bird flies straight northeast a distance of 86.3 km for 2.7 h. With the x-axis due east and the y-axis due north, what is the displacement (in km) in unit vector notation for the bird? (Express your answer in vector form.)

Answers

Answer 1

To find the displacement of the bird in unit vector notation, we can break down the bird's motion into its northward and eastward components.

The northward component can be calculated using the formula: displacement north = velocity north × time.

The eastward displacement = 86.3 km × cos(45°) = 86.3 km × 0.7071 ≈ 61.1 km. Therefore, the displacement in unit vector notation is approximately (61.1 km, 61.1 km). The bird's displacement in unit vector notation is approximately (61.1 km, 61.1 km), indicating that it traveled approximately 61.1 km north and 61.1 km east during its flight of 86.3 km in a straight northeast direction for 2.7 hours.

Learn more about displacement here : brainly.com/question/13103719
#SPJ11


Related Questions

An atom is about 10 to the power of negative 8 end exponent cm across. (there are 2.54 centimeters in an inch.) the earth is about 12742 km in diameter. how much larger in diameter is it than an atom?

Answers

The diameter of an atom is about [tex]10^{-8} cm[/tex], while the diameter of the Earth is about 12,742 kilometres. This means that the Earth is 100 quadrillion times larger in diameter than an atom.

Calculating the difference in diameter, using the following formula:

The difference in diameter = diameter of Earth/diameter of an atom

Plugging in the values:

The difference in diameter =[tex]12742 km / (10^{-8})[/tex]

difference in diameter = 12742000000000 centimeters

The difference in diameter = 12742000000000 / 2.54 centimetres/inch

difference in diameter = 5043100000000 inches

difference in diameter = 100 quadrillion times

This means that the Earth is 100 quadrillion times larger in diameter than an atom.

Learn more about atom here:

https://brainly.com/question/33447583

#SPJ11

Write in the form and identify the amplitude, angular frequency, and the phase shift of the spring motion.

Answers

The task requires writing an equation in the form of spring motion and identifying its amplitude, angular frequency, and phase shift.

In the form of spring motion, the equation can be written as y(t) = A * cos(ωt + φ), where A represents the amplitude, ω is the angular frequency, and φ denotes the phase shift.

The amplitude (A) represents the maximum displacement from the equilibrium position. It indicates the maximum distance the spring stretches or compresses from its rest position.

The angular frequency (ω) determines the rate at which the spring oscillates. It is related to the period of the motion and can be calculated using the formula ω = 2π / T, where T is the period of oscillation.

The phase shift (φ) indicates the horizontal shift or delay in the motion. It represents the initial displacement of the spring from its equilibrium position at t = 0.

By analyzing the given equation in the form of spring motion and observing the coefficients, we can determine the amplitude, angular frequency, and phase shift, providing valuable insights into the characteristics of the spring's oscillatory motion.

Learn more about amplitude here:

https://brainly.com/question/9525052

#SPJ11

find the current through a person and identify the likely effect on her if she touches a 120–v ac source: if she is standing on a rubber mat and offers a total resistance of 250 kω.

Answers

To find the current through a person, we can use Ohm's Law which states that current (I) is equal to voltage (V) divided by resistance (R). In this case, the voltage is 120 V and the resistance is 250 kΩ (kiloohms).

Using the formula I = V/R, we can calculate the current as follows:

I = 120 V / 250 kΩ
I = 0.00048 A or 480 μA (microamperes)

Now, let's identify the likely effect on the person if she touches a 120 V AC source while standing on a rubber mat. Rubber is a good insulator and has high resistance, which means it does not conduct electricity well. Therefore, the rubber mat would prevent the flow of current through the person's body to a significant extent.

However, even with the rubber mat, there is still a possibility of some current passing through the person due to capacitive coupling or other factors. The effect on the person would likely be minimal since the current is very low (480 μA). It may result in a slight tingling sensation or a mild shock, but it is unlikely to cause any significant harm. Nonetheless, it is always important to prioritize safety and avoid direct contact with electrical sources.

To know more about resistance visit :

https://brainly.com/question/29427458

#SPJ11

Find to three significant digits the charge and the mass of the following particles. Suggestion: Begin by looking up the mass of a neutral atom on the periodic table of the elements in Appendix C. (f) quadruply ionized nitrogen atoms, N⁴⁺ , found in plasma in a hot star

Answers

Charge of quadruply ionized nitrogen atoms (N⁴⁺): +4e

Mass of quadruply ionized nitrogen atoms (N⁴⁺): 6.652 x 10⁻²⁶ kg

What is the charge of quadruply ionized nitrogen atoms (N⁴⁺) and how can it be determined?

The charge of quadruply ionized nitrogen atoms (N⁴⁺) is +4e, where 'e' represents the elementary charge (1.602 x 10⁻¹⁹ C). This charge is determined by the loss of four electrons from the neutral nitrogen atom (N). Each electron carries a charge of -e, so the removal of four electrons results in a net charge of +4e.

To find the mass of N⁴⁺, we begin by looking up the atomic mass of a neutral nitrogen atom (N) on the periodic table. The atomic mass of nitrogen is approximately 14.007 atomic mass units (u). Since N⁴⁺ has lost four electrons, it remains with the same number of protons as the neutral nitrogen atom, i.e., 7. Thus, the mass of N⁴⁺ remains the same as the neutral nitrogen atom.

Converting atomic mass units to kilograms, we use the conversion factor: 1 u = 1.661 x 10⁻²⁷ kg. Therefore, the mass of N⁴⁺ is approximately 6.652 x 10⁻²⁶ kg (14.007 u * 1.661 x 10⁻²⁷ kg/u).

