

Learn more about capacitor

brainly.com/question/31969363

#SPJ11

Answer quickly pls…..

Answers

The intermediate step in the form (x + a)² = b after completing the square is (x + 3)² = -9

To complete the square for the equation x² + 18 = -6x, we follow these steps:

Move the constant term to the other side of the equation:

x² + 6x + 18 = 0

Divide the coefficient of the linear term (6) by 2 and square the result:

(6/2)² = 9

Add the result from step 2 to both sides of the equation:

x² + 6x + 9 + 18 = 9

x² + 6x + 9 = -9

The intermediate step in the form (x + a)² = b after completing the square is:

(x + 3)² = -9

To learn more on Equation:

https://brainly.com/question/10413253

#SPJ1

A Bluetooth speaker in the shape of a triangular pyramid has a height of 12 inches. The area of the base of the speaker is 10 square inches.

What is the volume of the speaker in cubic inches?
A.20
B.40
C.60
D.80

Answers

Answer:

The correct option is B. 40.

Step-by-step explanation:

To calculate the volume of a triangular pyramid, you need to know the height and the area of the base. In this case, the height of the triangular pyramid is given as 12 inches, and the area of the base is given as 10 square inches.

The formula for the volume of a triangular pyramid is:

Volume = (1/3) * Base Area * Height

Substituting the given values:

Volume = (1/3) * 10 square inches * 12 inches

Volume = (1/3) * 120 cubic inches

Volume = 40 cubic inches

Which of the following values cannot be probabilities? 0,5/3, 1.4, 0.09, 1, -0.51, √2, 3/5 Select all the values that cannot be probabilities. A. -0.51 B. √2 C. 5 3 D. 3 5 E. 1.4 F. 0.09 G. 0 H. 1

Answers

We can see here that the values that cannot be probabilities are:

A. -0.51

B. √2

C. 5/3

What is probability?

Probability is a measure of the likelihood of an event to occur. It is expressed as a number between 0 and 1, where 0 indicates that the event is impossible and 1 indicates that the event is certain.

A probability is a number between 0 and 1, inclusive. The values -0.51, √2, and 5/3 are all outside of this range.

Please note that:

A probability cannot be negative.A probability cannot be greater than 1.A probability can be 0, which represents the event of something being impossible

Learn more about probability on https://brainly.com/question/13604758

#SPJ4

9) tan θ = -15/8 where 90≤ θ< 360
find sin θ//2

Answers

The value of `sin(θ/2)` which is `240/226`

Let's take `sin θ = -15` and `cos θ = -8`.Then, `sin²θ = (-15/17)²` and `cos²θ = (-8/17)²`Now, let's take `α = θ/2`.

Hence, `θ = 2α` and `sin θ = 2 sin α cos α`...[2]

Now, using equation [1], we get `tan θ = sin θ/cos θ = (-15)/8`.Therefore, `sin θ = (-15)/√(15²+8²) = -15/17` and `cos θ = (-8)/√(15²+8²) = -8/17`

Thus, `tan α = sin θ/(1+cos θ) = (-15/17)/(1-8/17) = 15/1 = 15`Therefore, `sin α = tan α/√(1+tan²α) = (15/√226)`Now, using equation [2], we get `sin θ/2 = 2 sin α cos α = 2(15/√226)∙(8/√226) = 240/226

In mathematics, trigonometric ratios are often used to solve the problems of triangles. The function tangent is one of the basic functions of trigonometry.

The ratio of the length of the side opposite to the length of the side adjacent to an angle in a right-angled triangle is defined as the tangent of the angle.

This ratio is represented by tan.

The summary is as follows:Given `tan θ = -15/8`, `90 ≤ θ < 360`. We need to find `sin(θ/2)`By using the formulae of the trigonometric ratios, we have found the value of `sin(θ/2)` which is `240/226`

Learn more about equation click here:

https://brainly.com/question/2972832

#SPJ11

nic hers acezs08 Today at 11:49 QUESTION 2 QUESTION 2 Let S be the following relation on C\{0}: S = {(x, y) = (C\{0})²: y/x is real}. Prove that S is an equivalence relation. D Files Not yet answered Marked out of 10.00 Flag question Not yet answered Marked out of 10.00 Flag question Maximum file size: 50MB, maximum number of files: 1 I I Drag and drop files here or click to upload

Answers

Unable to provide an answer as the question is incomplete and lacks necessary information.

Prove that the relation S defined on C\{0} as S = {(x, y) | x, y ∈ (C\{0})² and y/x is real} is an equivalence relation.

The confusion. Unfortunately, the question you provided is still unclear.

The relation S is defined on the set C\{0}, but it doesn't specify the exact elements or the criteria for the relation.

To determine if S is an equivalence relation, we need to know the specific conditions that define it.

An equivalence relation must satisfy three properties: reflexivity, symmetry, and transitivity.

Reflexivity means that every element is related to itself. Symmetry means that if element A is related to element B, then element B is also related to element A.

Transitivity means that if element A is related to element B and element B is related to element C, then element A is also related to element C.

Without the specific definition of the relation S and the conditions it follows, it is not possible to explain or prove whether S is an equivalence relation.

If you can provide additional information or clarify the question, I will be happy to assist you further.

Learn more about necessary

brainly.com/question/31550321

#SPJ11

Solve: |3b + |5 ≤ 10 ∈ _______ (Enter your answer in INTERVAL notation, using U to indicate a union of intervals; or enter DNE if no solution exists)

Answers

-5 ≤ b ≤ 5/3 r in INTERVAL notation, using U to indicate a union of intervals.

Given: |3b + |5| ≤ 10To solve the given inequality, first, we will solve for the inside absolute value and then the outside absolute value.

The inequality |3b + |5| ≤ 10 can be written as |5 + 3b| ≤ 10 or |-5 - 3b| ≤ 10. Hence, the solution for the given inequality |3b + |5| ≤ 10 is -5 ≤ b ≤ 5/3 in the interval notation.

Now, we will solve both inequalities separately to get the final solution.

