Answer:
see explanation
Step-by-step explanation:
If Dan earns $x then Bob earns $3x ( 3 times as much as Dan ), then
x + 3x = 72 , that is
4x = 72 ( divide both sides by 4 )
x = 18
Thus
Dan earns $18 and Bob earns 3 × $18 = $54
The earning of Bob will be 54 dollars and the earning of Dan will be 18 dollars.
What is the linear system?A linear system is one in which the parameter in the equation has a degree of one. It might have one, two, or even more variables.
Let the earning by Bob be x and the earning by Dan be y.
Bob and Dan earned a total of $72 shoveling snow. Then the equation will be
x + y = 72 ...1
If Bob earned 3 times as much as Dan. Then the equation will be
x = 3y ...2
Substitute the value of x in equation 1, then the equation will be
3y + y = 72
4y = 72
y = $18
Then the money earned by Bob will be
x = 3y
x = 3(18)
x = $54
Thus, the earning of Bob will be 54 dollars and the earning of Dan will be 18 dollars.
More about the linear system link is given below.
https://brainly.com/question/20379472
#SPJ2
writing linear equations
Answer:
The graph in blue: y=4/3x-2
Step-by-step explanation:
Slope-intercept form is y=mx+b, m being the slope and b being the y-intercept.
To find the slope, you just put rise/run of the line.
Hope this helped :)
Simplify (2^3)^–2. PLEASE I NEED HELP U WILL GET 10 POINTS
Answer:
I won't give you the answer straight away so you take the time to read my answer and understand
Step-by-step explanation:
We knoe that 2 to the third is 8. when you square to a negative power, you do squaring normally, and then take the reciprocal of that number. so 8 to the second power is 64, and we flip it over, sp the answer is 1/64
Helppppppppppppppppp
Answer/Step-by-step explanation:
Surface area of cylinder = 2πrh + 2πr²
Surface area of the cylinder with,
height (h) = 4 ft
radius (r) = 5 ft
Surface area = 2*3.14*5*4 + 2*3.14*5²
= 125.6 + 157
= 282.6 ft²
Surface area of the cylinder with,
height (h) = 12 yd
radius (r) = 3 yd
Surface area = 2*3.14*3*12 + 2*3.14*3²
= 282.74 yd²
What is the following product?
Answer:
[tex]\boxed{6\sqrt{6} }[/tex]
Step-by-step explanation:
[tex]\sqrt{12} \sqrt{18}[/tex]
Multiply square roots.
[tex]\sqrt{12 \times 18}[/tex]
[tex]\sqrt{216}[/tex]
Simplify square root.
[tex]\sqrt{36} \sqrt{6}[/tex]
[tex]6\sqrt{6}[/tex]
Solve the following 2 + 8 ÷ 2 x 3
Answer:
14Step-by-step explanation:
Solution,
Use the BODMAS Rule:
B = Bracket
O = Of
D = Division
M= Multiplication
A = Addition
S = Subtraction
Now,
Let's solve,
[tex]2 + 8 \div 2 \times 3[/tex]
First we have to divide 8 by 2
[tex] = 2 + 4 \times 3[/tex]
Calculate the product
[tex] = 2 + 12[/tex]
Calculate the sum
[tex] = 14[/tex]
Hope this helps...
Good luck on your assignment..
Answer:
14
Step-by-step explanation:
2 + 8 ÷ 2 x 3 =
There is an addition, a division, and a multiplication. According to the correct order of operations, we do first the multiplications and divisions in the order they appear from left to right.
= 2 + 4 x 3
= 2 + 12
Now we do the addition.
= 14
The graph of g(x) resembles the graph of f(x)=x^2, but it has been changed. Which of these is the equation of g(x)?
Answer:
A.
Step-by-step explanation:
Anwer A has the following equation:
[tex]g(x)=\frac{3}{5}x^2-3[/tex]
In this equation, we can calculated the intercept replacing x by 0, as:
[tex]g(x)=\frac{3}{5}0^2-3=-3[/tex]
if this is the answer, the graph of g(x) should be through the point (0,-3) and that happens.
Additionally, the roots of the equations are calculated replacing g(x) by 0 and solving for x, so:
[tex]0=\frac{3}{5}x^2-3\\x_1=\sqrt{5}=2.236\\x_2=-\sqrt{5}=-2.236[/tex]
It means that the graph of g(x) should be through the points (2.236,0) and (-2.236,0) and that happens too.