Learn more about: nitrogen atoms

brainly.com/question/33169732

#SPJ11

For this quiz, we shall return to the radio control car track that we visited briefly on the last quiz. The track is 10 meters long and perfectly straight. A series of reference marks are 1. 0 meter apart along the track. A judge sets her stopwatch to 0. 0 seconds, then she starts her watch at the instant the car passes the 2. 0 meter mark. When the car passes the 8. 0 meter mark, the judge reads 3. 9 seconds on her stopwatch. Using equation x:=:x0:+:vt x = x 0 + v t , calculate v v in meters per second

Answers

The velocity of the car is approximately 1.538 meters per second.

To calculate the velocity (v) of the car in meters per second, we can use the equation x = x0 + vt.

Given information:
- The track is 10 meters long.
- The reference marks are 1.0 meter apart.
- The car passes the 2.0 meter mark when the stopwatch starts.
- The car passes the 8.0 meter mark after 3.9 seconds.

Let's calculate the initial position (x0):
The car passes the 2.0 meter mark when the stopwatch starts, so x0 = 2.0 meters.

Now, let's calculate the final position (x):
The car passes the 8.0 meter mark, so x = 8.0 meters.

Next, let's calculate the time (t):
The judge reads 3.9 seconds on her stopwatch, so t = 3.9 seconds.

Now, we can use the equation x = x0 + vt and rearrange it to solve for v:
x - x0 = vt
8.0 - 2.0 = v * 3.9
6.0 = 3.9v

To isolate v, divide both sides of the equation by 3.9:
6.0 / 3.9 = v
1.538 = v

Therefore, the velocity of the car is approximately 1.538 meters per second.

Know more about velocity here,

https://brainly.com/question/30559316

#SPJ11

Choose a right-hand side which gives no solution and another right-hand side which gives infinitely many solutions. what are two of those solutions? 3x 2y = 10 6x 4y = .

Answers

To choose a right-hand side that gives no solution, we can use the equation 6x + 4y = 20. When we compare this equation to 3x + 2y = 10, we can see that the two equations have different coefficients. Therefore, there is no solution to the system.
To choose a right-hand side that gives infinitely many solutions, we can use the equation 6x + 4y = 30. When we compare this equation to 3x + 2y = 10, we can see that the two equations have the same coefficients. Therefore, the system has infinitely many solutions.
As for the solutions to the system 3x + 2y = 10 and 6x + 4y = 30, any pair of values (x, y) that satisfies both equations would be a solution. For example, (2, 2) and (4, -1) are two possible solutions to this system.

To know more about coefficients visit:

https://brainly.com/question/1594145

#SPJ11

Light sample a has a frequency of 4.70 × 10¹⁵ hz and light sample b has a frequency of 8.70 x 10¹⁸ hz. what is the wavelength of light sample a in meters?

Answers

The wavelength of light sample a can be calculated using the formula: wavelength = speed of light / frequency

The speed of light is a constant value, approximately 3.00 x [tex]10^8 meters[/tex] per second.

Given that the frequency of light sample a is 4.70 x [tex]10^15[/tex]Hz, we can substitute the values into the formula:

wavelength = (3.00 x [tex]10^8[/tex] m/s) / (4.70 x [tex]10^15[/tex] Hz)

To simplify the calculation, we can divide both the numerator and denominator by 10^8:

wavelength = (3.00 / 4.70) x[tex]10^(-8-15)[/tex]

Simplifying further, we get:

wavelength = (0.638) x [tex]10^(-23)[/tex]

Converting scientific notation to decimal notation, the wavelength of light sample a is approximately 6.38 x [tex]10^(-24)[/tex]meters.

To know more about wavelength visit:

https://brainly.com/question/31143857

#SPJ11

And instead of tolling the bell, for church, our little sexton – sings. what is the most likely reason for the poet to oppose the phrases "tolling the bell" and "sings" in these lines?

Answers

The poet likely opposes the phrases "tolling the bell" and "sings" because they represent contrasting tones and convey different emotions associated with the act of announcing the start of a church service.

The opposition between "tolling the bell" and "sings" in the given lines suggests a stark contrast in the way the church service is traditionally announced. "Tolling the bell" evokes a somber and solemn tone, often associated with mourning or signaling a significant event. On the other hand, "sings" implies a more joyful and celebratory atmosphere, often associated with music and communal worship.

The poet's opposition to these phrases could stem from a desire to challenge or subvert conventional religious practices. By replacing the tolling of the bell with singing, the poet may be advocating for a more vibrant and participatory form of worship. This opposition could also highlight the poet's inclination towards a more personal and emotional connection with spirituality, emphasizing the power of music and individual expression in religious rituals.

Overall, the contrasting phrases serve to emphasize the poet's alternative vision of church services and their intent to evoke a different emotional response from the congregation.

Learn more about phrases here :

brainly.com/question/14331078

#SPJ11

Rita's hands stayed cool when she rubbed them. the water evaporated. how did that help ?

Answers

Rita's hands stayed cool when she rubbed them because the water evaporated. Evaporation is a process where water changes from a liquid state to a gas state, taking away heat from the surroundings.

When Rita rubbed her hands, the friction generated heat, causing the water on her hands to evaporate. This evaporation process helps in cooling her hands due to the principle of evaporative cooling.

Evaporative cooling occurs when a liquid, in this case, the water on Rita's hands, changes its state from a liquid to a gas (water vapor). During evaporation, the higher-energy molecules escape from the liquid surface, which leads to a decrease in the average kinetic energy of the remaining molecules and a cooling effect.