Solving |5 + 3b| ≤ 10:|5 + 3b| ≤ 105 + 3b ≤ 10 or 5 + 3b ≥ -10

Solving the first inequality:5 + 3b ≤ 10 ⇒ 3b ≤ 5 ⇒ b ≤ 5/3

Solving the second inequality:5 + 3b ≥ -10 ⇒ 3b ≥ -15 ⇒ b ≥ -5

Hence, the solution for |5 + 3b| ≤ 10 is -5 ≤ b ≤ 5/3.

Now, we will solve |-5 - 3b| ≤ 10:|-5 - 3b| ≤ 105 + 3b ≤ 10 or 5 + 3b ≥ -10

Solving the first inequality:5 + 3b ≤ 10 ⇒ 3b ≤ 5 ⇒ b ≤ 5/3

Solving the second inequality:5 + 3b ≥ -10 ⇒ 3b ≥ -15 ⇒ b ≥ -5

Hence, the solution for |-5 - 3b| ≤ 10 is -5 ≤ b ≤ 5/3.

Hence, the solution for the given inequality |3b + |5| ≤ 10 is -5 ≤ b ≤ 5/3 in the interval notation.

Answer: -5 ≤ b ≤ 5/3

To know more about Intervals visit:

https://brainly.com/question/14641200

#SPJ11

Example: A geometric sequence has first three terms 4, x, x + 24. Find the possible values for x. Example: A car was purchased for £15,645 on 1st January 2021. Each year, the value of the car depreci

Answers

For the first example, we are given a geometric sequence with the first three terms as 4, x, and x + 24.

To find the value of the car at a specific time, you need to calculate the depreciation for each year up to that time and subtract it from the initial value of £15,645.

In a geometric sequence, each term is found by multiplying the previous term by a constant called the common ratio.

Let's assume the common ratio is denoted by r.

Based on this information, we can write the following equations:

x = 4 × r,

x + 24 = x × r.

To find the possible values of x, we need to solve these equations simultaneously.

From the first equation, we can express r in terms of x: r = x/4.

Substituting this value of r into the second equation, we get:

x + 24 = (x/4) × x.

Simplifying this equation, we have:

4x + 96 = x².

Rearranging the equation, we get:

x² - 4x - 96 = 0.

Now we can solve this quadratic equation for x. Factoring or using the quadratic formula will yield the possible values of x.

For the second example, we are given that a car was purchased for £15,645 on 1st January 2021, and its value depreciates each year.

To determine the value of the car at a given time, we need to know the rate of depreciation.

Let's assume the rate of depreciation is d (expressed as a decimal).

The value of the car at the end of each year can be calculated as follows:

Year 1: £15,645 - d × £15,645,

Year 2: (£15,645 - d × £15,645) - d × (£15,645 - d × £15,645),

Year 3: [£15,645 - d × (£15,645 - d × £15,645)] - d × [£15,645 - d × (£15,645 - d × £15,645)],

and so on.

To find the value of the car at a specific time, you need to calculate the depreciation for each year up to that time and subtract it from the initial value of £15,645.

To learn more about common ratio, visit:

https://brainly.com/question/31291016

#SPJ11

Let A = [¹] [24] a. Determine P that diagonalizes A. b. Can you predict the diagonal matrix D without further calculations? c. Calculate D = P-¹AP by calculating the inverse of P and multiplying the 3 matrices.

Answers

A. The required matrix answer is-

P = [x₁ x₂]

= [23 25] [-1 1]
P⁻¹ = (1/48) [-25 -25] [1 23]

B. We can predict the diagonalatrix

D = [23 0] [0 -25]

C. D = P-¹AP

By calculating the inverse of P and multiplying the 3 matrices.

D = [-575 0] [0 575]

Given matrix is

A = [¹] [24]a.

a. Diagonalizing A:


A = [¹] [24]


To diagonalize A, we have to find its eigenvalues and eigenvectors.
|A - λI| = 0
|[¹ - λ] [24] | = 0
| [24] [¹ - λ]|
(1 - λ)(1 - λ) - 24.24 = 0
λ² - 2λ - 575 = 0
(λ - 23)(λ + 25) = 0

Eigenvalues are λ₁ = 23 and λ₂ = -25.

Eigenvector for λ₁ = 23:
(A - λ₁I)x = 0
[¹ - 23] [24] [x₁] = [0]
[0] [¹ - 23] [x₂] [0]
x₁ - 23x₂ = 0
x₁ = 23x₂

Eigenvector for λ₂ = -25:
(A - λ₂I)x = 0
[¹ + 25] [24] [x₁] = [0]
[0] [¹ + 25] [x₂]=[0]
x₁ + 25x₂ = 0
x₁ = -25x₂
Let P = [x₁ x₂] be the matrix of eigenvectors.

Then P⁻¹AP = D is the diagonal matrix whose diagonal entries are the eigenvalues of A.
P = [x₁ x₂]

= [23 25] [-1 1]
P⁻¹ = (1/48) [-25 -25] [1 23]
b. Diagonal matrix D:


We can predict the diagonal matrix D without further calculations because D is obtained by replacing the eigenvalues of A along the diagonal of a square matrix of size n.

Therefore,

D = [23 0] [0 -25]


c. D = P⁻¹AP:


D = P⁻¹AP
D = (1/48) [-25 -25] [1 23] [¹ 24] [23 -25]
D = (1/48) [-25 -25] [1 23] [23 24(25)] [-23 24(23)]
D = [-575 0] [0 575]

To know more about matrix visit:

https://brainly.com/question/27929071

#SPJ11

Moving to another questi Evaluate lim x →[infinity] 5x³-3 /3x²-5x+7

Answers

However, 5/0 is undefined. This indicates that the limit does not exist as x approaches infinity for the given expression.

To evaluate the limit as x approaches infinity of (5x³ - 3) / (3x² - 5x + 7), we can divide both the numerator and the denominator by the highest power of x in the expression, which is x³. This will allow us to simplify the expression and determine the behavior as x approaches infinity.