So, the answer is A, [tex]g(x)=\frac{3}{5}x^2-3[/tex]
What is the equation of the line that passes through (1, 2) and is parallel to the line whose equation is 4x + y + 1 = 0?
4 x + y + 6 = 0
4 x + y - 6 = 0
4 x - y - 6 = 0
Answer:
The answer is
4x + y - 6 = 0Step-by-step explanation:
Equation of a line is y = mx + c
where m is the slope
c is the y intercept
4x + y + 1 = 0
y = - 4x - 1
Comparing with the above formula
Slope / m = - 4
Since the lines are parallel their slope are also the same
That's
Slope of the parallel line is also - 4
Equation of the line using point ( 1 , 2) is
y - 2 = -4(x - 1)
y - 2 = - 4x + 4
4x + y - 2 - 4
We have the final answer as
4x + y - 6 = 0Hope this helps you
30 POINTS!!!
Suppose f(x) = x2 and
g(x) = (1/3)^2. Which statement best compares the graph of g(x) with the graph of f(x)?
Image attached
Please help!!!
Answer:
A. The graph of g(x) is vertically compressed by a factor of 3.
Step-by-step explanation:
When there is a fraction, that means that there is a veritcal dilation.
Hope this helps! Good luck!
Can someone help me with these two questions I don’t know how to do it and it’s due at 11 I would really appreciate it
Answer:
6. Unit rate = 1.3 yards per second
7. Unit rate = 0.8 page per minute
Step-by-step explanation:
The unit rate is simply the comparison of 2 quantities, whereby dividing both, the denominator must be 1.
For example, in the graph given comparing distance walked over time, when x (time in s) = 3, y (distance in yd) = 4.
Unit rate represented by the slope is the yards covered per second.
Unit rate = [tex] \frac{4}{3} = 1.33 [/tex]
Unit rate ≈ 1.3 yards per second
For the second graph given, unit rate of the slope is the number of pages read per minute.
From the graph, 4 pages is read at 5 minutes.
Thus,
Unit rate = [tex] \frac{4}{5} = 0.8 [/tex]
Unit rate = 0.8 page per minute
The following box plot shows the number of years during which 40 schools have participated in an interschool swimming meet: A box and whisker plot is drawn using a number line from 0 to 10 with primary markings and labels at 0, 5, 10. In between two primary markings are 4 secondary markings. The box extends from 1 to 6 on the number line. There is a vertical line at 3.5. The whiskers end at 0 and 8. Above the plot is written Duration of Participation. Below the plot is written Years. At least how many schools have participated for more than 1 year and less than 6 years?
Answer:
Step-by-step explanation:
The box encloses data between the two quartiles, namely at least half of the data. If there are 40 schools, then half of them would be in the box, between 1 and 6.
see attached plot.
Answer:
really hard to tell what the box plot is like without an attachment so im gonna help u find it out anyway
Step-by-step explanation:
basically when u look at a box plot and the range the line in the middle is the median and then the max the lowest range the lower quartile and then the higher quartile you can find ur anser, simply find the median first, find where the lower quartile is and then the lowest number in the group thats in betweeen 1 and 6
first correct answer gets best marks
Answer:
the answer would be x is less than 6.
Step-by-step explanation:
the reason why it would not be x is less than or equal to 6 is that the circle is not filled in.
Answer:
B
Step-by-step explanation:
x≤6
We can see from the graph that it starts from 6 and goes to 5, 4, 3, 2.
Hope this helps ;) ❤❤❤
Please help fast! 25 points and brainliest!!
Let f(x) = 36x5 − 44x4 − 28x3 and g(x) = 4x2. Find f of x over g of x
Answer:
The answer is
9x³ - 11x² - 7xStep-by-step explanation:
f(x) = 36x^5 − 44x⁴ − 28x³
g(x) = 4x²
To find f(x) / g(x) Divide each term of f(x) by g(x)
That's
[tex] \frac{f(x)}{g(x)} = \frac{ {36x}^{5} - {44x}^{4} - {28x}^{3} }{ {4x}^{2} } \\ \\ = \frac{ {36x}^{5} }{ {4x}^{2} } - \frac{ {44x}^{4} }{ {4x}^{2} } - \frac{ {28x}^{3} }{ {4x}^{2} } \\ \\ = {9x}^{3} - {11x}^{2} - 7x[/tex]
Hope this helps you
Answer:
9x³ - 11x² - 7x
Step-by-step explanation:
guy abpove is right or bwlowe
Solve for $x$, where $x > 0$ and $0 = -21x^2 - 11x + 40.$ Express your answer as a simplified common fraction.[tex]Solve for $x$, where $x \ \textgreater \ 0$ and $0 = -21x^2 - 11x + 40.$ Express your answer as a simplified common fraction.[/tex]
Answer:
[tex]\large \boxed{\sf \ \ \dfrac{8}{7} \ \ }[/tex]
Step-by-step explanation:
Hello, please consider the following.