As the water evaporates from Rita's hands, it absorbs heat energy from her skin. This heat energy is used to break the intermolecular bonds and convert the liquid water into water vapor. The process of evaporation requires energy, and this energy is drawn from the surroundings, which includes Rita's hands.

As a result, the evaporation of water from Rita's hands leads to a cooling sensation. It helps to lower the temperature of her hands by transferring heat energy from her skin to the evaporating water molecules. This cooling effect can provide relief and help maintain a comfortable temperature for her hands.

To learn more about evaporation visit: https://brainly.com/question/2013258

#SPJ11

what is the change in internal energy (in j) of a system that releases 675 j of thermal energy to its surroundings and has 3.50 × 102 cal of work done on it? give your answer in scientific notation.

Answers

The change in internal energy (in J) of the system is 7.8944 × 10^2 J.

The calculation of the internal energy change (ΔU) of a system can be done using the formula:

[tex]\[ \Delta U = q + w \][/tex]

Given the following values:

Heat released, q = -675 J

Work done, w = 3.50 × 10^2 cal

In this case, the heat released is negative (since it's being released to the surroundings), and the work done is positive. Thus:

[tex]\[ \Delta U = -675 J +[/tex](3.50 ×[tex]10^2[/tex] cal [tex]\times 4.184 J[/tex]

Simplifying the equation:

[tex]\[ \Delta U = -675 J + 1464.44 J \][/tex]

[tex]\[ \Delta U = 789.44 J \][/tex]

To express the answer in scientific notation, we can convert it to:

[tex]\[ \Delta U = 7.8944 \times 10^2 J \][/tex]

Learn more about energy

https://brainly.com/question/1932868

#SPJ11

What is the exposure response and prevention technique, and how can it help someone overcome a phobia?

Answers

The exposure response and prevention technique is a therapeutic approach used to help individuals overcome phobias. It involves gradually exposing the person to the feared object or situation in a controlled and supportive environment.
Here's how it works:
Assessment: The therapist first conducts an assessment to understand the specific phobia and its triggers. They gather information about the person's history, symptoms, and the intensity of their fear.
Education: The therapist educates the individual about the nature of phobias and how exposure can help reduce anxiety. They explain that avoidance only reinforces fear and that facing the fear is essential for overcoming it.
Creating a fear hierarchy: Together, the therapist and individual create a fear hierarchy, which is a list of situations related to the phobia, ranging from least to most anxiety-provoking. For example, if someone has a fear of flying, the hierarchy may include looking at pictures of airplanes, visiting an airport, and eventually taking a short flight.
Exposure: The person starts with the least anxiety-provoking situation on the fear hierarchy. They repeatedly expose themselves to this situation until their anxiety reduces significantly. This process is known as systematic desensitization. Once they feel comfortable, they move on to the next item on the hierarchy and repeat the process.
Response prevention: During exposure, the individual is encouraged to resist any safety behaviors or avoidance tactics that may decrease anxiety in the short term but hinder long-term progress. This helps break the cycle of fear and avoidance.
Gradual progression: The exposure continues, gradually progressing through the fear hierarchy until the person can confidently face the most anxiety-provoking situation without experiencing overwhelming fear.
By repeatedly exposing themselves to the feared object or situation, individuals can retrain their brains to respond differently, reducing the intensity of their fear over time. The exposure response and prevention technique can be highly effective in helping people overcome their phobias and regain control over their lives.
The exposure response and prevention technique is a therapeutic approach that involves gradually exposing individuals to their feared object or situation. By systematically confronting their fears and resisting avoidance behaviors, individuals can overcome phobias and reduce anxiety. This technique is based on the principle of systematic desensitization and can be a powerful tool in helping people regain control over their lives.

To know more about fear hierarchy visit :

brainly.com/question/30010359

#SPJ11

While conducting a secondary wire resistance test, Technician A states that wire resistance should be approximately 12,000 ohms per foot. Technician B says that resistance should be about 50,000 ohms maximum for long spark plug cables. Who is right

Answers

Technician A and B both are wrong. This is because wire resistance depends on the length and gauge of the wire. It is not a fixed value. Therefore, both technicians' statements are false are the Resistance is the opposition to current flow It is calculated by Ohm's Law

Resistance = Voltage / Current According to Ohm's Law, resistance is proportional to voltage and inversely proportional to current. The resistance of the wire depends on its length and gauge. Resistance increases as wire length increases, and it decreases as wire gauge increases. However, the resistance of a wire is not a fixed value. It varies depending on the wire's length and gauge. Therefore, both technicians' statements are false.

According to the given problem, both technicians have made an incorrect statement. Technician A states that wire resistance should be approximately 12,000 ohms per foot, and Technician B says that resistance should be about 50,000 ohms maximum for long spark plug cables.Both of these statements are incorrect. This is because the resistance of a wire depends on its length and gauge, as discussed above. Furthermore, the values they mentioned are not universal; they only apply to specific scenarios.The resistance of a wire increases as its length increases. Therefore, the resistance of a long spark plug cable is higher than that of a short spark plug cable. In addition, as the gauge of the wire decreases, the resistance increases. As a result, the resistance of a thin wire is higher than that of a thick wire.

To know more about Ohm's Law Visit;

https://brainly.com/question/1247379

#SPJ11

A light spring with force constant 3.85N/m is compressed by 8.00cm as it is held between a 0.250-kg block on the left and a 0.500-kg block on the right, both resting on a horizontal surface. The spring exerts a force on each block, tending to push the blocks apart. The blocks are simultaneously released from rest. Find the acceleration with which each block starts to move, given that the coefficient of kinetic friction between each block and the surface is(c) 0.4624

Answers

The coefficient of kinetic friction between each block and the surface is (a) 0 then  the acceleration is [tex]12.32 m/s^2[/tex], (b) 0.100  then  the acceleration is [tex]0.308 m/s^2[/tex], and (c) 0.462  then  the acceleration is [tex]-1.143 m/s^2[/tex]

The force of the spring is equal to the spring constant multiplied by the amount of compression. In this case, the spring constant is 3.85 N/m and the compression is 8.00 cm, so the force of the spring is 3.08 N.