Dividing both the numerator and denominator by x³, we get:

(5x³ - 3) / (3x² - 5x + 7) = (5 - 3/x³) / (3/x - 5/x² + 7/x³)

As x approaches infinity, the terms 3/x³, 5/x², and 7/x³ approach zero. Therefore, the expression simplifies to:

lim x → ∞ (5 - 0) / (0 - 0 + 0) = 5/0

For more information on limits visit: brainly.com/question/31046668

#SPJ11

Write an equation for the transformed logarithm shown below. Your answer should include a vertical scaling and will be in the form f(x) = (x + c) 5 4 3 2 1 -5 -4 -3 -2 -1 -1 134 to 4 1 2 3 4 5

Answers

The equation of the transformed logarithm is `f(x) = log(x + c) + k` . The correct option is `(x + c)` to `f(x) = log(x + c) + k`.

The transformed logarithm that is shown below is given as;

`f(x) = (x + c)`.

And, the equation for the transformed logarithm is of the form

`f(x) = a log [b(x - h)] + k`

where `a`, `b`, `h`, and `k` are constants.

We need to find the equation for the transformed logarithm. The function value `f(x) = (x + c)` has only a vertical translation; there is no horizontal translation, reflection, or stretching.

The vertical scaling of the function is `a = 1`.

The constant `h` in the equation of the logarithmic function is equal to `-c`.

This is the equation of the transformed logarithm:

`f(x) = log [1(x - (-c))] + k

= log(x + c) + k`

The equation of the transformed logarithm is

`f(x) = log(x + c) + k` (where `k` is the vertical translation).

Hence, the correct option is `(x + c)` to `f(x) = log(x + c) + k`.

Know more about the logarithm

https://brainly.com/question/13473114

#SPJ11

Find all the eigenvalues of A. For each eigenvalue, find an eigenvector. (Order your answers from smallest to largest eigenvalue.) <--4 has eigenspace span has eigenspace span has eigenspace span A₂ = 4₂-5 46

Answers

The eigenvalues of A are 4, -5, and -6. The eigenvectors corresponding to the eigenvalues 4 and -5 are (1, 2) and (-2, 1), respectively. The eigenvector corresponding to the eigenvalue -6 is (0, 1).

To find the eigenvalues of A, we can use the characteristic equation:

| A - λI | = 0

This gives us the equation:

(4 - λ)(λ^2 + λ - 6) = 0

This equation has three solutions: λ = 4, λ = -5, and λ = -6.

To find the eigenvectors corresponding to each eigenvalue, we can solve the system of equations:

A - λI v = 0

For λ = 4, this gives us the system of equations:

[4 - 4I] v = 0

This system has the solution v = (1, 2).

For λ = -5, this gives us the system of equations:

[-5 - 4I] v = 0

This system has the solution v = (-2, 1).

For λ = -6, this gives us the system of equations:

[-6 - 4I] v = 0

This system has the solution v = (0, 1).

To learn more about eigenvalues here brainly.com/question/29861415

#SPJ11

Evaluate the definite integral. [^; 4 dx 1x + 6

Answers

We need to evaluate the definite integral [tex]\int\frac{dx}{x+6}[/tex]. The definite integral is a mathematical operation that calculates the signed area between the curve of a function and the x-axis over a given interval.

To evaluate the definite integral [tex]\int\frac{dx}{x+6}[/tex], we can apply the fundamental theorem of calculus. The integral represents the area under the curve of the function [tex]\frac{1}{x+6}[/tex] over the interval from x = 0 to x = 4.

To find the antiderivative of [tex]\frac{1}{x+6}[/tex] , we can use the natural logarithm function. Applying the logarithmic property, we can rewrite the integral as ln|x + 6| evaluated from x = 0 to x = 4. The antiderivative is ln|x + 6|.

Applying the fundamental theorem of calculus, the definite integral evaluates to ln|4 + 6| - ln|0 + 6|. Simplifying further, we get ln(10) - ln(6).

The final result of the definite integral is ln(10) - ln(6), which represents the area under the curve of the function [tex]\frac{1}{x+6}[/tex]from x = 0 to x = 4.

Learn more about definite integral here:

brainly.com/question/30760284

#SPJ11

Use the Gauss-Seidel iterative technique to find the 3rd approximate solutions to
2x1 + x2 - 2x3 = 1
2x₁3x₂ + x3 = 0
x₁ - x₂ + 2x3 = 2
starting with x = (0,0,0,0)t.

Answers

Using the Gauss-Seidel iterative technique, the third approximate solutions for the given system of equations are x₁ ≈ 1.0909, x₂ ≈ -0.8182, and x₃ ≈ 0.4545.

To solve the given system of equations using the Gauss-Seidel method, we start with the initial guess [tex]x^0 = (0, 0, 0)t[/tex] and apply the following iterative steps:

Step 1: Substitute the initial guess into each equation and solve for the unknowns iteratively:

2x₁ + x₂ - 2x₃ = 1

2x₁ + 3x₂ + x₃ = 0

x₁ - x₂ + 2x₃ = 2

We update the values of x₁, x₂, and x₃ based on the previous iteration values.

Step 2: In the first equation, we have x₁ on the left-hand side, so we use the updated value of x₁ from the previous iteration and the initial guess values for x₂ and x₃:

[tex]x_1^{(k+1)} = (1 - x_2^{k} + 2x_3^{k}/2[/tex]

Step 3: In the second equation, we have both x₂ and x₃, so we use the updated values of x₁ from Step 2 and the initial guess value for x₃:

[tex]x_2^{k+1} = (-2x_1^{k+1} - x_3^{k}/3[/tex]

Step 4: In the third equation, we have x₃, so we use the updated values of x₁ and x₂ from Steps 2 and 3:

[tex]x_3^{k+1} = (2 - x_1^{k+1} + x_2^{k+1}/2[/tex]

Step 5: Repeat Steps 2-4 until convergence is achieved. Convergence is typically determined by comparing the difference between successive iterations to a specified tolerance.

Applying the above steps iteratively, we find that after the third iteration, the values of x₁, x₂, and x₃ are approximately 1.0909, -0.8182, and 0.4545, respectively. These values represent the third approximate solutions to the given system of equations using the Gauss-Seidel method.

