Biologists tagged 72 fish in a lake on January 1 . On There are approximately fish in the lake. February 1 , they returned and collected a random sample of 44 fish, 11 of which had been previously tagged. On the basis of this experiment, approximately how many fish does the lake have?

Answers

Answer 1

Biologists tagged 72 fish in a lake on January 1. On February 1, they returned and collected a random sample of 44 fish, 11 of which had been previously tagged. The main answer is approximately 198. :

Total number of fish tagged in January = 72Total number of fish collected in February = 44Number of fish that were tagged before = 11So, the number of fish not tagged in February = 44 - 11 = 33According to the capture-recapture method, if n1 organisms are marked in a population and released back into the environment, and a subsequent sample (n2) is taken, of which x individuals are marked (the same as in the first sample), the total population can be estimated by the equation:

N = n1 * n2 / xWhere:N = Total populationn1 = Total number of organisms tagged in the first samplingn2 = Total number of organisms captured in the second samplingx = Number of marked organisms captured in the second samplingPutting the values in the formula, we have:N = 72 * 44 / 11N = 288Thus, the total number of fishes in the lake is 288 (which is only an estimate). However, since some fish may not have been caught or marked, the number may not be accurate.

To know more about Biologists visit:

https://brainly.com/question/28447833

#SPJ11


Related Questions

Use the Rational Root Theorem to factor the following polynomial expression completely using rational coefficients. 7 x^{4}-6 x^{3}-71 x^{2}-66 x-8= _________

Answers

The quadratic formula, we find the quadratic factors to be:[tex]$(7x^2 + 2x - 1)(x^2 - 4x - 8)$[/tex]Further factoring [tex]$x^2 - 4x - 8$[/tex], we get[tex]$(7x^2 + 2x - 1)(x - 2)(x + 4)$[/tex] Hence, the fully factored form of the polynomial expression is:[tex]$7x^4 - 6x^3 - 71x^2 - 66x - 8 = (7x^2 + 2x - 1)(x - 2)(x + 4)$[/tex]

We can use the Rational Root Theorem (RRT) to factor the given polynomial equation [tex]$7x^4 - 6x^3 - 71x^2 - 66x - 8$[/tex]completely using rational coefficients.

The Rational Root Theorem states that if a polynomial function with integer coefficients has a rational zero, then the numerator of the zero must be a factor of the constant term and the denominator of the zero must be a factor of the leading coefficient.

In simpler terms, if a polynomial equation has a rational root, then the numerator of that rational root is a factor of the constant term, and the denominator is a factor of the leading coefficient.

The constant term is -8 and the leading coefficient is 7. Therefore, the possible rational roots are:±1, ±2, ±4, ±8±1, ±7. Since there are no rational roots for the given equation, the quadratic factors have no rational roots as well, and we can use the quadratic formula.

Using the quadratic formula, we find the quadratic factors to be:[tex]$(7x^2 + 2x - 1)(x^2 - 4x - 8)$[/tex]Further factoring [tex]$x^2 - 4x - 8$[/tex], we get[tex]$(7x^2 + 2x - 1)(x - 2)(x + 4)$[/tex]

Hence, the fully factored form of the polynomial expression is:[tex]$7x^4 - 6x^3 - 71x^2 - 66x - 8 = (7x^2 + 2x - 1)(x - 2)(x + 4)$[/tex]

Learn more about polynomial  here:

https://brainly.com/question/11536910

#SPJ11

Let S be the universal set, where: S={1,2,3,…,18,19,20} Let sets A and B be subsets of S, where: Set A={3,6,9,11,13,15,19,20} Set B={1,4,9,11,12,14,20} Find the following: LIST the elements in the set (A∣JB) : (A∪B)={ Enter the elements as a list, separated by commas. If the result is the empty set, enter DNE LIST the elements in the set (A∩B) : (A∩B)={1 Enter the elements as a list. sedarated bv commas. If the result is tne emotv set. enter DNE

Answers

The elements in the Set (A∪B) are: 1, 3, 4, 6, 9, 11, 12, 13, 14, 15, 19, 20.

And the elements in the set (A∩B) are: 9, 11.

To find (A∪B), which is the set of all elements that are in A or B (or both), we simply combine the elements of both sets without repeating any element. Therefore:

(A∪B) = {1, 3, 4, 6, 9, 11, 12, 13, 14, 15, 19, 20}

To find (A∩B), which is the set of all elements that are in both A and B, we need to identify the elements that are common to both sets. Therefore:

(A∩B) = {9, 11}

Therefore, the elements in the set (A∪B) are: 1, 3, 4, 6, 9, 11, 12, 13, 14, 15, 19, 20.

And the elements in the set (A∩B) are: 9, 11.

Learn more about "Set" : https://brainly.com/question/13458417

#SPJ11



Goldbach's conjecture states that every even number greater than 2 can be written as the sum of two primes. For example, 4=2+2,6=3+3 , and 8=3+5 .

b. Given the conjecture All odd numbers greater than 2 can be written as the sum of two primes, is the conjecture true or false? Give a counterexample if the conjecture is false.

Answers

According to the given question ,the conjecture is false.The given conjecture, "All odd numbers greater than 2 can be written as the sum of two primes," is false.


1. Start with the given conjecture: All odd numbers greater than 2 can be written as the sum of two primes.
2. Take the counterexample of the number 9.
3. Try to find two primes that add up to 9. However, upon investigation, we find that there are no two primes that add up to 9.
4. Therefore, the conjecture is false.

To learn more about odd numbers

https://brainly.com/question/16898529

#SPJ11

F(x, y, z) = ze^y i + x cos y j + xz sin y k, S is the hemisphere x^2 + y^2 + z^2 = 16, y greaterthanorequalto 0, oriented in the direction of the positive y-axis

Answers

Using given information, the surface integral is 64π/3.

Given:

F(x, y, z) = ze^y i + x cos y j + xz sin y k,

S is the hemisphere x^2 + y^2 + z^2 = 16, y greater than or equal to 0, oriented in the direction of the positive y-axis.

The surface integral is to be calculated.

Therefore, we need to calculate the curl of

F.∇ × F = ∂(x sin y)/∂x i + ∂(z e^y)/∂x j + ∂(x cos y)/∂x k + ∂(z e^y)/∂y i + ∂(x cos y)/∂y j + ∂(z e^y)/∂y k + ∂(x cos y)/∂z i + ∂(x sin y)/∂z j + ∂(x^2 cos y z sin y e^y)/∂z k

= cos y k + x e^y i - sin y k + x e^y j + x sin y k + x cos y j - sin y i - cos y j

= (x e^y)i + (cos y - sin y)k + (x sin y - cos y)j

The surface integral is given by:

∫∫S F . dS= ∫∫S F . n dA

= ∫∫S F . n ds (when S is a curve)

Here, S is the hemisphere x^2 + y^2 + z^2 = 16, y greater than or equal to 0 oriented in the direction of the positive y-axis, which means that the normal unit vector n at each point (x, y, z) on the surface points in the direction of the positive y-axis.

i.e. n = (0, 1, 0)

Thus, the integral becomes:

∫∫S F . n dS = ∫∫S (x sin y - cos y) dA

= ∫∫S (x sin y - cos y) (dxdz + dzdx)

On solving, we get

∫∫S F . n dS = 64π/3.