The frictional force between the block and the surface is equal to the coefficient of kinetic friction multiplied by the mass of the block multiplied by the acceleration due to gravity. In cases (a) and (b), the coefficient of kinetic friction is 0, so the frictional force is also 0.

In case (a), where there is no friction, the acceleration of each block will be equal to the force of the spring divided by its mass, or 3.08 N / 0.250 kg = [tex]12.32 m/s^2[/tex].

In case (b), where there is friction, the acceleration of each block will be equal to the force of the spring minus the frictional force divided by its mass, or [tex]3.08 N - 0.100 * 0.250 kg * 9.8 m/s^2[/tex] =[tex]0.308 m/s^2[/tex].

In case (c), where the coefficient of kinetic friction is 0.462, the acceleration of each block will be equal to the force of the spring minus the frictional force divided by its mass, or [tex]3.08 N - 0.462 * 0.500 kg * 9.8 m/s^2[/tex] =[tex]-1.143 m/s^2[/tex].

Learn more about kinetic friction here:

https://brainly.com/question/30886698

#SPJ11

The complete question is:

A light spring with a force constant of 3.85N/m is compressed by 8.00cm as it is held between a 0.250kg block on the left and a 0.500kg block on the right, both resting on a horizontal surface. The spring exerts a force on each block, tending to push the blocks apart. The blocks are simultaneously released from rest. Find the acceleration with which each block starts to move, given that the coefficient of kinetic friction between each block and the surface is (a) 0, (b) 0.100, and (c) 0.462

in physics class, carrie learns that a force, f, is equal to the mass of an object, m, times its acceleration, a. she writes the equation f

Answers

The acceleration of the object can be calculated using the formula f = ma. With a force of 7.92 N and a mass of 3.6 kg, the acceleration is approximately 2.2 m/s².

According to Newton's second law of motion, the force acting on an object is equal to the product of its mass and acceleration. The formula is represented as f = ma, where f is the force, m is the mass, and a is the acceleration.

Given that f = 7.92 N and m = 3.6 kg, we can substitute these values into the equation and solve for a.

f = ma

7.92 N = 3.6 kg * a

To find the value of a, we can rearrange the equation:

a = f / m

a = 7.92 N / 3.6 kg

a ≈ 2.2 m/s²

Learn more about acceleration here:

https://brainly.com/question/30499732

#SPJ11

a charge q is transferred from an initially uncharged plastic ball to an identical ball 28 cm away. the force of attraction is then 62 mn .

Answers

To determine the value of the charge q transferred between the two plastic balls, we can use Coulomb's law, which relates the force between two charged objects to the distance between them and the magnitude of the charges.

Coulomb's law states that the force of attraction or repulsion between two charges is given by the formula:

F = k * (|q1| * |q2|) / r^2,

where F is the force between the charges, k is the electrostatic constant (approximately 8.99 x 10^9 Nm^2/C^2), |q1| and |q2| are the magnitudes of the charges, and r is the distance between the charges.

Given:

The force of attraction between the plastic balls, F = 62 N,

The distance between the balls, r = 28 cm = 0.28 m.

We can rearrange Coulomb's law to solve for the magnitude of the charge q1 or q2:

|q1| * |q2| = (F * r^2) / k.

Substituting the given values:

|q1| * |q2| = (62 N * (0.28 m)^2) / (8.99 x 10^9 Nm^2/C^2).

|q1| * |q2| ≈ 6.226 x 10^(-6) C^2.

Since the two plastic balls are initially uncharged, the magnitudes of the charges on each ball will be equal, so we can express |q1| and |q2| as q:

q^2 ≈ 6.226 x 10^(-6) C^2.

Taking the square root of both sides:

q ≈ √(6.226 x 10^(-6)) C.

q ≈ 0.0025 C.

Therefore, the magnitude of the charge transferred between the two plastic balls is approximately 0.0025 C.

learn more about charge here:

brainly.com/question/28721069

#SPJ11

a parallel-plate capacitor has plate area 40 cm2. the dielectric has two layers with permittivity e1 5 4eo and e2 5 6eo, and each layer is 2 mm thick. if the capacitor is connected to a voltage 12 v, calculate:

Answers

The capacitance of the parallel-plate capacitor is approximately 42.688 pF, and the potential difference across the capacitor is 12 V.

To calculate the capacitance of the parallel-plate capacitor and the electric field between the plates, we can use the following formula:

C = (ε₀ * εᵣ * A) / d

where:

C is the capacitance,

ε₀ is the vacuum permittivity (8.854 x 10⁻¹² F/m),

εᵣ is the relative permittivity (dielectric constant),

A is the plate area, and

d is the distance between the plates.

Given:

Plate area (A) = 40 cm² = 0.004 m²

Dielectric thickness (d₁, d₂) = 2 mm = 0.002 m

Permittivity of vacuum (ε₀) = 8.854 x 10⁻¹² F/m

For the first layer with permittivity ε₁ = 4ε₀:

C₁ = (ε₀ * ε₁ * A) / d₁

For the second layer with permittivity ε₂ = 6ε₀:

C₂ = (ε₀ * ε₂ * A) / d₂

To calculate the total capacitance (Ctotal) when the two layers are in series, we sum the inverse of the individual capacitances:

1/Ctotal = 1/C₁ + 1/C₂

To find the potential difference (V) across the capacitor, we can use the formula:

V = Q / Ctotal

where Q is the charge stored on the capacitor.