To know more about Gauss-Seidel iterative click here brainly.com/question/32618614

#SPJ11

Analyse the following Bay plan of a container's vessel and answer the following questions; Tier Number Cell Number VOY NO POST BAY PLAN DATE BAY No. 30 (HOLD) 10 14 OO! 16 10 10 10 1000 h h = h st h s

Answers

A bay plan is a layout specifying container arrangements on a ship, facilitating efficient loading/unloading, weight distribution, and space utilization.

What is a bay plan and how does it help in container vessel operations?

The given information appears to be a portion of a bay plan for a container vessel. A bay plan is a layout that specifies the arrangement of containers in a ship's cargo holds or on a container stack.

However, the provided details are incomplete and lack specific context or structure.

Without further clarification or a more detailed description of the bay plan, it is difficult to analyze or answer any specific questions related to it.

A typical bay plan includes information such as container numbers, sizes, weights, positions, and other relevant details for efficient loading, unloading, and stowing of containers on a vessel.

It helps ensure optimal utilization of space, proper weight distribution, and adherence to safety regulations.

To provide a more comprehensive explanation, additional information or a clearer representation of the bay plan is necessary.

Learn more about bay plan

brainly.com/question/1096057

#SPJ11

Which equation is represented in the graph? parabola going down from the left and passing through the point negative 2 comma 0 then going to a minimum and then going up to the right through the points 0 comma negative 2 and 1 comma 0
a y = x2 − x − 6
b y = x2 + x − 6
c y = x2 − x − 2
d y = x2 + x − 2

Answers

To determine which equation is represented by the graph, we can analyze the key features of the parabola and compare them to the given equations.

From the graph description, we can identify the following key features:

The parabola opens downwards.

It passes through the point (-2, 0).

It has a minimum point.

It passes through the points (0, -2) and (1, 0).

Let's test each option by substituting the given points into the equation and verifying if they satisfy all the conditions.

a) y = x^2 - x - 6

For x = -2: (-2)^2 - (-2) - 6 = 4 + 2 - 6 = 0, satisfies the condition.

For x = 0: (0)^2 - (0) - 6 = 0 - 0 - 6 = -6, does not satisfy the condition.

This option does not fulfill all the given conditions, so it can be eliminated.

b) y = x^2 + x - 6

For x = -2: (-2)^2 + (-2) - 6 = 4 - 2 - 6 = -4, does not satisfy the condition.

This option does not fulfill all the given conditions, so it can be eliminated.

c) y = x^2 - x - 2

For x = -2: (-2)^2 - (-2) - 2 = 4 + 2 - 2 = 4, does not satisfy the condition.

For x = 0: (0)^2 - (0) - 2 = 0 - 0 - 2 = -2, satisfies the condition.

For x = 1: (1)^2 - (1) - 2 = 1 - 1 - 2 = -2, satisfies the condition.

This option fulfills all the given conditions, so it remains a possible solution.

d) y = x^2 + x - 2

For x = -2: (-2)^2 + (-2) - 2 = 4 - 2 - 2 = 0, satisfies the condition.

For x = 0: (0)^2 + (0) - 2 = 0 - 0 - 2 = -2, satisfies the condition.

For x = 1: (1)^2 + (1) - 2 = 1 + 1 - 2 = 0, does not satisfy the condition.

This option does not fulfill all the given conditions, so it can be eliminated.

Based on the analysis, the equation that matches the given graph is c) y = x^2 - x - 2.



2. Evaluate
SSF.ds
for F(x,y,z) = 3xyi + xe2j+z3k and the surface S is given by the equation y2+z2 = 1 and the planes x = -1 and x = 2. Assume positive orientation given by an outward normal
vector.

Answers

To evaluate the surface integral [tex]\int\int\int_S \mathbf{F} \cdot \mathbf{dS}, \text{ where } \mathbf{F}(x, y, z) = 3xy\mathbf{i} + xe^2\mathbf{j} + z^3\mathbf{k}[/tex] and the surface S is defined by the equation [tex]y^2 + z^2 = 1[/tex] and the planes x = -1 and x = 2, we need to calculate the dot product of F and the outward normal vector on the surface S, and then integrate over the surface.

First, let's parameterize the surface S. We can use the cylindrical coordinates (ρ, θ, z) where ρ is the distance from the z-axis, θ is the angle in the xy-plane, and z is the height.

Using ρ = 1, we have [tex]y^2 + z^2 = 1[/tex], which represents a circle in the yz-plane with radius 1 centered at the origin. We can write y = sin θ and z = cos θ.

Next, we need to determine the limits of integration for each variable. Since the planes x = -1 and x = 2 bound the surface, we can set x as the outer variable with limits x = -1 to x = 2. For θ, we can take the full range of 0 to 2π, and for ρ, we have a fixed value of ρ = 1.

Now, let's calculate the normal vector to the surface S. The surface S is a cylindrical surface, and the outward normal vector at each point on the surface points radially outward. Since we are assuming the positive orientation, the normal vector points in the direction of increasing ρ.

The outward normal vector on the surface S is given by [tex]\mathbf{n} = \rho(\cos \theta)\mathbf{i} + \rho(\sin \theta)\mathbf{j}[/tex]. Taking the magnitude of this vector, we have [tex]|\mathbf{n}| = \sqrt{\rho^2(\cos^2 \theta + \sin^2 \theta)} = \sqrt{\rho^2} = \rho = 1[/tex]

Therefore, the unit normal vector is [tex](\cos \theta)\mathbf{i} + (\sin \theta)\mathbf{j}[/tex].