The solutions are, for a positive discriminant:
[tex]\dfrac{-b\pm\sqrt{\Delta}}{2a} \ \text{ where } \Delta=b^2-4ac[/tex]
Here, we have a = -21, b = -11, c = 40, so it gives:
[tex]\Delta =b^2-4ac=11^2+4*21*40=121+3360=3481=59^2[/tex]
So, we have two solutions:
[tex]x_1=\dfrac{11-59}{-42}=\dfrac{48}{42}=\dfrac{6*8}{6*7}=\dfrac{8}{7} \\\\x_2=\dfrac{11+59}{-42}=\dfrac{70}{-42}=-\dfrac{14*5}{14*3}=-\dfrac{5}{3}[/tex]
We only want x > 0 so the solution is
[tex]\dfrac{8}{7}[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
I NEED HELP WITH THIS! I need to pass...
Answer: A) The log parent function has negative values in the range.
Step-by-step explanation:
The domain of y = ln (x) is D: x > 0
The domain of y = [tex]\sqrtx[/tex][tex]\sqrt x[/tex] is D: x ≥ 0
The range of y = ln (x) is: R: -∞ < y < ∞
So the only valid option is A because the range of a log function contains negative y-values when 0 < x < 1.
Please help me to solve this . Thank you so much .
And if possible , could you explain the answer too ?
Base on the diagram , state
a) The point which is 2 cm from R and 4 cm from P
b) The point which is more than 2 cm from R and 4 cm from T
c) The location of a moving point X in the diagram such that it is less than 4 cm from P and more than 2cm from R
d) The location of a moving point Y in the diagram such that YR < 2 cm and YP < 4 cm
e)The location of a moving point Z in the diagram such that ZT > 4 cm , ZP > 4 cm and ZR > 2 cm
Answer:
a) N
b) L
c) area I
d) area II
e) area VI
Step-by-step explanation:
a) the points that are 2cm from R are Q, N, M, S. Then, points that are 4cm from P are K, N, R. So, the only one point that works for both is N.
b) the points that are >2cm from R are P, K, L, T. We do not count those are exactly 2cm from R. Then, points that are 4cm from T are R, M, L. Ans is L.
c) <4cm from P, are area I and II. Then area that are >2cm from R are I, VI, and V. So, the only area that works for both is I.
d) <2cm from R, are areas II, III, and IV. Then, <4cm from P, are areas I and II. So, the only one works for both is area II.
e) >4cm from T, are areas I, II, III, VI. Then, >4cm from P, are III, IV, V, VI. Finally, >2cm from R, are areas I, VI, V. The only one that works for all three conditions is area VI.
Please help i will mark brainliest
Answer:
See below.
Step-by-step explanation:
To find the equation, we need to find the slope and the y-intercept. Afterwards, we can put the numbers into the slope-intercept form:
[tex]y=mx+b[/tex]
From the graph, we can see that the line crosses the y-intercept at y=-6. Thus, the y-intercept (b) is -6.
Now we need to find the slope. Pick any two points where the line crosses. I'm going to pick (0,-6) and (4,-7).
[tex]m=\frac{y_2-y_1}{x_2-x_1}=\frac{-7-(-6)}{4-0}= -1/4[/tex]
Therefore, the equation of the line would be:
[tex]y=mx+b\\y=-1/4x-6[/tex]
Find the area ratio of a regular octahedron and a tetrahedron regular, knowing that the diagonal of the octahedron is equal to height of the tetrahedron.