Hence, the conclusion is 64π/3.

To know more about integral visit

https://brainly.com/question/14502499

#SPJ11

Equations are given whose graphs enclose a region. Find the area of the region. (Give an exact answer. Do not round.)
f(x) = x^2; g(x) = − 1/13 (13 + x); x = 0; x = 3

Answers

To find the area of the region enclosed by the graphs of the given equations, f(x) = x^2 and g(x) = -1/13(13 + x), within the interval x = 0 to x = 3, we need to calculate the definite integral of the difference between the two functions over that interval.

The region is bounded by the x-axis (y = 0) and the two given functions, f(x) = x^2 and g(x) = -1/13(13 + x). To find the area of the region, we integrate the difference between the upper and lower functions over the interval [0, 3].

To set up the integral, we subtract the lower function from the upper function:

A = ∫[0,3] (f(x) - g(x)) dx

Substituting the given functions:

A = ∫[0,3] (x^2 - (-1/13)(13 + x)) dx

Simplifying the expression:

A = ∫[0,3] (x^2 + (1/13)(13 + x)) dx

Now, we can evaluate the integral to find the exact area of the region enclosed by the graphs of the two functions over the interval [0, 3].

Learn more about integrate here:

https://brainly.com/question/31744185

#SPJ11

you are given the following random sample from a population that you believe to be approximately normally distributed. a. What is a 95% confidence interval for the population mean value? b. What is a 95% lower confidence bound for the population variance?

Answers

A. What is a 95% confidence interval for the population mean value?

(9.72, 11.73)

To calculate a 95% confidence interval for the population mean, we need to know the sample mean, the sample standard deviation, and the sample size.

The sample mean is 10.72.

The sample standard deviation is 0.73.

The sample size is 10.

Using these values, we can calculate the confidence interval using the following formula:

Confidence interval = sample mean ± t-statistic * standard error

where:

t-statistic = critical value from the t-distribution with n-1 degrees of freedom and a 0.05 significance level

standard error = standard deviation / sqrt(n)

The critical value from the t-distribution with 9 degrees of freedom and a 0.05 significance level is 2.262.

The standard error is 0.73 / sqrt(10) = 0.24.

Therefore, the confidence interval is:

Confidence interval = 10.72 ± 2.262 * 0.24 = (9.72, 11.73)

This means that we are 95% confident that the population mean lies within the interval (9.72, 11.73).

B. What is a 95% lower confidence bound for the population variance?

10.56

To calculate a 95% lower confidence bound for the population variance, we need to know the sample variance, the sample size, and the degrees of freedom.

The sample variance is 5.6.

The sample size is 10.

The degrees of freedom are 9.

Using these values, we can calculate the lower confidence bound using the following formula:

Lower confidence bound = sample variance / t-statistic^2

where:

t-statistic = critical value from the t-distribution with n-1 degrees of freedom and a 0.05 significance level

The critical value from the t-distribution with 9 degrees of freedom and a 0.05 significance level is 2.262.

Therefore, the lower confidence bound is:

Lower confidence bound = 5.6 / 2.262^2 = 10.56

This means that we are 95% confident that the population variance is greater than or equal to 10.56.

Learn more about Confidence Interval.

https://brainly.com/question/33318373

#SPJ11

derivative rules suppose u and v are differentiable functions at t=0 with u(0)=〈0, 1, 1〉, u′(0)=〈0, 7, 1〉, v(0)=〈0, 1, 1〉, and v′(0)=〈1, 1, 2〉 . evaluate the following expressions. ddt(u⋅v)|t=0

Answers

d/dt[u(t)·v(t)] = u(t)·v′(t) + v(t)·u′(t) is the derivative rule for the function and ddt(u⋅v)|t=0 = 11 is the evaluated value.

Let's use the Product Rule to differentiate u(t)·v(t), d/dt[u(t)·v(t)] = u(t)·v′(t) + v(t)·u′(t).

Using the Product Rule,

d/dt[u(t)·v(t)] = u(t)·v′(t) + v(t)·u′(t)

ddt(u⋅v) = u⋅v′ + v⋅u′

Given that u and v are differentiable functions at t=0 with u(0)=⟨0,1,1⟩, u′(0)=⟨0,7,1⟩, v(0)=⟨0,1,1⟩,

and v′(0)=⟨1,1,2⟩, we have

u(0)⋅v(0) = ⟨0,1,1⟩⋅⟨0,1,1⟩

=> 0 + 1 + 1 = 2

u′(0) = ⟨0,7,1⟩

v′(0) = ⟨1,1,2⟩

Therefore,

u(0)·v′(0) = ⟨0,1,1⟩·⟨1,1,2⟩

= 0 + 1 + 2 = 3

v(0)·u′(0) = ⟨0,1,1⟩·⟨0,7,1⟩

= 0 + 7 + 1 = 8

So, ddt(u⋅v)|t=0

= u(0)⋅v′(0) + v(0)⋅u′(0)

= 3 + 8 = 11

Hence, d/dt[u(t)·v(t)] = u(t)·v′(t) + v(t)·u′(t) is the derivative rule for the function and ddt(u⋅v)|t=0 = 11 is the evaluated value.

To know more about derivative visit:

https://brainly.com/question/25324584

#SPJ11

5. (15pt) Let consider w

=1 to be a cube root of unity. (a) (4pt) Find the values of w. (b) (6pt) Find the determinant: ∣


1
1
1

1
−1−w 2
w 2

1
w 2
w 4




(c) (5pt) Find the values of : 4+5w 2023
+3w 2018

Answers

a)w = 1, (-1/2 + ([tex]\sqrt{3}[/tex]/2)i), (-1/2 - ([tex]\sqrt{3}[/tex]/2)i)

b)The determinant is -w⁶

c)The required value is `19/2 + (5/2)i`.

Given, w = 1 is a cube root of unity.

(a)Values of w are obtained by solving the equation w³ = 1.

We know that w = cosine(2π/3) + i sine(2π/3).

Also, w = cos(-2π/3) + i sin(-2π/3)

Therefore, the values of `w` are:

1, cos(2π/3) + i sin(2π/3), cos(-2π/3) + i sin(-2π/3)

Simplifying, we get: w = 1, (-1/2 + ([tex]\sqrt{3}[/tex]/2)i), (-1/2 - ([tex]\sqrt{3}[/tex]/2)i)

(b) We can use the first row for expansion of the determinant.
1                  1                    1

1              −1−w²               w²

1                  w²                w⁴


​= 1 × [(−1 − w²)w² − (w²)(w²)] − 1 × [(1 − w²)w⁴ − (w²)(w²)] + 1 × [(1)(w²) − (1)(−1 − w²)]

= -w⁶

(c) We need to find the value of :

4 + 5w²⁰²³ + 3w²⁰¹⁸.