Now, let's calculate the dot product F · (normal vector):

[tex]\mathbf{F} \cdot \text{(normal vector)} = (3xy)\mathbf{i} + (xe^2)\mathbf{j} + (z^3)\mathbf{k} \cdot [(\cos \theta)\mathbf{i} + (\sin \theta)\mathbf{j}]\\\\= 3xy(\cos \theta) + x(\cos \theta)e^2 + z^3(\sin \theta)\\\\= 3xy(\cos \theta) + x(\cos \theta)e^2 + (\cos \theta)z^3[/tex]

Since we have x, y, and z in terms of ρ and θ, we can substitute them into the dot product expression:

[tex]\mathbf{F} \cdot \text{(normal vector)} = 3(\rho\cos \theta)(\sin \theta) + (\rho\cos \theta)(\cos \theta)e^2 + (\cos \theta)(\rho^3(\sin \theta))^3\\\\= 3\rho^2(\cos \theta)(\sin \theta) + \rho^2(\cos \theta)(\cos \theta)e^2 + \rho^3(\cos \theta)(\sin \theta)^3\\\\= 3\rho^2(\cos \theta)(\sin \theta) + \rho^2(\cos \theta)(\cos \theta)e^2 + \rho^3(\cos \theta)(\sin \theta)^3[/tex]

Now, we can set up the integral:

[tex]\int\int\int_S \mathbf{F} \cdot \mathbf{dS} = \int\int\int_S (3\rho^2(\cos \theta)(\sin \theta) + \rho^2(\cos \theta)(\cos \theta)e^2 + \rho^3(\cos \theta)(\sin \theta)^3) dS[/tex]

Since the surface S is defined in terms of cylindrical coordinates, we can express the surface element dS as ρ dρ dθ.

Therefore, the integral becomes:

[tex]\int\int\int_S (3\rho^2(\cos \theta)(\sin \theta) + \rho^2(\cos \theta)(\cos \theta)e^2 + \rho^3(\cos \theta)(\sin \theta)^3) \rho d\rho d\theta[/tex]

Now, we can evaluate this integral over the appropriate limits of integration:

[tex]\int\int\int_S (3\rho^2(\cos \theta)(\sin \theta) + \rho^2(\cos \theta)(\cos \theta)e^2 + \rho^3(\cos \theta)(\sin \theta)^3) \rho d\rho d\theta\\\\= \int_{\theta=0}^{2\pi} \int_{\rho=0}^{1} [3\rho^3(\cos \theta)(\sin \theta) + \rho^4(\cos \theta)(\cos \theta)e^2 + \rho^5(\cos \theta)(\sin \theta)^3] d\rho d\theta[/tex]

Evaluating this integral will give you the final numerical result.

To know more about Dot Product visit-

brainly.com/question/23477017

#SPJ11

Question 4 pts The standard deviation of the amount of time that the 60 trick-or-treaters in our sample were out trick-or-treating is a _____ and is denated ______ (Note that canvas does not allow greek symbols, so I have written their name:) Question 5 4 pts The mean number of houses all trick-or-treatens visit on loween night is a ____ and is denoted ______ (Note that canvas does not allow greck Symbols, so I have written their names

Answers

The standard deviation of the amount of time that the 60 trick-or-treaters in our sample were out trick-or-treating is a standard deviation and is denoted as s.

How to find ?

5. The mean number of houses all trick-or-treatens visit on loween night is a mean and is denoted as μ .

What does it entail?

The standard deviation is a measure of the dispersion of a set of data values.

It is calculated by finding the square root of the variance. It is usually denoted by the lowercase letter s.

The formula for the standard deviation of a sample is given by;

$$s = \sqrt{\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})^2}{n-1}}$$Where x is the data point, $\bar{x}$ is the sample mean and n is the sample size.The mean is a measure of the central tendency of a set of data. It is calculated by summing all the values in the data set and dividing by the number of observations.The formula for the mean is given by;$$\mu = \frac{\sum_{i=1}^{n}x_i}{n}$$

Where x is the data point and n is the sample size.

To know more on Standard deviation visit:

https://brainly.com/question/29115611

#SPJ11


Use Modular Arithenetic to prove that 5/p^6- p^z? for every integer p?

Answers

Given that p is any integer, it is required to prove that 5/p^6- p^z.How to use modular arithmetic to prove this is explained below:

First, let's express the given expression using modular arithmetic.5/p6 - pz can be written as 5(p6 - z) /p6.Since p6 is a multiple of p, we can say that p6 = pm for some integer m.Substituting this in the above expression,

we get:5(p6 - z) /p6 = 5(pm - z) /pm

We can now use modular arithmetic to prove that this expression is equivalent to 0 (mod p).

Since p is a factor of pm, we can say that 5(pm - z) is divisible by p. Therefore, 5(pm - z) is equivalent to 0 (mod p).

Thus, we have proven that 5/p^6- p^z is equivalent to 0 (mod p) for every integer p.

To know more about expression  , visit;

https://brainly.com/question/1859113

#SPJ11

10.The equation of the ellipse with foci (-3, 0), (3, 0) and two vertices at (-5,0), (5,0) is:
a. (x-5)²/25 + (y-5)²/16 = 1 b. (x-5)^2/16 + (y-5)²/25 = 1
c. x²/25 + y^2/16 =1 d. x²/16 + y²/25 =1

Answers

option (d) is correct. The equation of the ellipse with foci (-3, 0), (3, 0) and two vertices at (-5, 0), (5, 0) is (x²/16) + (y²/25) = 1. The correct option is (d).Explanation: We will first plot the given points on the coordinate plane below. The center of the ellipse is the origin (0,0), and the semi-major axis is 5 units long (distance from the center to either vertex).

The semi-minor axis is 4 units long (distance from the center to either co-vertex), as shown below. We know that the distance between the foci and the center is equal to c. Hence, c = 3 units.

The length of the semi-major axis (a) can be determined by using the formula a² - b² = c².The value of b² is equal to (semi-minor axis)² = 4² = 16.a² - b² = c²25 - 16 = 9a² = 25 + 9a = √34 units.The equation of the ellipse is (x²/16) + (y²/25) = 1. Therefore, option (d) is correct.

To know more about ellipse visit:-

https://brainly.com/question/20393030

#SPJ11

Find the product of -1 -3i and its conjugate. The answer is a + bi where The real number a equals The real number b equals Submit Question

Answers

Given that the two numbers are -1 - 3i and its conjugate. We need to find the product of these numbers. Let's begin the solution : Solution We know that [tex](a + bi)(a - bi) = a^2]^2 - (bi)^2i^2 = a^2 + b^2[/tex]Where a and b are real numbers

Now, we will calculate the product of -1 - 3i and its conjugate.