Answer:
[tex]\frac{4}{3}[/tex]
Step-by-step explanation:
The area of a regular octahedron is given by:
area = [tex]2\sqrt{3}\ *edge^2[/tex]. Let a is the length of the edge (diagonal).
area = [tex]2\sqrt{3}\ *a^2[/tex]
Given that the diagonal of the octahedron is equal to height (h) of the tetrahedron i.e.
a = h, where h is the height of the tetrahedron and a is the diagonal of the octahedron. Let the edge of the tetrrahedron be e. To find the edge of the tetrahedron, we use:
[tex]h=\sqrt{\frac{2}{3} } e\\but\ h=a\\a=\sqrt{\frac{2}{3} } e\\e=\sqrt{\frac{3}{2} }a[/tex]
The area of a tetrahedron is given by:
area = [tex]\sqrt{3}\ *edge^2[/tex] = [tex]\sqrt{3} *(\sqrt{\frac{3}{2} }a)^2=\frac{3}{2}\sqrt{3} *a^2[/tex]
The ratio of area of regular octahedron to area tetrahedron regular is given as:
Ratio = [tex]\frac{2\sqrt{3}\ *a^2}{\frac{3}{2} \sqrt{3}*a^2} =\frac{4}{3}[/tex]
Calcule o valor dos produtos a) (-4). (-7/8) b) (-4). (-7/8) n sei pq tá repetido tá aqui na folha ;-; c) (-4).(+ 3,5) d) (-2).(-3/4). (-1/7) PRA HOJEE
Answer:
a) (-4). (-7/8) = 28/8
b) (-4). (-7/8)= 28/8
c) (-4).(+ 3/5) = -12/5
d) (-2).(-3/4). (-1/7) = (6/4)(-1/7)= -6/28
Step-by-step explanation:
a) (-4). (-7/8) = 28/8
b) (-4). (-7/8)= 28/8
c) (-4).(+ 3/5) = -12/5
d) (-2).(-3/4). (-1/7) = (6/4)(-1/7)= -6/28
É repetido talvez com sinal alterado para mostrar a diferença na resposta. Se o sinal for alterado, a resposta também se tornará negativa. Seria - 28/8.
Quando um número negativo é multiplicado por um número negativo, obtém um número positivo. Mas quando um número positivo é multiplicado por um número negativo, dá uma resposta negativa.
Sempre se lembre
negativo * negativo = positivo
positivo * negativo = negativo
negativo * positivo = negativo
positivo * positivo = positivo
Em palavras simples, dois sinais diferentes dão um sinal negativo e dois sinais semelhantes dão um sinal positivo na multiplicação.
English
a) (-4). (-7/8) = 28/8
b) (-4). (-7/8)= 28/8
c) (-4).(+ 3/5) = -12/5
d) (-2).(-3/4). (-1/7) = (6/4)(-1/7)= -6/28
Its repeated maybe with a changed sign to show the difference in the answer. If the sign is changed the answer would also become negative . It would become - 28/8.
When a negative number is multiplied with a negative number it gives a positive number. But when a positive number is multiplied with a negative number it gives a negative answer.
Always remember
negative * negative= positive
positive *negative=negative
negative *positive =negative
positive * positive = positive
In simple words two unlike signs give a negative sign and two similar signs give a positive sign in multiplication.
48 - 8x equivalent expression
Answer:
8(6-x)
Step-by-step explanation:
Both 48 and 8 can be divisible by 8.
48 ÷ 8 = 6
8 ÷ 8 = 1
Therefore you get the answer 8(6-x)
as the simplest form.
Hope this helps.
Points A(-l, y) and B(5,7) lie on a circle with centre 0(2, -3y). Find the values of y. Hence, find the radius of the circle
Answer:
The answer is below
Step-by-step explanation:
Points A(-l, y) and B(5,7) lie on a circle with centre O(2, -3y). This means that AB is the diameter of the circle and OA = OB = radius.
For two points X([tex]x_1,y_1[/tex]) and Y([tex]x_2, y_2[/tex]), the coordinates of the midpoint (x, y) between the two points is given as:
[tex]x=\frac{x_1+x_2}{2},y=\frac{y_1+y_2}{2}[/tex].
For A(-l, y) and B(5,7) with center O(2, -3y), the value of y can be gotten by:
[tex]For\ x\ coordinate:\\2=\frac{-1+5}{2}\\ 2=2.\\For\ y\ coordinate:\\-3y=\frac{y+7}{2}\\ -6y=y+7.\\-6y-y=7\\-7y=y\\y=-1[/tex]
The value of y is -1. Therefore A is at (-1, -1) and O is at (2, -3(-1))= (2, 3)
The radius of the circle = OA. The distance between two points X([tex]x_1,y_1[/tex]) and Y([tex]x_2, y_2[/tex]) is given as:
[tex]|OX|=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\\\Therefore\ the\ radius \ |OA|\ is :\\|OA|=\sqrt{(2-(-1))^2+(3-(-1))^2}=\sqrt{25}=5[/tex]
The radius of the circle is 5 units
At the shop near the beach, ice cream is offered in a cone or in a cylindrical cup as shown
below. The ice cream fills the entire cone and has a hemisphere on top. The ice cream
levelly fills the cylindrical cup.