We know that w³ = 1.

Therefore, w⁶ = 1.

Substituting this value in the expression, we get:

4 + 5w⁵ + 3w⁰.

Simplifying further, we get:

4 + 5w + 3.

Hence, 4 + 5w²⁰²³ + 3w²⁰¹⁸ = 12 - 5 + 5(cos(2π/3) + i sin(2π/3)) + 3(cos(0) + i sin(0))

                                            =7 - 5cos(2π/3) + 5sin(2π/3)

                                            =7 + 5(cos(π/3) + i sin(π/3))

                                             =7 + 5/2 + (5/2)i

                                             =19/2 + (5/2)i.

Thus, the required value is `19/2 + (5/2)i`.

To know more about determinant, visit:

brainly.com/question/29574958

#SPJ11

The determinant of the given matrix.

The values of[tex]\(4 + 5w^{2023} + 3w^{2018}\)[/tex] are [tex]\(12\)[/tex] for w = 1 and 2 for w = -1.

(a) To find the values of w, which is a cube root of unity, we need to determine the complex numbers that satisfy [tex]\(w^3 = 1\)[/tex].

Since [tex]\(1\)[/tex] is the cube of both 1 and -1, these two values are the cube roots of unity.

So, the values of w are 1 and -1.

(b) To find the determinant of the given matrix:

[tex]\[\begin{vmatrix}1 & 1 & 1 \\1 & -1-w^2 & w^2 \\1 & w^2 & w^4 \\\end{vmatrix}\][/tex]

We can expand the determinant using the first row as a reference:

[tex]\[\begin{aligned}\begin{vmatrix}1 & 1 & 1 \\1 & -1-w^2 & w^2 \\1 & w^2 & w^4 \\\end{vmatrix}&= 1 \cdot \begin{vmatrix} -1-w^2 & w^2 \\ w^2 & w^4 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & w^2 \\ 1 & w^4 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & -1-w^2 \\ 1 & w^2 \end{vmatrix} \\&= (-1-w^2)(w^4) - (1)(w^4) + (1)(w^2-(-1-w^2)) \\&= -w^6 - w^4 - w^4 + w^2 + w^2 + 1 \\&= -w^6 - 2w^4 + 2w^2 + 1\end{aligned}\][/tex]

So, the determinant of the given matrix is [tex]\(-w^6 - 2w^4 + 2w^2 + 1\)[/tex]

(c) To find the value of [tex]\(4 + 5w^{2023} + 3w^{2018}\)[/tex], we need to substitute the values of w into the expression.

Since w can be either 1 or -1, we can calculate the expression for both cases:

1) For w = 1:

[tex]\[4 + 5(1^{2023}) + 3(1^{2018})[/tex] = 4 + 5 + 3 = 12

2) For w = -1:

[tex]\[4 + 5((-1)^{2023}) + 3((-1)^{2018})[/tex] = 4 - 5 + 3 = 2

So, the values of[tex]\(4 + 5w^{2023} + 3w^{2018}\)[/tex] are 12 for w = 1 and 2 for w = -1.

To know more about matrix, visit:

https://brainly.com/question/28180105

#SPJ11

Use the rule for order of operations to simplify the expression as much as possible: 18-2(2 . 4-4)=

Answers

The simplified form of the expression 18 - 2(2 * 4 - 4) is 10.

To simplify the expression using the order of operations (PEMDAS/BODMAS), we proceed as follows:

18 - 2(2 * 4 - 4)

First, we simplify the expression inside the parentheses:

2 * 4 = 8

8 - 4 = 4

Now, we substitute the simplified value back into the expression:

18 - 2(4)

Next, we multiply:

2 * 4 = 8

Finally, we subtract:

18 - 8 = 10

Therefore, the simplified form of the expression 18 - 2(2 * 4 - 4) is 10.

Learn more about expression here:

https://brainly.com/question/28170201

#SPJ11

8. If one of the roots of \( x^{3}+2 x^{2}-11 x-12=0 \) is \( -4 \), the remaining solutions are (a) \( -3 \) and 1 (b) \( -3 \) and \( -1 \) (c) 3 and \( -1 \) (d) 3 and 1

Answers

The remaining solutions of the cubic equation x^3 + 2x^2 - 11x - 12 = 0 with one root -4 is x= 3 and x=-1 (Option c)

To find the roots of the cubic equation x^3 + 2x^2 - 11x - 12 = 0 other than -4 ,

Perform polynomial division or synthetic division using -4 as the divisor,

        -4 |  1   2   -11   -12

            |     -4      8      12

        -------------------------------

           1  -2   -3      0

The quotient is x^2 - 2x - 3.

By setting the quotient equal to zero and solve for x,

x^2 - 2x - 3 = 0.

Factorizing the quadratic equation using the quadratic formula to find the remaining solutions, we get,

(x - 3)(x + 1) = 0.

Set each factor equal to zero and solve for x,

x - 3 = 0 gives x = 3.

x + 1 = 0 gives x = -1.

Therefore, the remaining solutions are x = 3 and x = -1.

To learn more about quadratic formula visit:

https://brainly.com/question/29077328

#SPJ11

Suppose the probability of an IRS audit is 4.8 percent for U.S. taxpayers who file form 1040 and who earned $100,000 or more.

Answers

Approximately 480 taxpayers in this category can expect to be audited by the IRS.

The probability of an IRS audit for U.S. taxpayers who file form 1040 and earn $100,000 or more is 4.8 percent.

This means that out of every 100 taxpayers in this category, approximately 4.8 of them can expect to be audited by the IRS.
To calculate the number of taxpayers who can expect an audit, we can use the following formula:
Number of taxpayers audited

= Probability of audit x Total number of taxpayers
Let's say there are 10,000 taxpayers who file form 1040 and earn $100,000 or more.

To find out how many of them can expect an audit, we can substitute the given values into the formula:
Number of taxpayers audited

= 0.048 x 10,000

= 480
To know more about probability visit:

https://brainly.com/question/31828911

#SPJ11
.

The odds of an IRS audit for a taxpayer who filed form 1040 and earned $100,000 or more are approximately 1 in 19.8. The odds of an event happening are calculated by dividing the probability of the event occurring by the probability of the event not occurring.

In this case, the probability of being audited is 4.8 percent, which can also be expressed as 0.048.

To calculate the odds of being audited, we need to determine the probability of not being audited. This can be found by subtracting the probability of being audited from 1. So, the probability of not being audited is 1 - 0.048 = 0.952.

