Before the development of quantum theory, Ernest Rutherford's experiments with gold atoms led him to propose the so-called Rutherford Model of atomic structure. The basic idea is that the nucleus of the atom is a very dense concentration of positive charge, and that negatively charged electrons orbit the nucleus in much the same manner as planets orbit a star. His experiments appeared to show that the average radius of an electron orbit around the gold nucleus must be about 10−1010−10 m. Stable gold has 79 protons and 118 neutrons in its nucleus.
What is the strength of the nucleus' electric field at the orbital radius of the electrons?
What is the kinetic energy of an electron in a circular orbit around the gold nucleus?

Answers

Answer 1

Answer:

1. [tex] E = 1.14 \cdot 10^{13} N/C [/tex]

2. [tex]E_{k} = 9.1 \cdot 10^{-17} J[/tex]      

Explanation:

1. The strength of the nucleus' electric field (E):

[tex]E = \frac{kq}{r^{2}}[/tex]

Where:

k: is the Coulomb constant = 9x10⁹ Nm²/C²

q: is the proton charge = 1.6x10⁻¹⁹ C

r: is the radius = 10⁻¹⁰ m

[tex]E = \frac{kq}{r^{2}} = \frac{9\cdot 10^{9} Nm^{2}/C^{2}*79*1.6 \cdot 10^{-19} C}{(10^{-10} m)^{2}} = 1.14 \cdot 10^{13} N/C[/tex]

2. The kinetic energy (Ek) of an electron is the following:

[tex] E_{k} = \frac{1}{2}mv^{2} [/tex]    

Where:

m is the electron's mass = 9.1x10⁻³¹ kg

v: is the speed of the electron

We can find the speed of the electron by equaling the centripetal force (Fc) and the electrostatic force (Fe):

[tex] F_{c} = F_{e} [/tex]  

[tex] \frac{mv^{2}}{r} = \frac{kq^{2}}{r^{2}} = qE [/tex]

[tex] v^{2} = \frac{qEr}{m} = \frac{1.6 \cdot 10^{-19} C*1.14 \cdot 10^{13} N/C*10^{-10} m}{9.1 \cdot 10^{-31} kg} = 2.00 \cdot 10^{14} m^{2}/s^{2} [/tex]                  

Now, we can find the kinetic energy:

[tex] E_{k} = \frac{1}{2}mv^{2} = \frac{1}{2}9.1 \cdot 10^{-31} kg*2.00 \cdot 10^{14} m^{2}/s^{2} = 9.1 \cdot 10^{-17} J [/tex]    

I hope it helps you!


Related Questions

You measure the radius of a sphere as (6.45 ± 0.30) cm, and you measure its mass as (1.79 ± 0.08) kg. What is the density and uncertainty in the density of the sphere, in kilograms per cubic meter?

Answers

Answer:

[tex](1630.13\pm 300.10)\ kg/m^3[/tex]

Explanation:

Given that,

The radius of a sphere is (6.45 ± 0.30) cm

Mass of the sphere is (1.79 ± 0.08) kg

Density = mass/volume

For sphere,

[tex]d=\dfrac{m}{V}\\\\d=\dfrac{m}{\dfrac{4}{3}\pi r^3}\\\\d=\dfrac{1.79\ kg}{\dfrac{4}{3}\pi (6.4\times 10^{-2}\ m)^3}\\\\d=1630.13\ kg/m^3[/tex]

We can find the uncertainty in volume as follows :

[tex]\dfrac{\delta V}{V}=3\dfrac{\delta r}{r}\\\\=3\times \dfrac{0.3\times 10^{-2}}{6.45\times 10^{-2}}\\\\=0.1395[/tex]

Uncertainty in mass,

[tex]\dfrac{\delta m}{m}=\dfrac{0.08}{1.79}\\\\=0.0446[/tex]

Now, the uncertainty in density of sphere is given by :

[tex]\dfrac{\delta d}{d}=\dfrac{\delta m}{m}+\dfrac{\delta V}V}\\\\=0.0446+0.1395\\\\\dfrac{\delta d}{d}=0.1841\\\\\delta d=0.1841\times d\\\\\delta d=0.1841\times 1630.13\\\\\delta d = 300.10\ kg/m^3[/tex]

Hence, the density pf the sphere is [tex](1630.13\pm 300.10)\ kg/m^3[/tex]

A 1870 kg car traveling at 13.5 m/s collides with a 2970 kg car that is initally at rest at a stoplight. The cars stick together and move 1.93 m before friction causes them to stop. Determine the coefficient of kinetic friction between the cars and the road, assuming that the negative acceleration is constant and all wheels on both cars lock at the time of impact.

Answers

Answer:

The value  is [tex]  \mu  = 0.72  [/tex]

Explanation:

From the question we are told that

   The mass of the first car is  [tex]m_1  =  1870\ kg[/tex]

    the initial  speed of the car  is  [tex]u  =  13.5 \  m/s[/tex]

    The  mass of the second car is  [tex]m_2 =  2970\  kg[/tex]

    The distance move by both cars is  s =  1.93  m

Generally from the law of momentum conservation

    [tex]m_1 * u_1 + m_2 *  u_2  =  (m_1 + m_2 ) *  v_f[/tex]

Here [tex]u_2  =  0[/tex] because the second car is at rest

and  [tex]v_f[/tex] is the final  velocity of the the two car

So

    [tex]1870*  13.5+ 0=  ( 1870 + 2970 ) *  v_f[/tex]      

=> [tex]v_f  =  5.22\  m/s[/tex]

Generally from kinematic equation

    [tex]v_f^2 = u_2^2  +  2as[/tex]

here a is the deceleration

So

    [tex]5.22^2 = 0  +  2 *a  *  1.93[/tex]