radius of cone= 3 cm
radius of cylinder= 4.5 cm
height of cone = 10 cm
height of cylinder = 5 cm
Determine how much more ice cream the larger option has. Show your work. ( 19)
Answer:
B
Step-by-step explanation:
Pls help I need help with 12
Answer:
B. 14
Step-by-step explanation:
22/x = 11/(21-x)
462 - 22x = 11x
462 = 33x
x = 14
Answer: The value of x is 14, answer choice B
Let y be the other line segment connected to x
Using proportions:
[tex]\dfrac{11}{22}=\dfrac{y}{x}[/tex]
Cross multiply and simplify
[tex]22y=11x[/tex]
[tex]y=\dfrac{1}{2}x[/tex]
We know that x and y add to 21, so we can create the following equation:
[tex]x+y=21[/tex]
Substitute y=(1/2)x
[tex]x+\dfrac{1}{2}x=21[/tex]
Simplify by adding like terms
[tex]\dfrac{3}{2}x=21[/tex]
Divide both sides by 3/2
[tex]x=14[/tex]
Let me know if you need any clarifications, thanks!
Solve by the quadratic formula: x^2= 6x-4
Answer:
3 [tex]\pm[/tex] [tex]\sqrt{5}[/tex].
Step-by-step explanation:
x^2 = 6x - 4
x^2 - 6x + 4 = 0
Now, we can use the quadratic formula to solve.
[tex]\frac{-b\pm\sqrt{b^2 - 4ac} }{2a}[/tex], where a = 1, b = -6, and c = 4.
[tex]\frac{-(-6)\pm\sqrt{(-6)^2 - 4 * 1 * 4} }{2 * 1}[/tex]
= [tex]\frac{6\pm\sqrt{36 - 4 * 4} }{2}[/tex]
= [tex]\frac{6\pm\sqrt{36 - 16} }{2}[/tex]
= [tex]\frac{6\pm\sqrt{20} }{2}[/tex]
= [tex]\frac{6\pm2\sqrt{5} }{2}[/tex]
= 3 [tex]\pm[/tex] [tex]\sqrt{5}[/tex]
x = 3 [tex]\pm[/tex] [tex]\sqrt{5}[/tex].
Hope this helps!
A cube has a side length of 5 cm. Determine the surface area of the largest pyramid that will fit inside the cube. Round if necessary.
Answer:
The surface area of the pyramid is 80.9 cm²
Step-by-step explanation:
The side length, s of the cube is given as 5 cm
Therefore, the largest pyramid that can fit into the cube will have a base side length, s = The side length of the cube = 5 cm
The height, h of the largest pyramid = The height of the cube = 5 cm.
The surface area of a pyramid = Area of base, A + 1/2 × Perimeter of base, P × Slant height, S
The slant height of the pyramid = √(h² + (s/2)²) = √(5² + (5/2)²) = (5/2)×√5
The perimeter of the base = 4×5 = 20 cm
The area of the base = 5×5 = 25 cm²
The surface area of a pyramid = 25 + 1/2×20×(5/2)×√5 = 80.9 cm².
The surface area of a pyramid = 80.9 cm².
Find the area of the shape shown below
Answer: 28
Step-by-step explanation:
I can't really think of a way to explain this well without visuals and idk how to add images on my answer. But, what I normally do is draw out the shape on paper divide the shape into different sections. Solve the area of the separate sections. It simplifies the more complex figure and turns them into basic shapes. After solving each shape, add all of them together and that leaves you with the area. Hopefully you understand what I mean. I hope this sort of helped:)
When deriving the quadratic formula by completing the square, what expression can be added to both sides of the equation to create a perfect square trinomial?
Answer:
According to steps 2 and 4. The second-order polynomial must be added by [tex]-c[/tex] and [tex]b^{2}[/tex] to create a perfect square trinomial.