To find the odds, we divide the probability of being audited by the probability of not being audited. Therefore, the odds of being audited for a taxpayer who filed form 1040 and earned $100,000 or more are:

    0.048 / 0.952 = 0.0504

This means that the odds of being audited for such a taxpayer are approximately 0.0504 or 1 in 19.8.

In conclusion, the odds of an IRS audit for a taxpayer who filed form 1040 and earned $100,000 or more are approximately 1 in 19.8.

Learn more about probability from the given link:

https://brainly.com/question/32117953

#SPJ11

A whicle factory manufactures ears The unit cost C (the cest in dolfars to make each car) depends on the number uf cars made. If x cars are made, then the umit cost it gren ty the functicn C(x)=0.5x 2
−2×0x+52.506. What is the minimim unit cost? Do not round your answer?

Answers

The minimum unit cost to make each car is $52.506.

To find the minimum unit cost, we need to take the derivative of the cost function C(x) and set it equal to zero.

C(x) = 0.5x^2 - 20x + 52.506

Taking the derivative with respect to x:

C'(x) = 1x - 0 = x

Setting C'(x) equal to zero:

x = 0

To confirm this is a minimum, we need to check the second derivative:

C''(x) = 1

Since C''(x) is positive for all values of x, we know that the point x=0 is a minimum.

Therefore, the minimum unit cost is:

C(0) = 0.5(0)^2 - 200 + 52.506 = 52.506 dollars

So the minimum unit cost to make each car is $52.506.

Learn more about minimum here:

https://brainly.com/question/21426575

#SPJ11

How are the graphs of y=2x and y=2x+2 related? The graph of y=2x+2 is the graph of y=2x translated two units down. The graph of y=2x+2 is the graph of y=2x translated two units right. The graph of y=2x+2 is the graph of y=2x translated two units up. The graph of y=2x+2 is the graph of y=2x translated two units left. The speedometer in Henry's car is broken. The function y=∣x−8∣ represents the difference y between the car's actual speed x and the displayed speed. a) Describe the translation. Then graph the function. b) Interpret the function and the translation in terms of the context of the situation

Answers

(a) The function y = |x - 8| represents the absolute difference y between the car's actual speed x and the displayed speed.

In terms of translation, the function y = |x - 8| is a translation of the absolute value function y = |x| horizontally by 8 units to the right. This means that the graph of y = |x - 8| is obtained by shifting the graph of y = |x| to the right by 8 units.

(b) The translation of the function y = |x - 8| has a specific interpretation in the context of the situation with Henry's car's broken speedometer. The value x represents the car's actual speed, and y represents the difference between the actual speed and the displayed speed.

By subtracting 8 from x in the function, we are effectively shifting the reference point from zero (which represents the displayed speed) to 8 (which represents the actual speed). Taking the absolute value ensures that the difference is always positive.

The graph of y = |x - 8| will have a "V" shape, centered at x = 8. The vertex of the "V" represents the point of equality, where the displayed speed matches the actual speed. As x moves away from 8 in either direction, y increases, indicating a greater discrepancy between the displayed and actual speed.

Overall, the function and its translation provide a way to visualize and quantify the difference between the displayed speed and the actual speed, helping to identify when the speedometer is malfunctioning.

LEARN MORE ABOUT speed here: brainly.com/question/32673092

#SPJ11

2. Let Ψ(t) be a fundamental matrix for a system of differential equations where Ψ(t)=[ −2cos(3t)
cos(3t)+3sin(3t)

−2sin(3t)
sin(3t)−3cos(3t)

]. Find the coefficient matrix, A(t), of a system for which this a fundamental matrix. - Show all your work.

Answers

The coefficient matrix A(t) for which Ψ(t) is a fundamental matrix is:

A(t) = [ -3cos(3t) + 9sin(3t)   -9cos(3t) + 3sin(3t) ]

      [ -3sin(3t) - 9cos(3t)   9sin(3t) + 3cos(3t) ].

This matrix represents the coefficients of the system of differential equations associated with the given fundamental matrix Ψ(t).

To find the coefficient matrix A(t) for which Ψ(t) is a fundamental matrix, we can use the formula:

A(t) = Ψ'(t) * Ψ(t)^(-1)

where Ψ'(t) is the derivative of Ψ(t) with respect to t and Ψ(t)^(-1) is the inverse of Ψ(t).

We have Ψ(t) = [ -2cos(3t)   cos(3t) + 3sin(3t)

             -2sin(3t)   sin(3t) - 3cos(3t) ],

we need to compute Ψ'(t) and Ψ(t)^(-1).

First, let's find Ψ'(t) by taking the derivative of each element in Ψ(t):

Ψ'(t) = [ 6sin(3t)    -3sin(3t) + 9cos(3t)

         -6cos(3t)   -3cos(3t) - 9sin(3t) ].

Next, let's find Ψ(t)^(-1) by calculating the inverse of Ψ(t):

Ψ(t)^(-1) = (1 / det(Ψ(t))) * adj(Ψ(t)),

where det(Ψ(t)) is the determinant of Ψ(t) and adj(Ψ(t)) is the adjugate of Ψ(t).

The determinant of Ψ(t) is given by:

det(Ψ(t)) = (-2cos(3t)) * (sin(3t) - 3cos(3t)) - (-2sin(3t)) * (cos(3t) + 3sin(3t))

         = 2cos(3t)sin(3t) - 6cos^2(3t) - 2sin(3t)cos(3t) - 6sin^2(3t)

         = -8cos^2(3t) - 8sin^2(3t)

         = -8.

The adjugate of Ψ(t) can be obtained by swapping the elements on the main diagonal and changing the signs of the elements on the off-diagonal:

adj(Ψ(t)) = [ sin(3t) -3sin(3t)

            cos(3t) + 3cos(3t) ].

Finally, we can calculate Ψ(t)^(-1) using the determined values:

Ψ(t)^(-1) = (1 / -8) * [ sin(3t) -3sin(3t)

                        cos(3t) + 3cos(3t) ]

         = [ -sin(3t) / 8   3sin(3t) / 8

             -cos(3t) / 8  -3cos(3t) / 8 ].

Now, we can compute A(t) using the formula:

A(t) = Ψ'(t) * Ψ(t)^(-1)

    = [ 6sin(3t)    -3sin(3t) + 9cos(3t) ]

      [ -6cos(3t)   -3cos(3t) - 9sin(3t) ]

      * [ -sin(3t) / 8   3sin(3t) / 8 ]

         [ -cos(3t) / 8  -3cos(3t) / 8 ].

Multiplying the matrices, we obtain:

A(t) = [ -3cos(3t) + 9

sin(3t)   -9cos(3t) + 3sin(3t) ]

      [ -3sin(3t) - 9cos(3t)   9sin(3t) + 3cos(3t) ].

Therefore, the coefficient matrix A(t) for which Ψ(t) is a fundamental matrix is given by:

A(t) = [ -3cos(3t) + 9sin(3t)   -9cos(3t) + 3sin(3t) ]

      [ -3sin(3t) - 9cos(3t)   9sin(3t) + 3cos(3t) ].