[tex]\[\left( { - 1 - 3i} \right)\left( { - 1 + 3i} \right)\] = \[1 + 3i - 3i - 9{i^2}\] = \[1 - 9\left( { - 1} \right)\] = 1 + 9 = 10[/tex]

Therefore, the product of -1 - 3i and its conjugate is 10.We know that the product of -1 - 3i and its conjugate is 10.

So, the real number a equals 5 and the real number b equals 0. The answer is:Real number a = 5Real number b = 0.

To know more about real numbers visit -

brainly.com/question/31715634

#SPJ11

The mean undergraduate cost for tuition, fees, room and board for four year institutions was $26737 for a recent academic year. Suppose that standard deviation is $3150 and that 38 four-year institutions are randomly selected. Find the probability that the sample mean cost for these 38 schools is at least $25248.
A. 0.498215
B. 0.998215
C. 0.501785
D. 0.001785

Answers

The probability that the sample mean cost for these 38 schools is at least $25248 is 0.998215. Option b is correct.

Given that the mean undergraduate cost for tuition, fees, room and board for four year institutions was $26737, the standard deviation is $3150 and 38 four-year institutions are randomly selected. We have to find the probability that the sample mean cost for these 38 schools is at least $25248.

We can use the central limit theorem to solve the given problem. According to this theorem, the sample means are normally distributed with a mean of the population and a standard deviation equal to population standard deviation/ √ sample size.

So, the z-score corresponding to the given sample mean can be calculated as follows:

z = (x - μ) / σ√n

= ($25248 - $26737) / $3150/√38

= -1489 / 510 = -2.918.

On a standard normal distribution curve, the z-score of -2.918 has a probability of 0.001785 (approximately) of occurring.

Hence, the correct option is B. 0.998215.

Learn more about probability https://brainly.com/question/31828911

#SPJ11

An urn contains 6 marbles; 3 red and 3 green. The following experiment is conducted. Marbles are randomly drawn one at a time from the urn and kept aside until a red marble is drawn out. Let X denote the number of green marbles drawn out from such an experiment. (a) Use a table to describe the probability mass function of X? (b) What is E(X)?

Answers

a) The PMF of X is described in the following table:

X | 0 | 1 | 2

P(X) | 0.5 | 0.3 | 0.15

b) The expected value of X is 0.6.

What is the probability?

(a) Probability mass function (PMF) of X:

The experiment ends when a red marble is drawn.

X represents the number of green marbles drawn before the first red marble is drawn.

X can take values from 0 to 2, as there are only 3 green marbles in the urn.

The probability of drawing 0 green marbles (X = 0):

P(X = 0) = (3/6) = 0.5

The probability of drawing 1 green marble (X = 1):

P(X = 1) = (3/6) * (3/5) = 0.3

The probability of drawing 2 green marbles (X = 2):

P(X = 2) = (3/6) * (2/5) * (3/4) = 0.15

(b) Expected value (E(X)):

E(X) = (0 * 0.5) + (1 * 0.3) + (2 * 0.15)

E(X) = 0 + 0.3 + 0.3

E(X) = 0.6

Learn more about probability at: https://brainly.com/question/23417919

#SPJ4

Find the volume generated by rotating the area bounded by the graph of the following set of equations around the y-axis. y=4x, x= 1, x=2 COTES The volume of the solid is cubic units. (Type an exact answer, using a as needed.)

Answers

To find the volume generated by rotating the area bounded by the equations y = 4x, x = 1, and x = 2 around the y-axis, we can use the method of cylindrical shells.

The given equations define a region in the xy-plane bounded by the lines y = 4x, x = 1, and x = 2. To find the volume of the solid generated by rotating this region around the y-axis, we can use the method of cylindrical shells.

The volume of each cylindrical shell is given by the formula V = 2πrhΔx, where r represents the distance from the y-axis to the edge of the shell, h represents the height of the shell, and Δx is the thickness of the shell.

In this case, the distance from the y-axis to the edge of the shell is x, and the height of the shell is y = 4x. Thus, the volume of each shell is V = 2πx(4x)Δx = 8π[tex]x^2[/tex]Δx.

To find the total volume, we integrate the volume of each shell over the range of x from 1 to 2. Therefore, the volume of the solid is given by:

[tex]\[ V = \int_{1}^{2} 8\pi x^2 \,dx \][/tex]

[tex]\[ V = 8\pi \int_{1}^{2} 4x^2 \, dx \]\\\[ V = 8\pi \left[\frac{4x^3}{3}\right]_{1}^{2} \]\[ V = \frac{64\pi}{3} \][/tex]

Therefore, the volume of the solid generated by rotating the given area around the y-axis is [tex]\(\frac{64\pi}{3}\)[/tex] cubic units.

Learn more about volume generated by a curve here:

https://brainly.com/question/27549092

#SPJ11

Solve the equation on the interval [0, 27). 3 sin x = sin x + 1

Answers

The solutions to the equation on the interval [0,27) are: x = π/6, 7π/6, 13π/6, 19π/6, 25π/6.

To solve the equation 3sin(x) = sin(x) + 1 on the interval [0,27),

let's first simplify the left side of the equation by using the identity

3sin(x) = sin(x) + 2sin(x).

This gives us:

sin(x) + 2sin(x) = sin(x) + 1

Simplifying further, we get:

2sin(x) = 1sin(x)

= 1/2

Now we need to find all values of x on the interval [0,27) that satisfy this equation.

We can start by looking at the unit circle to find the values of x where sin(x) = 1/2.

The first such value occurs at π/6, and then every π radians after that.

However, we need to restrict our solutions to the interval [0,27), so we can only consider values of x in this interval that satisfy sin(x) = 1/2.

These values are:

π/6, 7π/6, 13π/6, 19π/6, 25π/6

Thus, the solutions to the equation 3sin(x) = sin(x) + 1 on the interval [0,27) are:

x = π/6, 7π/6, 13π/6, 19π/6, 25π/6.