Now, let's calculate the capacitance and potential difference:

Calculate the capacitance of the first layer (C₁):

C₁ = (8.854 x 10⁻¹² F/m * 4 * 8.854 x 10⁻¹² F/m * 0.004 m²) / 0.002 m

C₁ = 71.072 x 10⁻¹² F = 71.072 pF

Calculate the capacitance of the second layer (C₂):

C₂ = (8.854 x 10⁻¹² F/m * 6 * 8.854 x 10⁻¹² F/m * 0.004 m²) / 0.002 m

C₂ = 106.608 x 10⁻¹² F = 106.608 pF

Calculate the total capacitance (Ctotal):

1/Ctotal = 1/C₁ + 1/C₂

1/Ctotal = 1/71.072 x 10⁻¹² F + 1/106.608 x 10⁻¹² F

1/Ctotal = 0.014067 x 10¹² F⁻¹ + 0.009381 x 10¹² F⁻¹

1/Ctotal = 0.023448 x 10¹² F⁻¹

Ctotal = 42.688 x 10⁻¹² F = 42.688 pF

Calculate the potential difference (V):

V = Q / Ctotal

V = 12 V (given)

Therefore, the capacitance of the parallel-plate capacitor is approximately 42.688 pF, and the potential difference across the capacitor is 12 V.

The given question is incomplete and the complete question is '' a parallel-plate capacitor has plate area 40 cm2. the dielectric has two layers with permittivity e1 5 4eo and e2 5 6eo, and each layer is 2 mm thick. if the capacitor is connected to a voltage 12 v, calculate the capacitance of the parallel-plate capacitor and the potential difference.''

To know more about capacitance here

https://brainly.com/question/31871398

#SPJ4

A 40.0 -kg box initially at rest is pushed 5.00 m along a rough, horizontal floor with a constant applied horizontal force of 130N . The coefficient of friction between box and floor is 0.300 . Find(f) the final speed of the box.

Answers

The net work done is equal to the change in kinetic energy, which allows us to solve for the final speed of the box.

To find the final speed of the box pushed along a rough, horizontal floor, we need to consider the work done by the applied force, the work done by friction, and the change in kinetic energy of the box.

By calculating the work done by the applied force and the work done by friction, we can determine the net work done on the box. The net work done is equal to the change in kinetic energy, which allows us to solve for the final speed of the box.

The work done by the applied force can be calculated as the product of the force and the displacement in the direction of the force. In this case, the work done by the applied force is given by W_applied = F_applied * d * cos(theta), where F_applied is the applied force, d is the displacement, and theta is the angle between the force and displacement vectors.

The work done by friction can be calculated as the product of the frictional force and the displacement. The frictional force is equal to the coefficient of friction multiplied by the normal force. The normal force is the force exerted by the floor on the box and is equal to the weight of the box.

The net work done on the box is the difference between the work done by the applied force and the work done by friction. This net work is equal to the change in kinetic energy of the box.

By equating the net work to the change in kinetic energy (given by (1/2)mv_f^2 - (1/2)mv_i^2, where m is the mass of the box and v_i is the initial velocity), we can solve for the final velocity (v_f) of the box.

By performing these calculations, we can determine the final speed of the box pushed along the rough floor.

Learn more about kinetic energy here:

brainly.com/question/999862

#SPJ11

A 1500 kg car is approaching the hill shown in (Figure 1) at 11 m/s when it suddenly runs out of gas. Neglect any friction.

Answers

The 1500 kg car is approaching a hill at a speed of 11 m/s. When it runs out of gas, it will start to slow down due to the gravitational force acting on it. In this scenario, we can neglect any friction.

To understand what happens next, we need to consider the forces at play. The main force acting on the car is its weight, which is the force of gravity pulling it downward. As the car goes up the hill, the weight force will act against its motion, causing it to slow down.

Since the car is moving uphill, the gravitational force is acting in the opposite direction of its velocity. This means that the work done by the force of gravity is negative. The work done is given by the equation: work = force * distance * cos(angle between force and displacement).

As the car moves up the hill, its potential energy increases while its kinetic energy decreases. At the top of the hill, the car will momentarily come to a stop before starting to roll back down due to gravity.

To know more about gravitational force visit:

https://brainly.com/question/32609171

#SPJ11

7. a bullet of mass 100 g is fired into a stationary target of mass 4.o kg. the target is mounted on low-friction wheels and moves off at a velocity of 5.0 ms-1 when the bullet enters it. the bullet stays in the target. calculate the velocity of the bullet before it strikes the target.

Answers

To calculate the velocity of the bullet before it strikes the target, we can use the principle of conservation of momentum. The momentum before the collision is equal to the momentum after the collision.


Momentum before = Momentum after
The momentum before the collision is given by the equation:
(mass of bullet) x (velocity of bullet) = (mass of bullet + mass of target) x (velocity after collision)
Plugging in the given values:
(0.1 kg) x (velocity of bullet) = (0.1 kg + 4.0 kg) x (5.0 m/s)
Simplifying the equation:
0.1 kg x (velocity of bullet) = 4.1 kg x (5.0 m/s)
Solving for the velocity of the bullet:
Velocity of bullet = (4.1 kg x 5.0 m/s) / 0.1 kg
Velocity of bullet = 205 m/s
So, the velocity of the bullet before it strikes the target is 205 m/s.