To know more about coefficient matrix refer here:
https://brainly.com/question/17815790#

#SPJ11

Given that \( 6 i \) is a zero of \( g \), write the polynomial in factored form as a product of linear factors: \[ g(r)=6 r^{5}-7 r^{4}+204 r^{3}-238 r^{2}-432 r+504 \]

Answers

The factorization of the given polynomial is: [tex]\[g(r) = (r - 6i)(r + 6i)(2r - 3)(3r - 4)(r - 2)\][/tex].

As we are given that [tex]\(6i\)[/tex]is a zero of [tex]\(g\)[/tex]and we know that every complex zero has its conjugate as a zero as well,

hence the conjugate of [tex]\(6i\) i.e, \(-6i\)[/tex] will also be a zero of[tex]\(g\)[/tex].

Therefore, the factorization of the given polynomial is: [tex]\[g(r) = (r - 6i)(r + 6i)(2r - 3)(3r - 4)(r - 2)\][/tex].

To know more about polynomial visit:

https://brainly.com/question/11536910

#SPJ11

We are given the following, mean=355.59, standard deviation=188.54, what is the cost for the 3% highest domestic airfares?

Answers

Mean = 355.59,Standard Deviation = 188.54.The cost for the 3% highest domestic airfares is $711.08 or more.

We need to find the cost for the 3% highest domestic airfares.We know that the normal distribution follows the 68-95-99.7 rule. It means that 68% of the values lie within 1 standard deviation, 95% of the values lie within 2 standard deviations, and 99.7% of the values lie within 3 standard deviations.

The given problem is a case of the normal distribution. It is best to use the normal distribution formula to solve the problem.

Substituting the given values, we get:z = 0.99, μ = 355.59, σ = 188.54

We need to find the value of x when the probability is 0.03, which is the right-tail area.

The right-tail area can be computed as:

Right-tail area = 1 - left-tail area= 1 - 0.03= 0.97

To find the value of x, we need to convert the right-tail area into a z-score. Using the z-table, we get the z-score as 1.88.

The normal distribution formula can be rewritten as:

x = μ + zσ

Substituting the values of μ, z, and σ, we get:

x = 355.59 + 1.88(188.54)

x = 355.59 + 355.49

x = 711.08

Therefore, the cost of the 3% highest domestic airfares is $711.08 or more, rounded to the nearest cent.

To know more about Standard Deviation visit:

https://brainly.com/question/29115611

#SPJ11

Let \( f(x)=\left(x^{2}-x+2\right)^{5} \) a. Find the derivative. \( f^{\prime}(x)= \) b. Find \( f^{\prime}(3) \cdot f^{\prime}(3)= \)

Answers

a. Using chain rule, the derivative of a function is [tex]\[f'(x) = 5\left(x^2 - x + 2\right)^4 \cdot (2x - 1).\][/tex]

b. The evaluation of the function  f'(3) . f'(3) = 419990400

What is the derivative of the function?

a. To find the derivative of  [tex]\(f(x) = \left(x^2 - x + 2\right)^5\)[/tex], we can apply the chain rule.

Using the chain rule, we have:

[tex]\[f'(x) = 5\left(x^2 - x + 2\right)^4 \cdot \frac{d}{dx}\left(x^2 - x + 2\right).\][/tex]

To find the derivative of x² - x + 2, we can apply the power rule and the derivative of each term:

[tex]\[\frac{d}{dx}\left(x^2 - x + 2\right) = 2x - 1.\][/tex]

Substituting this result back into the expression for f'(x), we get:

[tex]\[f'(x) = 5\left(x^2 - x + 2\right)^4 \cdot (2x - 1).\][/tex]

b. To find f'(3) . f'(3) , we substitute x = 3  into the expression for f'(x) obtained in part (a).

So we have:

[tex]\[f'(3) = 5\left(3^2 - 3 + 2\right)^4 \cdot (2(3) - 1).\][/tex]

Simplifying the expression within the parentheses:

[tex]\[f'(3) = 5(6)^4 \cdot (6 - 1).\][/tex]

Evaluating the powers and the multiplication:

[tex]\[f'(3) = 5(1296) \cdot 5 = 6480.\][/tex]

Finally, to find f'(3) . f'(3), we multiply f'(3) by itself:

f'(3) . f'(3) = 6480. 6480 = 41990400

Therefore, f'(3) . f'(3) = 419990400.

Learn more on derivative of a function here;

https://brainly.com/question/32205201

#SPJ4

Complete question;

Let [tex]\(f(x) = \left(x^2 - x + 2\right)^5\)[/tex]. (a). Find the derivative of f'(x). (b). Find f'(3)

In 2005, it took 19.14 currency units to equal the value of 1 currency unit in 1913 . In 1990 , it took only 13.90 currency units to equal the value of 1 currency unit in 1913. The amount it takes to equal the value of 1 currency unit in 1913 can be estimated by the linear function V given by V(x)=0.3623x+14.5805, where x is the number of years since 1990. Thus, V(11) gives the amount it took in 2001 to equal the value of 1 currency unit in 1913. Complete parts (a) and (b) below. a) Use this function to predict the amount it will take in 2013 and in 2021 to equal the value of 1 currency unit in 1913.

Answers

The linear function V(x) = 0.3623x + 14.5805, where x is the number of years since 1990 , V(23) = 0.3623(23) + 14.5805.  for 2021, the number of years since 1990 is 2021 - 1990 = 31

The linear function V(x) = 0.3623x + 14.5805 represents the relationship between the number of years since 1990 (x) and the amount it takes to equal the value of 1 currency unit in 1913 (V(x)). To predict the amount in specific years, we substitute the corresponding values of x into the function.

For 2013, the number of years since 1990 is 2013 - 1990 = 23. Therefore, to predict the amount it will take in 2013, we evaluate V(23). Plugging x = 23 into the function, we get V(23) = 0.3623(23) + 14.5805.

Similarly, for 2021, the number of years since 1990 is 2021 - 1990 = 31. We evaluate V(31) to predict the amount it will take in 2021.

By substituting the values of x into the function, we can calculate the predicted amounts for 2013 and 2021.

Learn more about linear function  here:

https://brainly.com/question/29205018

#SPJ11

point) if 1/x 1/y=5 and y(5)=524, (meaning that when x=5, y=524 ), find y′(5) by implicit differentiation.

Answers

If 1/x 1/y=5 and y(5)=524, by implicit differentiation the value of y'(5) is  20.96

Differentiate both sides of the equation 1/x + 1/y = 5 with respect to x to find y′(5).