Know more about the interval

https://brainly.com/question/30354015

#SPJ11

You do a poll to see what fraction p of the students participated in the FIT5197 SETU survey. You then take the average frequency of all surveyed people as an estimate p for p. Now it is necessary to ensure that there is at least 95% certainty that the difference between the surveyed rate p and the actual rate p is not more than 10%. At least how many people should take the survey?

Answers

The required sample size necessary for the survey is given as follows:

n = 97.

What is a confidence interval of proportions?

A confidence interval of proportions has the bounds given by the rule presented as follows:

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which the variables used to calculated these bounds are listed as follows:

[tex]\pi[/tex] is the sample proportion, which is also the estimate of the parameter.z is the critical value.n is the sample size.

The confidence level is of 95%, hence the critical value z is the value of Z that has a p-value of [tex]\frac{1+0.95}{2} = 0.975[/tex], so the critical value is z = 1.96.

The margin of error is obtained as follows:

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

We have no estimate, hence:

[tex]\pi = 0.5[/tex]

Then the required sample size for M = 0.1 is obtained as follows:

[tex]0.1 = 1.645\sqrt{\frac{0.5(0.5)}{n}}[/tex]

[tex]0.1\sqrt{n} = 1.96 \times 0.5[/tex]

[tex]\sqrt{n} = 1.96 \times 5[/tex]

[tex](\sqrt{n})^2 = (1.96 \times 5)^2[/tex]

n = 97.

More can be learned about the z-distribution at https://brainly.com/question/25890103

#SPJ4

Question 5 (2 points) Compare the number of simple math problems correctly solved in 5 minutes by each of the two groups, 35 who were sober and 33 who were intoxicated at the time of the test One Way Independent Groups ANOVA One Way Repeated Measures ANOVA Two Way Independent Groups ANOVA Two Way Repeated Measures ANOVA Two Way Mixed ANOVA cenendent groups t-test

Answers

The appropriate statistical test to compare the number of simple math problems correctly solved in 5 minutes by the two groups (35 sober and 33 intoxicated) is the independent groups t-test.

The independent groups t-test is used to compare the means of two independent groups to determine if there is a statistically significant difference between them. In this case, we are comparing the number of math problems solved by the sober group and the intoxicated group.

The t-test assumes that the data is normally distributed and that the variances of the two groups are equal. It tests the null hypothesis that there is no difference in the means of the two groups.

The other statistical tests listed are not appropriate for this scenario:

One Way Independent Groups ANOVA: This test is used when comparing the means of more than two independent groups. In this case, we have only two groups (sober and intoxicated), so ANOVA is not necessary.

One Way Repeated Measures ANOVA: This test is used when comparing the means of a single group measured at different time points or conditions. Here, we have two separate groups, not repeated measures within a group.

Two Way Independent Groups ANOVA: This test is used when comparing the means of two or more independent groups across two independent variables. We have only one independent variable in this scenario (group: sober or intoxicated).

Two Way Repeated Measures ANOVA: This test is used when comparing the means of a single group across two or more repeated measures or conditions. Similar to the One Way Repeated Measures ANOVA, this is not applicable as we have two separate groups.

Two Way Mixed ANOVA: This test is used when comparing the means of one within-subjects variable and one between-subjects variable. Again, we have two separate groups and not a mixed design.

Dependent groups t-test: This test is used when comparing the means of paired or dependent samples. In this case, the two groups (sober and intoxicated) are independent, so the dependent groups t-test is not appropriate.

Therefore, the correct statistical test to compare the number of simple math problems correctly solved in 5 minutes by the two groups is the independent groups [tex]t-test[/tex].

To know more about Independent visit-

brainly.com/question/10147513

#SPJ11

Write and solve an equation to answer the question. A box contains orange balls and green balls. The number of green balls is six more than five times the number of orange balls. If there are 102 balls altogether, then how many green balls and how many orange balls are there in the box

Answers

Therefore, there are 16 orange balls and 86 green balls in the box.

Let's denote the number of orange balls as O and the number of green balls as G.

We are given two pieces of information:

The number of green balls is six more than five times the number of orange balls:

G = 5O + 6

The total number of balls is 102:

O + G = 102

Now we can solve these equations simultaneously to find the values of O and G.

Substituting the value of G from equation 1 into equation 2, we have:

O + (5O + 6) = 102

Simplifying the equation:

6O + 6 = 102

Subtracting 6 from both sides:

6O = 96

Dividing both sides by 6:

O = 16

Now, substitute the value of O back into equation 1 to find the value of G:

G = 5(16) + 6

= 80 + 6

= 86

To know more about box,

https://brainly.com/question/29158199

#SPJ11

The angle between the vectors a and bis 60°. The magnitude of b is four times the magnitude of a Suppose a. b = 18, determine the magnitude of a . (4 marks) →

Answers

Given that the angle between vectors a and b is 60° and the magnitude of b is four times the magnitude of a. Hence, the magnitude of vector a is 3.

The dot product of two vectors a and b is defined as the product of their magnitudes and the cosine of the angle between them: a · b = |a| |b| cos(θ), where |a| and |b| represent the magnitudes of vectors a and b, and θ is the angle between them.

Given that the angle between vectors a and b is 60°, we have cos(60°) = 1/2. Therefore, we can rewrite the dot product equation as a · b = |a| |b| (1/2).

It is also given that the magnitude of b is four times the magnitude of a, so we can write |b| = 4|a|.

Substituting these values into the dot product equation, we have a · b = |a| (4|a|) (1/2) = 2|a|^2.

We are also given that a · b = 18.

Therefore, we have 18 = 2|a|^2.

Simplifying the equation, we find |a|^2 = 9.

Taking the square root of both sides, we get |a| = 3.

Hence, the magnitude of vector a is 3.

To learn more about vector  click here, brainly.com/question/24256726

#SPJ11








Solve applications in business and economics using integrals. If the marginal cost of producing a units is is given by C" (a) = 8x, find the total cost of producing the first 20 units.

Answers

To find the total cost of producing the first 20 units, we need to integrate the marginal cost function C'(x) = 8x with respect to x from 0 to 20. The integral of C'(x) gives us the total cost function C(x), which represents the accumulated costs up to a given production level.