To know more about velocity visit.

https://brainly.com/question/30559316

#SPJ11

Stocks a, b and c have betas of 1.5, 0.4, and 0.9 respectively. what is the beta of an equally weighted portfolio of a, b and c?

Answers

the beta of the equally weighted portfolio of stocks a, b, and c is approximately 0.933.

To calculate the beta of an equally weighted portfolio of stocks a, b, and c, you need to find the weighted average of their betas. The beta of an equally weighted portfolio is calculated by taking the average of the betas of the individual stocks.

In this case, the beta of stock a is 1.5, the beta of stock b is 0.4, and the beta of stock c is 0.9.

To find the beta of the equally weighted portfolio, you would add up the betas of the individual stocks and divide by the number of stocks. So, (1.5 + 0.4 + 0.9) / 3 = 2.8 / 3 = 0.933.

Therefore, the beta of the equally weighted portfolio of stocks a, b, and c is approximately 0.933.

to learn more about portfolio

https://brainly.com/question/17165367

#SPJ11

Explain why the curve has two segments in which heat is added to the water but the temperature does not rise. Drag the terms on the left to the appropriate blanks on the right to complete the sentences. ResetHelp There are two horizontal lines in the heating curve because there are two Blank phase changes. The heat that is added is used to change the phase from solid to Blank or from liquid to Blank, and therefore there is no rise in temperature.

Answers

There are two horizontal lines in the heating curve because there are two phase changes. The heat that is added is used to change the phase from solid to liquid or from liquid to gas, and therefore there is no rise in temperature.

During phase changes, the added heat is utilized to overcome the intermolecular forces holding the particles together rather than increasing the kinetic energy of the particles, which is responsible for temperature changes. The first horizontal line corresponds to the melting or fusion of a solid substance into a liquid state. In this phase change, heat energy is absorbed as the solid gains enough energy to break the intermolecular forces and transition into a liquid, but the temperature remains constant.

The second horizontal line represents the vaporization or boiling of a liquid substance into a gaseous state. The added heat energy is used to overcome the intermolecular forces between liquid particles and convert them into a gas. Again, during this phase change, the temperature remains constant.

Once the phase change is complete, further addition of heat will result in an increase in temperature as the average kinetic energy of the particles increases. This is depicted by the sloped lines in the heating curve.

Know more about heating curve here,

https://brainly.com/question/29592874

#SPJ11

Is it possible for the magnetic force on a charge moving in a magnetic field to be zero?

Answers

Yes, it is possible for the magnetic force on a charge moving in a magnetic field to be zero.

This occurs when the charge is moving parallel or anti-parallel to the magnetic field. In this case, the magnetic force experienced by the charge is zero because the angle between the velocity of the charge and the magnetic field is either 0 degrees or 180 degrees. The magnetic force is given by the equation

F = qvBsinθ,

where F is the magnetic force, q is the charge, v is the velocity, B is the magnetic field, and θ is the angle between the velocity and the magnetic field.

When θ is 0 or 180 degrees, sinθ is zero, and therefore the magnetic force is zero.

Learn more about magnetic field at https://brainly.com/question/14848188

#SPJ11

If the splash is heard 1. 07 seconds later, what was the initial speed of the rock? take the speed of sound in the air to be 343 m/s

Answers

The initial speed of the rock can be calculated using the time it takes for the sound of the splash to reach the observer and the speed of sound in air. The initial speed of the rock is approximately 342.24 m/s.

The time it takes for the sound of the splash to reach the observer can be used to determine the distance traveled by the sound wave. Since sound travels at a known speed in air, which is given as 343 m/s, we can use the equation d = vt, where d is the distance, v is the velocity, and t is the time.

In this case, the time is given as 1.07 seconds. The distance traveled by the sound wave can be calculated as d = 343 m/s × 1.07 s = 366.01 meters.

Assuming the initial speed of the rock is the same as the speed of the sound wave, we can use the equation v = d/t, where v is the velocity (initial speed of the rock), d is the distance traveled, and t is the time taken. Substituting the values, we have v = 366.01 m / 1.07 s ≈ 342.24 m/s.

Therefore, the initial speed of the rock is approximately 342.24 m/s.

Learn more about velocity here:

https://brainly.com/question/18084516

#SPJ11

How long (in seconds) does it take for the current i to reach imax (and be moving in the same direction) from the previous imax?

Answers

The time it takes for the current to reach imax (and be moving in the same direction) from the previous imax is Δt / Δi.

To calculate the time it takes for the current to reach its maximum value and continue moving in the same direction from the previous maximum, we need to determine the change in time and the change in current between the two maximum values.

Let's denote the time at the previous maximum as t_prev and the time at the current maximum as t_max. Similarly, let's denote the previous maximum current as i_prev and the current maximum current as i_max.

The change in time between the two maximum values is given by Δt = t_max - t_prev.

The change in current between the two maximum values is given by Δi = i_max - i_prev.

To find the time it takes for the current to reach imax from the previous imax, we divide the change in time by the change in current: Δt / Δi.

To learn more about current -

brainly.com/question/29824308

#SPJ11

Part a which fibers generate the smallest value for conduction velocity? Which fibers generate the smallest value for conduction velocity? c fibers d fibers b fibers a fibers

Answers

The fibers that generate the smallest value for conduction velocity are the C fibers.

C fibers are unmyelinated nerve fibers with a small diameter. Due to their lack of myelin sheath, which acts as an insulator, the conduction velocity of C fibers is relatively slow compared to other types of nerve fibers. These fibers are responsible for transmitting sensory information related to pain, temperature, and itch.