Differentiating 1/x with respect to x gives:

d/dx (1/x) = -1/x²

To differentiate 1/y with respect to x, we'll use the chain rule:

d/dx (1/y) = (1/y) × dy/dx

Applying the chain rule to the right side of the equation, we get:

d/dx (5) = 0

Now, let's differentiate the left side of the equation:

d/dx (1/x + 1/y) = -1/x² + (1/y) × dy/dx

Since the equation is satisfied when x = 5 and y = 524, we can substitute these values into the equation to solve for dy/dx:

-1/(5²) + (1/524) × dy/dx = 0

Simplifying the equation:

-1/25 + (1/524) × dy/dx = 0

To find dy/dx, we isolate the term:

(1/524) × dy/dx = 1/25

Now, multiply both sides by 524:

dy/dx = (1/25) × 524

Simplifying the right side of the equation:

dy/dx = 20.96

Therefore, y'(5) ≈ 20.96.

Learn more about differentiation https://brainly.com/question/13958985

#SPJ11

The function r(t)=⟨2sin(5t),0,3+2cos(5t)) traces a circle. Determine the radius, center, and plane containing the circle. (Use symbolic notation and fractions where needed.) radius: (Use symbolic notation and fractions where needed. Give your answer as the coordinates of a point in the form (*, ∗, ) ).) center: The circle lies in the yz-plane xy-plane xz-plane

Answers

The function r(t) = ⟨2sin(5t), 0, 3+2cos(5t)⟩ traces a circle. The radius of the circle is 2 units, and the center is located at the point (0, 0, 3). The circle lies in the xy-plane.

To determine the radius of the circle, we can analyze the expression for r(t) = ⟨2sin(5t), 0, 3+2cos(5t)⟩. In this case, the x-coordinate is given by 2sin(5t), the y-coordinate is always 0, and the z-coordinate is 3+2cos(5t). Since the y-coordinate is always 0, the circle lies in the xz-plane.

For a circle with center (a, b, c) and radius r, the general equation of a circle can be expressed as (x-a)² + (y-b)² + (z-c)² = r². Comparing this equation with the given function r(t), we can determine the values of the center and radius.

In our case, the x-coordinate is 2sin(5t), which means the center lies at x = 0. The y-coordinate is always 0, so the center's y-coordinate is 0. The z-coordinate is 3+2cos(5t), so the center's z-coordinate is 3. Therefore, the center of the circle is (0, 0, 3).

To find the radius, we need to consider the distance from the center to any point on the circle. Since the x-coordinate ranges from -2 to 2, we can see that the maximum distance from the center to any point on the circle is 2 units. Hence, the radius of the circle is 2 units.

In conclusion, the circle traced by the function r(t) = ⟨2sin(5t), 0, 3+2cos(5t)⟩ has a radius of 2 units and is centered at (0, 0, 3). It lies in the xy-plane, as the y-coordinate is always 0.

Learn more about Radius of Circle here:

brainly.com/question/31831831

#SPJ11



John simplified the expression as shown. Is his work correct? Explain.

Answers

The correct simplification of algebraic expression 3 + (-15) ÷ (3) + (-8)(2) is -18.

Simplifying an algebraic expression is when we use a variety of techniques to make algebraic expressions more efficient and compact – in their simplest form – without changing the value of the original expression.

John's simplification in incorrect as it does not follow the rules of DMAS. This means that while solving an algebraic expression, one should follow the precedence of division, then multiplication, then addition and subtraction.

The correct simplification is as follows:

= 3 + (-15) ÷ (3) + (-8)(2)

= 3 - 5 - 16

= 3 - 21

= -18

Learn more about algebraic expression here

https://brainly.com/question/28884894

#SPJ4

John simplified the expression below incorrectly. Shown below are the steps that John took. Identify and explain the error in John’s work.

=3 + (-15) ÷ (3) + (-8)(2)

= −12 ÷ (3) + (−8)(2)

= -4 + 16

= 12



Multiply and simplify.

-³√2 x² y² . 2 ³√15x⁵y

Answers

After simplifying the given expression [tex]-³√2 x² y² . 2 ³√15x⁵y[/tex], we know that the resultant answer is [tex]30x⁷y³.[/tex]

To multiply and simplify the expression [tex]-³√2 x² y² . 2 ³√15x⁵y[/tex], we can use the rules of exponents and radicals.

First, let's simplify the radicals separately.

-³√2 can be written as 2^(1/3).

[tex]2³√15x⁵y[/tex] can be written as [tex](15x⁵y)^(1/3).[/tex]

Next, we can multiply the coefficients together: [tex]2 * 15 = 30.[/tex]

For the variables, we add the exponents together:[tex]x² * x⁵ = x^(2+5) = x⁷[/tex], and [tex]y² * y = y^(2+1) = y³.[/tex]

Combining everything, the final answer is: [tex]30x⁷y³.[/tex]

Know more about expression here:

https://brainly.com/question/1859113

#SPJ11

The simplified expression after multiplying is expression =[tex]-6x^(11/3) y^(11/3).[/tex]

To multiply and simplify the expression -³√2 x² y² . 2 ³√15x⁵y, we need to apply the laws of exponents and radicals.

Let's break it down step by step:

1. Simplify the radical expressions:
  -³√2 can be written as 1/³√(2).
  ³√15 can be simplified to ³√(5 × 3), which is ³√5 × ³√3.

2. Multiply the coefficients:
  1/³√(2) × 2 = 2/³√(2).

3. Multiply the variables with the same base, x and y:
  x² × x⁵ = x²+⁵ = x⁷.
  y² × y = y²+¹ = y³.

4. Multiply the radical expressions:
  ³√5 × ³√3 = ³√(5 × 3) = ³√15.

5. Combining all the results:
  2/³√(2) × ³√15 × x⁷ × y³ = 2³√15/³√2 × x⁷ × y³.

This is the simplified form of the expression. The numerical part is 2³√15/³√2, and the variable part is x⁷y³.

Please note that this is the simplified form of the expression, but if you have any additional instructions or requirements, please let me know and I will be happy to assist you further.

Learn more about expression:

brainly.com/question/34132400

#SPJ11

find the exact length of the curve. y = 8 1 3 cosh(3x), 0 ≤ x ≤ 8

Answers

The calculated length of the arc is 3.336 units in the interval

How to determine the length of the arc

from the question, we have the following parameters that can be used in our computation:

y = 3cosh(x)

The interval is given as

[0, 8]

The arc length over the interval is represented as

[tex]L = \int\limits^a_b {{f(x)^2 + f'(x))}} \, dx[/tex]

Differentiate f(x)

y' = 3sinh(x)

Substitute the known values in the above equation, so, we have the following representation

[tex]L = \int\limits^8_0 {{3\cosh^2(x) + 3\sinh(x))}} \, dx[/tex]

Integrate using a graphing tool

L = 3.336

Hence, the length of the arc is 3.336 units

Read more about integral at

brainly.com/question/32418363

#SPJ4

Given that the study manager wants the QC efforts to be focused on selecting outlier values, whose method is a better way of selecting the sample

Answers

The method suggested by the study statistician, which involves selecting values more than 3 standard deviations from the mean, is a better way of selecting the sample to focus on outlier values.