Integrating C'(x) = 8x with respect to x, we obtain C(x) = 4x^2 + C₁, where C₁ is the constant of integration. This equation represents the total cost function. To find the total cost of producing the first 20 units, we evaluate the total cost function at x = 20:

C(20) = 4(20)^2 + C₁ = 1600 + C₁.

Since we are only interested in the cost of producing the first 20 units, we do not need to determine the specific value of C₁. The total cost of producing the first 20 units is given by 1600 + C₁, which includes both the fixed and variable costs associated with the production process.

Learn more about the marginal cost function here: brainly.com/question/31001588

#SPJ11

Other Questions
how to get amazon deliveries to follow directions to leave on front porch and not on the ground at side door? (a) For each n N, the interval,3-. is closed in R. E Show that Un U-1,3- n=1 ] is not closed Use a one-step binomial tree to explain the no-arbitrage and risk-neutral valuation of a European call option. Please provide a numerical example. Please take your time and answer the question. Thankyou!8. If cos x = -12/13 and x is in quadrant III, find sin ) b. cos (2x) McKinsey provides consultancy services to large and medium size organizations. Should it go for Skimming pricing method, penetration pricing method or going-rate method? If you have any other method to suggest, please provide the same with reasons to do the same. use the given graph of f(x) = x to find a number such that if |x 4| < then x 2 < 0.4. Given that a = 7, b = 12, and c = 15, solve the triangle for the value of A. If the economy has a cyclically adjusted budget surplus, this means that OA. the public sector is exerting a contractionary impact on the economy. O B. the public sector is exerting an expansionary im as a system goes from state a to state b , its entropy decreases. what can you say about the number of microstates corresponding to each state? Use induction to prove that 80 divides 9n+2+ 132n+2 10 for all n 0. Prove that every amount of postage of 60 cents or more can be formed using just 6-cent and 13-cent stamps. What has the greatest influence on shaping personality?Question 14 options:A)the person and the situationB)genetics and environmentC)consequences of behaviour and the e Each student is required to write up a project report on any topic(s)* related to this course. Use what you have learned from this course to analyze and/or to comment on any OB- related issues that happened within the last 3 years of an organization and then make recommendations to it for improvements [or you may compare two organizations on the same issue(s) and then make recommendations to them for improvements]. OR You may examine the impacts of Covid-19 on any industry or organizations in general for both employers and employees using OB theories and concepts. You should then draw recommendations for employers on how to deal with the impacts that have been identified. * You can write on any OB-related topic not taught in this course. If you are not sure whether your interested topic is relevant or not, you can seek advice from your instructor. The length of the report should not exceed 1,500 WORDS (excluding words for title page, table of contents, reference list, and appendices, if any). There is a 10% penalty (10 marks The data file below contains a sample of customer satisfaction ratings for XYZ Box video game system. If we let denote the mean of all possible customer satisfaction ratings for the XYZ Box video game system, and assume that the standard deviation of all possible customer satisfaction ratings is 2.67:(a) Calculate 95% and 99% confidence intervals for . (Round your answers to three decimal places.)95% confidence interval for is[ , ].99% confidence interval for is[ , ].Ratings3945384242413842464440394042454442464047444345454046414339434645454643474341404344413843364444454446484441454444444639414442474345 Fewer young people are driving. In year A, 66.9% of people under 20 years old who were eligible had a driver's license. Twenty years later in year B that percentage had dropped to 46.7%. Suppose these results are based on a random sample of 1,800 people under 20 years old who were eligible to have a driver's license in year A and again in year B. (a) At 95% confidence, what is the margin of error of the number of eligible people under 20 years old who had a driver's license in year A? (Round your answer to four decimal places.) At 95% confidence, what is the interval estimate of the number of eligible people under 20 years old who had a driver's license in year A? (Round your answers to four decimal places.) Gilgamesh is employed as a mid-range comptroller-an accounting and finance manager-working at an interior lighting design and manufacturing company. While preparing financial reports, Gilgamesh finds out the chief officers are committing tax fraud, falsifying accounts and financial records, and deceiving investors in a pyramid scheme using the company's resources. Gilgamesh decides to inform the authorities about the officers wrongful conduct. Which of the following is a true statement regarding Gilgamesh and their rights as an employee? Gilgamesh can only be fired if the employee handbook says whistle-blowing is banned. O Gilgamesh cannot be fired for being a whistle blower due to the public policy exception. Gilgamesh cannot be fired due to the implied-contract exception. Gilgamesh can be fired for no reason under the employment-at-will doctrine O Gilgamesh cannot be fired due to the implied covenant of good faith and fair dealing exception Let m be a positive integer. Define the set R= (0, 1, 2,..., m-1). Define new operations and and on R as follows: for elements a, bR, a b:= (a + b) mod m ab: = (ab) mod m where mod is the binary remainder operation (notes section 2.1). You may assume that R with the operations and is a ring. i. What is the difference between the rings R and Z? [5 marks] ii. Explain how the rings R and Z are similar. [5 marks] Five Number Summary for Percent Obese by StateComputer output giving descriptive statistics for the percent of the population that is obese for each of the 50 US states, from the USStates dataset, is given in the table below.Descriptive Statistics: ObeseVariableNN*MeanSE MeanStDevMinimumQ1MedianQ3MaximumObese50028.7660.4763.36921.30026.37529.40031.15035.100Percent of the population that is obese by stateClick here for the dataset associated with this question. (a) What is the five number summary?The five number summary is (b) Give the range and the IQR.The range is.The IQR is (c) What can we conclude from the five number summary about the location of the 15th percentile? The 80th percentile?The location of the 15th percentile is betweenand The location of the 80th percentile is betweenand The location of the 80thpercentile is between and.The location of the 80th percentile is betweenand it would be better to have an open-ended contract between thecompany and the government. Discuss the pros and cons of thisidea. 8. Find the following given: x = sint & y = cos t a) Sketch the curve and show the direction as t increases. b) Find the rectangular equation. which component is the first subtotal listed on a classified balance sheet? multiple choice question. non-current assets