On the other hand, A fibers, specifically A-delta and A-beta fibers, are myelinated nerve fibers with larger diameters. The myelin sheath allows for faster conduction of nerve impulses, resulting in higher conduction velocities compared to C fibers. A-delta fibers are involved in the transmission of sharp, fast pain signals, while A-beta fibers are responsible for conveying touch and pressure sensations.

In summary, C fibers generate the smallest value for conduction velocity due to their small diameter and lack of myelin sheath, while A fibers, particularly A-delta and A-beta fibers, have larger diameters and myelination, resulting in faster conduction velocities.

To learn more about conduction velocity click here :brainly.com/question/25818094

#SPJ11

abby reads that light travels almost 900,000 times faster than sound. she also knows that it takes light from the sun about 8 minutes to reach earth. why does it take light from the sun so long to reach us on earth when it is traveling so fast?

Answers

The reason it takes light from the sun about 8 minutes to reach Earth, despite its incredible speed, is due to the vast distance between the two. The speed of light in a vacuum is approximately 299,792 kilometers per second, which is indeed nearly 900,000 times faster than the speed of sound.

However, the distance between the sun and Earth is about 93 million miles (150 million kilometers). Such a great distance requires a significant amount of time for light to traverse it.

When we observe the sun from Earth, we are essentially witnessing the light that was emitted by the sun 8 minutes ago. This delay is the time it takes for the light to travel across space to reach our planet.

To know more about speed of light, refer to the link :

https://brainly.com/question/29216893#

#SPJ11

The longest pipe on a certain organ is 4.88m. What is the fundamental frequency ( at .0.00°C ? ) if the pipe is(c) What will be the frequencies at 20.0°C ?

Answers

fundamental frequency at 20.0°C = 343.2 m/s / (2 * 4.88m)
fundamental frequency at 20.0°C = 35.21 Hz
Therefore, the fundamental frequency at 20.0°C is 35.21 Hz.

To find the fundamental frequency of the longest pipe on the organ, we can use the formula:

fundamental frequency = (speed of sound in air) / (2 * length of the pipe)

The speed of sound in air at 0.00°C is approximately 331.5 m/s. Therefore, the fundamental frequency at 0.00°C is:

fundamental frequency = 331.5 m/s / (2 * 4.88m)
fundamental frequency = 33.93 Hz

To calculate the frequencies at 20.0°C, we need to take into account the change in the speed of sound. The speed of sound at 20.0°C is approximately 343.2 m/s. Using the same formula as before, we get:

fundamental frequency at 20.0°C = 343.2 m/s / (2 * 4.88m)
fundamental frequency at 20.0°C = 35.21 Hz

Therefore, the fundamental frequency at 20.0°C is 35.21 Hz.

To know more about speed visit:

brainly.com/question/17661499

#SPJ11

use a momentum balance to determine the velocity profile for a power-law fluid flowing between two horizontal parallel plates separated by a distance 2h. the pressure gradient along the flow is constant. the power law model is given as

Answers

To determine the velocity profile for a power-law fluid flowing between two horizontal parallel plates separated by a distance 2h, we can use a momentum balance.

The momentum balance equation for this case is given by:

τ = -∂p/∂x + μ(du/dy)^(n-1)(du/dy)

Where:
τ is the shear stress,
p is the pressure,
x is the direction of flow,
μ is the dynamic viscosity,
u is the velocity,
y is the distance from the plate, and
n is the power law index.

Since the pressure gradient along the flow is constant, we can assume that ∂p/∂x is a constant value. Integrating the momentum balance equation twice will help us determine the velocity profile.

However, the actual velocity profile for a power-law fluid cannot be obtained analytically. It requires numerical methods, such as the finite difference method or finite element method, to solve the resulting differential equation. These methods will provide a numerical solution for the velocity profile based on the given parameters and boundary conditions.

To know more about momentum visit :

https://brainly.com/question/24030570

#SPJ11

the captain of ship b knows that ship a uses 2-m-long missiles. she measures the length of the first missile, once it has finished accelerating, and finds it to be only 0.872 m long. what is the speed u of the missile, relative to ship b?

Answers

The speed of the missile, relative to ship B, can be determined using the concept of relative velocity. To solve this problem, we need to consider the lengths of the missiles and their relative velocities.

The length of the first missile is given as 0.872 m, while the length of the missiles used by ship A is 2 m. This means that the missile has contracted in length due to its high speed.

To find the speed of the missile, we can use the formula for length contraction, which is given by:

L = L0 * sqrt(1 - (v^2 / c^2))

Where:
L0 = Length of the object at rest
L = Length of the object in motion
v = Velocity of the object
c = Speed of light

We know that L0 (length of the missile at rest) is 2 m and L (length of the missile in motion) is 0.872 m. We need to solve for v (velocity of the missile).

Rearranging the formula, we get:

(v^2 / c^2) = 1 - (L^2 / L0^2)

Substituting the known values, we have:

(v^2 / c^2) = 1 - (0.872^2 / 2^2)

Simplifying, we find:

(v^2 / c^2) = 1 - (0.760384 / 4)

(v^2 / c^2) = 1 - 0.190096

(v^2 / c^2) = 0.809904

Taking the square root of both sides, we have:

v / c = sqrt(0.809904)

v / c = 0.89999

Multiplying both sides by c, we get:

v = 0.89999 * c

Now, to find the speed u of the missile relative to ship B, we need to subtract the velocity of ship B from the velocity of the missile.

So, the speed u of the missile, relative to ship B, is given by:

u = v - uB

To know more about relative velocity visit:

https://brainly.com/question/29655726

#SPJ11

The speed u of the missile, relative to ship B, is approximately 2.702 × 10^8 m/s.