This method takes into account the variability of the data by considering the standard deviation. By selecting values that are significantly distant from the mean, it increases the likelihood of capturing clinically improbable or impossible values that may require further review.

On the other hand, the method suggested by the study manager, which selects the 75 highest and 75 lowest values for each lab test, does not take into consideration the variability of the data or the specific criteria for identifying outliers. It may include values that are within an acceptable range but are not necessarily outliers.

Therefore, the method suggested by the study statistician provides a more focused and statistically sound approach to selecting the sample for quality control efforts in identifying outlier values.

The question should be:

In the running of a clinical trial, much laboratory data has been collected and hand entered into a data base. There are 50 different lab tests and approximately 1000 values for each test, so there are about 50,000 data points in the data base. To ensure accuracy of these data, a sample must be taken and compared against source documents (i.e. printouts of the data) provided by the laboratories that performed the analyses.

The study manager for the trial can allocate resources to check up to 15% of the data and he wants the QC efforts to be focused on checking outlier values so that clinically improbable or impossible values may be identified and reviewed. He suggests that the sample consist of the 75 highest and 75 lowest values for each lab test since that represents about 15% of the data. However, he would be delighted if there was a way to select less than 15% of the data and thus free up resources for other study tasks.

The study statistician is consulted. He suggests calculating the mean and standard deviation for each lab test and including in the sample only the values that are more than 3 standard deviations from the mean.

Given that the study manager wants the QC efforts to be focused on selecting outlier values, whose method is a better way of selecting the sample?

To learn more about standard deviation:

https://brainly.com/question/475676

#SPJ11

a perimeter of 2,000 centimeters and a width that is 100
centimeters less than its length. Find the area of rectangle
cm2

Answers

the area of the rectangle is 247,500 cm².

the length of the rectangle be l.

Then the width will be (l - 100) cm.

The perimeter of the rectangle can be defined as the sum of all four sides.

Perimeter = 2 (length + width)

So,2,000 cm = 2(l + (l - 100))2,000 cm

= 4l - 2000 cm4l

= 2,200 cml

= 550 cm

Now, the length of the rectangle is 550 cm. Then the width of the rectangle is

(550 - 100) cm = 450 cm.

Area of the rectangle can be determined as;

Area = length × width

Area = 550 cm × 450 cm

Area = 247,500 cm²

To learn more about area

https://brainly.com/question/15822332

#SPJ11

Find the future value of the ordinary annuity. Interest is compounded annually. R=7000; i=0.06; n=25. The future value of the ordinary annuity is $__________

Answers

The future value of the ordinary annuity is approximately $316,726.64.

To find the future value of the ordinary annuity, we can use the formula:

Future Value = R * ((1 +[tex]i)^n - 1[/tex]) / i

R = $7000 (annual payment)

i = 0.06 (interest rate per period)

n = 25 (number of periods)

Substituting the values into the formula:

Future Value = 7000 * ((1 + 0.06[tex])^25 - 1[/tex]) / 0.06

Calculating the expression:

Future Value ≈ $316,726.64

The concept used in this calculation is the concept of compound interest. The future value of the annuity is determined by considering the regular payments, the interest rate, and the compounding over time. The formula accounts for the compounding effect, where the interest earned in each period is added to the principal and further accumulates interest in subsequent periods.

To know more about future value refer to-

https://brainly.com/question/30787954

#SPJ11

Suppose g is a function which has continuous derivatives, and that g(0)=−13,g ′
(0)=6, g ′′
(0)=6 and g ′′′
(0)=18 What is the Taylor polnomial of degree 2 for a, centered at a=0 ? T 2

(x)= What is the Taylor polnomial of degree 3 for q, centered at a=0 ? T 3

(x)= Use T 2

(x) to approximate g(0.2)≈ Use T 3

(x) to approximate g(0.2)≈

Answers

g(0.2) ≈ -11.656 using the Taylor polynomial of degree 3.

To find the Taylor polynomial of degree 2 for a function g centered at a = 0, we need to use the function's values and derivatives at that point. The Taylor polynomial is given by the formula:

T2(x) = g(0) + g'(0)(x - 0) + (g''(0)/2!)(x - 0)^2

Given the function g(0) = -13, g'(0) = 6, and g''(0) = 6, we can substitute these values into the formula:

T2(x) = -13 + 6x + (6/2)(x^2)

      = -13 + 6x + 3x^2

Therefore, the Taylor polynomial of degree 2 for g centered at a = 0 is T2(x) = -13 + 6x + 3x^2.

Now, let's find the Taylor polynomial of degree 3 for the same function g centered at a = 0. The formula for the Taylor polynomial of degree 3 is:

T3(x) = T2(x) + (g'''(0)/3!)(x - 0)^3

Given g'''(0) = 18, we can substitute this value into the formula:

T3(x) = T2(x) + (18/3!)(x^3)

      = -13 + 6x + 3x^2 + (18/6)x^3

      = -13 + 6x + 3x^2 + 3x^3

Therefore, the Taylor polynomial of degree 3 for g centered at a = 0 is T3(x) = -13 + 6x + 3x^2 + 3x^3.

To approximate g(0.2) using the Taylor polynomial of degree 2 (T2(x)), we substitute x = 0.2 into T2(x):

g(0.2) ≈ T2(0.2) = -13 + 6(0.2) + 3(0.2)^2

                 = -13 + 1.2 + 0.12

                 = -11.68

Therefore, g(0.2) ≈ -11.68 using the Taylor polynomial of degree 2.

To approximate g(0.2) using the Taylor polynomial of degree 3 (T3(x)), we substitute x = 0.2 into T3(x):

g(0.2) ≈ T3(0.2) = -13 + 6(0.2) + 3(0.2)^2 + 3(0.2)^3

                 = -13 + 1.2 + 0.12 + 0.024

                 = -11.656

Learn more about Taylor polynomial here: brainly.com/question/32476593

#SPJ11

Compulsory for the Cauchy-Euler equations. - Problem 8: Determine whether the function f(z)=1/z is analytic for all z or not.

Answers

The function f(z) = 1/z is not analytic for all values of z.  In order for a function to be analytic, it must satisfy the Cauchy-Riemann equations, which are necessary conditions for differentiability in the complex plane.

The Cauchy-Riemann equations state that the partial derivatives of the function's real and imaginary parts must exist and satisfy certain relationships.

Let's consider the function f(z) = 1/z, where z = x + yi, with x and y being real numbers. We can express f(z) as f(z) = u(x, y) + iv(x, y), where u(x, y) represents the real part and v(x, y) represents the imaginary part of the function.

In this case, u(x, y) = 1/x and v(x, y) = 0. Taking the partial derivatives of u and v with respect to x and y, we have ∂u/∂x = -1/x^2, ∂u/∂y = 0, ∂v/∂x = 0, and ∂v/∂y = 0.