Step-by-step explanation:
Let consider a second-order polynomial of the form [tex]a\cdot x^{2} + b\cdot x + c = 0[/tex], [tex]\forall \,x \in\mathbb{R}[/tex]. The procedure is presented below:
1) [tex]a\cdot x^{2} + b\cdot x + c = 0[/tex] (Given)
2) [tex]a\cdot x^{2} + b \cdot x = -c[/tex] (Compatibility with addition/Existence of additive inverse/Modulative property)
3) [tex]4\cdot a^{2}\cdot x^{2} + 4\cdot a \cdot b \cdot x = -4\cdot a \cdot c[/tex] (Compatibility with multiplication)
4) [tex]4\cdot a^{2}\cdot x^{2} + 4\cdot a \cdot b \cdot x + b^{2} = b^{2}-4\cdot a \cdot c[/tex] (Compatibility with addition/Existence of additive inverse/Modulative property)
5) [tex](2\cdot a \cdot x + b)^{2} = b^{2}-4\cdot a \cdot c[/tex] (Perfect square trinomial)
According to steps 2 and 4. The second-order polynomial must be added by [tex]-c[/tex] and [tex]b^{2}[/tex] to create a perfect square trinomial.
Answer: D
Step-by-step explanation:
EDGE 2023
What fraction is equal to six-sevenths times eight-fifths?
Answer:
1 13/35 (mixed number) or 48/35 (simplified)
Step-by-step explanation:
6/7 times 8/5
= (6 times 8) / (7 times 5)
= 48/35 or 1 13/35
hope this helped :)
Answer:
48/35
Step-by-step explanation:
6/7*8/5=48/35
Fill in the blank with a constant, so that the resulting expression can be factored as the product of two linear expressions: 2ab-6a+5b+___ Please include an explanation too!
Answer:
[tex]2ab - 6a + 5b - 15[/tex]
Step-by-step explanation:
Given
[tex]2ab - 6a + 5b + \_[/tex]
Required
Fill in the gap to produce the product of linear expressions
[tex]2ab - 6a + 5b + \_[/tex]
Split to 2
[tex](2ab - 6a) + (5b + \_)[/tex]
Factorize the first bracket
[tex]2a(b - 3) + (5b + \_)[/tex]
Represent the _ with X
[tex]2a(b - 3) + (5b + X)[/tex]
Factorize the second bracket
[tex]2a(b - 3) + 5(b + \frac{X}{5})[/tex]
To result in a linear expression, then the following condition must be satisfied;
[tex]b - 3 = b + \frac{X}{5}[/tex]
Subtract b from both sides
[tex]b - b- 3 = b - b+ \frac{X}{5}[/tex]
[tex]- 3 = \frac{X}{5}[/tex]
Multiply both sides by 5
[tex]- 3 * 5 = \frac{X}{5} * 5[/tex]
[tex]X = -15[/tex]
Substitute -15 for X in [tex]2a(b - 3) + 5(b + \frac{X}{5})[/tex]
[tex]2a(b - 3) + 5(b + \frac{-15}{5})[/tex]
[tex]2a(b - 3) + 5(b - \frac{15}{5})[/tex]
[tex]2a(b - 3) + 5(b - 3)[/tex]
[tex](2a + 5)(b - 3)[/tex]
The two linear expressions are [tex](2a+ 5)[/tex] and [tex](b - 3)[/tex]
Their product will result in [tex]2ab - 6a + 5b - 15[/tex]
Hence, the constant is -15
Find the amount and present value of 10 quarterly payments of $ 1500, if the interest rate is 25% compounded each month.
Given Information:
Monthly payment = MP = $1500/4 = $375
Monthly interest rate = r = 25/12 = 2.083%
Required Information:
Present Value = ?
Answer:
[tex]PV = \$10,110[/tex]
Explanation:
n = 10*4
n = 40 monthly payments
The present value is found by
[tex]$ PV = MP \times \frac{ (1 - \frac{1}{(1+r)^n} )}{r} $[/tex]
Where r is monthly interest rate.
MP is the monthly payment.
[tex]$ PV = 375 \times \frac{ (1 - \frac{1}{(1+0.02083)^{40}} )}{0.02083} $[/tex]
[tex]PV = 375 \times (26.96)[/tex]
[tex]PV = \$10,110[/tex]
Therefore, $10,110 is the present value of 10 quarterly payments of $1500 each at 25% interest rate compounded each month.
Jane exchanged £100 for 216 Swiss francs. After buying a meal and a present to take home,she had 70 francs left.How much is this in £?
Answer:
£32.4
Step-by-step explanation:
£100 = 216 Swiss francs
x = 70 francs
70 x 100=7000/216=32.4