Explanation :

The length of the missile measured by the captain of ship B, which is 0.872 m, is shorter than the 2-m-long missiles used by ship A. This indicates that the missile has experienced length contraction due to its high speed relative to ship B.

To find the speed u of the missile relative to ship B, we can use the concept of length contraction. The formula for length contraction is given by L' = L / γ, where L' is the contracted length, L is the rest length, and γ is the Lorentz factor.

In this case, the contracted length L' is 0.872 m and the rest length L is 2 m. We can rearrange the formula to solve for γ: γ = L / L'.

Substituting the given values, we have γ = 2 m / 0.872 m = 2.29.

The Lorentz factor is related to the velocity v of the missile relative to ship B by the equation γ = 1 / √(1 - (v/c)^2), where c is the speed of light.

We can rearrange this equation to solve for v: v = c * √(1 - 1/γ^2).

Substituting the Lorentz factor γ = 2.29 and the speed of light c = 3 × 10^8 m/s, we can calculate the speed v:

v = (3 × 10^8 m/s) * √(1 - 1/2.29^2)
v = (3 × 10^8 m/s) * √(1 - 1/5.2441)
v ≈ (3 × 10^8 m/s) * √(1 - 0.1907)
v ≈ (3 × 10^8 m/s) * √(0.8093)
v ≈ (3 × 10^8 m/s) * 0.9006
v ≈ 2.702 × 10^8 m/s

Learn more about speed from a given link :

https://brainly.com/question/13262646

#SPJ11

A 1000 kg roller coaster car has a speed of 25.0 m/s at the bottom of the ride. How high is the ride

Answers

To determine the height of the ride, the conservation of energy concept should be used. The sum of potential energy and kinetic energy is equal to the total mechanical energy, which is constant.

Conservation of energy conceptThe sum of potential and kinetic energy at the bottom of the ride is given by:Total mechanical energy = Kinetic energy + Potential energy(K + U)The kinetic energy is given by:K = (1/2)mv²where m is the mass of the roller coaster car and v is its speed.

K = (1/2)(1000 kg)(25 m/s)²= 312,500 J

The potential energy is given by:U = mghwhere g is the gravitational acceleration and h is the height of the ride. The potential energy is maximum when the kinetic energy is minimum, i.e., at the highest point.U = mgh= 312,500 JWe can use the given values to solve for h.h = U/mg= 312,500 J / (1000 kg)(9.81 m/s²)= 31.9 mTherefore, the height of the ride is 31.9 meters.

To know more about conservation visit :

https://brainly.com/question/30300512

#SPJ11

Other Questions
write a function elementwise array sum that computes the square of each value in list 1, the cube of each value in list 2, then returns a list containing the element-wise sum of these results. assume that list 1 and list 2 have the same number of elements, do not use for loops. The most liquid type of investment is? Kirstens cookie compnay how many dozens of cookies can you make in a night, assuming you accept orders from 8:30-12:30 and quit by 1 a.m.? A mutual fund earned an average annual return of 9.5% over the last 5 years. During that time, the average risk-free rate was 0.8% and the average market return was 6.1%. If the fund has beta of 1.09, what was its annual alpha Which of the following statements is true? Investing activities involve collecting the necessary funds to support the business. The purchase of equipment is an example of a financing activity. A business is usually involved in two types of activityfinancing and investing. Operating activities involve putting the resources of the business into action to generate a profit. A patient is undergoing court-ordered ect as a treatment for severe depression. the patient is refusing psychotropic medication. what should the nurse do? According to the free cash flow hypothesis, how does the distribution of dividends benefit shareholders? The _____ of the fibula extends farther distally, so that the stability created by the bony arrangement at the ankle joint is greater on the lateral aspect of the ankle than on the medial aspect. Given what you know of the acid base chemistry of hf, what is the concentration of hf in an aqueous solution with a ph of 6.11? Find the perimeter and area of the regular polygon circumscribed about \odot Q , with the given center and point X on the circle. Round to the nearest tenth, if necessary.octagon A B C D E F G H ; Q(3,-1) ; X(1,-3) Which set of arrows best represents the direction of the change in momentum of each ball? A person has $1,550 in liabilities, monthly savings of $200, and monthly gross income of $2,000. What is the person's savings ratio? scientists claim that one reason earth is warming is because it is absorbing more radiation from the sun. which data best support this claim? A. by 2100 only 50% if the solar energy will be reflected from the sea ice 3. matt is dinning at a restaurant that does not charge a sales tax. he would like to leave a 15% tip. select all of the following meals that matt can buy and leave his tip, for less than $20. 15% 15 tipamout *.15 a. hamburger and fries $12.75 b. chicken fajitas $16.87 c. pork chops with baked potato $17.10 d. fish and chips $17.45 e. skirt steak with fries $18.50 In dental imaging, no __________________ are used. 1. critical instruments 2. semicritical instruments 3. noncritical instruments monique has recently noticed some hair growing on her armpits and that she is accumulating fat on her hips. these changes that monique is experiencing are most likely a result of EVOLUTION CONNECTION Ethical considerations aside, if DNA-based technologies became widely used, how might they change the way evolution proceeds, as compared with the natural evolutionary mechanisms that have operated for the past 4 billion years? one person owns seven twelfths 712 of the franchise and the second person owns one sixth16 of the franchise. what fraction of the franchise does the third person own? the length of a covalent bond depends upon the size of the atoms and the bond order. for each pair of covalently bonded atoms, choose the one expected to have the shorter bond length. o-o or c-c br-i or i-i Brokers who use electronic storage media to store documents must satisfy several requirements. which is not one of the requirements?