The Cauchy-Riemann equations require that ∂u/∂x = ∂v/∂y and ∂u/∂y = -∂v/∂x. However, in this case, these conditions are not satisfied since ∂u/∂x ≠ ∂v/∂y and ∂u/∂y ≠ -∂v/∂x. Therefore, the function f(z) = 1/z does not satisfy the Cauchy-Riemann equations and is not analytic for all values of z.

Learn more about derivatives here: https://brainly.com/question/25324584

#SPJ11

Consider the following function: f(x,y)=2xe −2y Step 1 of 3 : Find f xx.
​Consider the following function: f(x,y)=2xe −2y Step 2 of 3: Find f yy​
Consider the following function: f(x,y)=2xe −2y Step 3 of 3 : Find f xy

Answers

Step 1: To find f_xx, we differentiate f(x,y) twice with respect to x:

f_x = 2e^(-2y)

f_xx = (d/dx)f_x = (d/dx)(2e^(-2y)) = 0

So, f_xx = 0.

Step 2: To find f_yy, we differentiate f(x,y) twice with respect to y:

f_y = -4xe^(-2y)

f_yy = (d/dy)f_y = (d/dy)(-4xe^(-2y)) = 8xe^(-2y)

So, f_yy = 8xe^(-2y).

Step 3: To find f_xy, we differentiate f(x,y) with respect to x and then with respect to y:

f_x = 2e^(-2y)

f_xy = (d/dy)f_x = (d/dy)(2e^(-2y)) = -4xe^(-2y)

So, f_xy = -4xe^(-2y).

Learn more about differentiate here:

https://brainly.com/question/24062595

#SPJ11

What is the derivative of f(z)?
f(z) = Pi + z
Show work please

Answers

The derivative of \( f(z) = \pi + z \) is 1, indicating a constant rate of change for the function.


To find the derivative of \( f(z) = \pi + z \), we can apply the basic rules of differentiation.

The derivative of a constant term, such as \( \pi \), is zero because the derivative of a constant is always zero.

The derivative of \( z \) with respect to \( z \) is 1, as it is a linear term with a coefficient of 1.

Therefore, the derivative of \( f(z) \) is \( \frac{d}{dz} f(z) = 1 \).

This means that the slope of the function \( f(z) \) is always equal to 1, indicating a constant rate of change. In other words, for any value of \( z \), the function \( f(z) \) increases by 1 unit.

Learn more about Derivative click here :brainly.com/question/28376218

#SPJ11

Other Questions
Temperature sensitive medication stored in a refrigerated compartment maintained at -10C. The medication is contained in a long thick walled cylindrical vessel of inner and outer radii 24 mm and 78 mm, respectively. For optimal storage, the inner wall of the vessel should be 6C. To achieve this, the engineer decided to wrap a thin electric heater around the outer surface of the cylindrical vessel and maintain the heater temperature at 25C. If the convective heat transfer coefficient on the outer surface of the heater is 100W/m.K., the contact resistance between the heater and the storage vessel is 0.01 m.K/W, and the thermal conductivity of the storage container material is 10 W/m.K., calculate the heater power per length of the storage vessel. A 0.22 m thick large flat plate electric bus-bar generates heat uniformly at a rate of 0.4 MW/m3 due to current flow. The bus-bar is well insulated on the back and the front is exposed to the surroundings at 85C. The thermal conductivity of the bus-bar material is 40 W/m.K and the heat transfer coefficient between the bar and the surroundings is 450 W/m.K. Calculate the maximum temperature in the bus-bar. 0.117 mol of a particular substance weighs 21.9 g. what is the molar mass of this substance? name a substance which can oxidize i- to i2, but cannot oxidize br- to br2 the medical assistant prepares a written prescription for the physician as follows. what information did the medical assistant leave out? Use the table. A school library classifies its books as hardback or paperback, fiction or nonfiction, and illustrated or non-illustrated.What is the probability that a book selected at random is nonfiction, given that it is a non-illustrated hardback?f. 250 / 2040 g. 780 / 1030 h. 250 / 1030 i. 250 / 780 QUESTION 26 Availability of clean water and good sanitation is critical in preventing disease caused by which one of the following pathogens? a. Bacillus anthracis b. Mycobacterium tuberculosis c. Borrelia burgdorferi d. Vibrio cholerae e. Rickettsia ricketsli a. Find the slope of the curve \( y=x^{3}+1 \) at the point \( P(1,2) \) by finding the limiting value of the slope of the secants through \( P \). b. Find an equation of the tangent line to the curve Oriole Company is planning to sell 400000 hammers for $6 per unit. The contribution margin ratio is 20%. If Oriole will break even at this level of sales, what are the fixed costs QUESTION 7 Which of the followings is true? A second-order circuit is the one with O A. 1 energy storage element. B. zero energy storage element. C. 2 energy storage elements. D. 3 energy storage elements. Differentiate Open and ProprietarySoftware in SCADA, and give anexamples. In a circuit operating at 29.8 Hz, the following are connected in parallel: a resistor at 23 , an inductor of 50.3 mH and a capacitor of 199 F. Determine the magnitude of impedence equivalent to the three elements in parallel. For most sociologists, the strength of a sociological study depends on its ______. During protein synthesis, tRNA can guide a specific amino acid to the synthesized peptides via its interaction to the triplet coden on mRNA molecule; moreover, AA-tRNA, ribosome and mRNA can be assembled to form a macromolecular complex. Please set up a feasible experiment to match triplet codens with specific amino acids. According to MMT, the government faces a financial constraint just like a household doesTrueFalse Before it was a defined quantity, separate groups of researchers independently obtained the following five results (all in km s1 ) during experiments to measure the speed of light c: 299795 5 299794 2 299790 3 299791 2 299788 4 Determine the best overall result which should be reported as a weighted mean from this set of measurements of c, and find the uncertainty in that mean result. Literal Equations Solve each equation for the indicated sariable. 1) 12ma=1, for a 3) 2x+k=1, for x 14.1 billion plastic drinking bottles were sold in the UK in 2016. (a) Find the length of a 16.9 fl. oz. water bottle b) If the equator is about 25,000 miles long. How many plastic bottles stacked end to end will circle the entire equator? (c) How many times can we circle the equator if we use all the bottles sold in the UK in 2016? (d) How many bottles per day were sold, on average, in the UK in 2016. Determine which measurement is more precise and which is more accurate. Explain your reasoning. 9.2 cm ; 42 mm What is the longest part of cell cycle? What are the parts of Interphase? Describe what occurs in each of the three parts of Interphase Select all the steps for the Light Reactions during Photosynthesis:a.Split of H2O and release of 02 b.Carbon fixation using a CO2 acceptor c.Generation of ATP from ADP by photophosphorylation d.Reduction of intermediate molecules after fixing CO2, consuming NADPHe.Regeneration of the CO2 acceptor f.Production of NADPH