=> [tex]a =  7.06 \  m/s^2 [/tex]

Generally the frictional  force is equal to the force propelling the car , this can be mathematically represented as

   [tex]F_f  =  F[/tex]

Here  F is mathematically represented as

[tex]F =  (m_1 + m_2) *  a[/tex]

[tex]F =  (1870 + 2970) *  7.06 [/tex]    

[tex]F =34170.4 \ N[/tex]  

and

[tex]F_f  =  \mu *  (m_1 + m_2 ) *  g[/tex]

[tex]F_f  =  47432 * \mu [/tex]

So

[tex]  47432 * \mu   = 34170.4  [/tex]

=> [tex]  47432 * \mu   = 34170.4  [/tex]

=> [tex]  \mu  = 0.72  [/tex]

Write a haiku
poem
explaining
why graphing
is useful.
If you are
able, share
your poem
with others.

Answers

Answer:

Explanation:

graphing is helpful

helps visualize the line

of your equation

I WILL MARK YOU AS BRAINLIEST IF RIGHT
What is the magnitude of the net force acting on this object? And what direction?

Answers

Answer:

The magnitude of the net force acting on an object is equal to the mass. and the direction is in 20N

Explanation:

If Mary runs 5 miles in 50 minutes, what is her speed with the correct
label?

Answers

1 mile = 10 mins or 1 mile takes 10 mins to run

A plastic block of dimensions 2.00 cm x 3.00 cm x 4.00 cm has a mass of 30.0 g. What is its density?

Answers

Answer:

1.25 g/cm^3

Explanation:

mass-30.0g

volume- 4cm×2cm×3cm=24cm^3

density?

*to find density

Density=Mass/Volume

=30÷24

=1.25g/cm^3

If a rock is skipped into a lake at 24 m/s2, with that what force was the rock thrown if it was 1.75kg?

Answers

Answer: f= M×A

1.75kg×24= 42N

Explanation:

Because to find force you do Mass times acceleration so I did 1.75 kg times 24 would equal 42 Newtons!

"What will the pressure inside the container become if the piston is moved to the 1.60 L mark while the temperature of the gas is kept constant?"

Answers

This question is incomplete, the complete question is;

The Figure shows a container that is sealed at the top by a moveable piston, Inside the container is an ideal gas at 1.00 atm. 20.0°C and 1.00 L.

"What will the pressure inside the container become if the piston is moved to the 1.60 L mark while the temperature of the gas is kept constant?"

Answer:

the pressure inside the container become 0.625 atm if the piston is moved to the 1.60 L mark while the temperature of the gas is kept constant

Explanation:

Given that;

P₁ = 1.00 atm

P₂ = ?

V₁ = 1 L

V₂ = 1.60 L

the temperature of the gas is kept constant

we know that;

P₁V₁ = P₂V₂

so we substitute

1 × 1 = P₂ × 1.60

P₂ = 1 / 1.60

P₂ = 0.625 atm

Therefore the pressure inside the container become 0.625 atm if the piston is moved to the 1.60 L mark while the temperature of the gas is kept constant

A pendulum can be formed by tying a small object, like a tennis ball, to a string, and then connecting the other end of the string to the ceiling. Suppose the pendulum is pulled to one side and released at t1. At t^2, the pendulum has swung halfway back to a vertical position. At t^3, the pendulum has swung all the way back to a vertical position. Rank the three instants in time by the magnitude of the centripetal acceleration, from greatest to least. Most of the homework activities will be Context-rich Problems.

Answers

Answer:

1- t^3

2- t^2

3- t1

Explanation:

The acceleration produced in a body, while travelling in a circular motion, due to change in direction of motion is called centripetal acceleration. The formula of the centripetal acceleration is as follows:

ac = v²/r

where,

ac = centripetal acceleration

v = speed

r = radius

for a constant radius the centripetal acceleration will be directly proportional to the speed of object. The speed of pendulum will be lowest at t1 due to zero speed initially. Then the speed will increase gradually having greater speed at t^2 and the highest speed and centripetal acceleration at t^3. Therefore, the three instants in tie can be written in following order from greatest centripetal acceleration to lowest:

1- t^3

2- t^2

3- t1

A particle is moved along the x-axis by a force that measures 10/(1+x)^2 pounds at a point x feet from the origin. Find the work (in ft-lb) done in moving the particle from the origin to a distance of 9 feet.

Answers

Answer:

9 ft*lb

Explanation:

super simple but you just have to understand that the integral is going with the curve

work = integral a to b of f(x)dx = integral 0 to 9 of 10/(1+x)^2dx = 9ft*lb

Converting compound units
You would like to know whether silicon will float in mercury and you know that can determine this based on their densities. Unfortunately, you have the density of mercury in units of kilogram/meter3 and the density of silicon in other units: 2.33 gram/centimeter3. You decide to convert the density of silicon into units of kilogram/meter3 to perform the comparison. By which combination of conversion factors will you multiply 2.33 gram/centimeter3 to perform the unit conversion?

Answers

Answer:

Explanation:

Given the density of silicon as 2.33g/cm³

We are to convert this to kg/cm³

We will be using the following conversion factors

1000g = 1kg

2.33g = x

Cross multiply

1000x = 2.33

x = 2.33/1000

x = 0.00233kg

Also we need to convert 1cm³ to 1m³

1cm = 0.01m

1cm³ = 0.01×0.01×0.01

1cm³ = 0.000001m³

Substituting into the density value of silicon

2.33g/cm³ = 0.00233kg/0.000001m³

= 2330kg/m³

A car traveling at 27 m/s slams on its brakes to come to a stop. It decelerates at a rate of 8 m/s2 . What is the stopping distance of the car?

Answers

v² - u² = 2 ax

where u = initial velocity (27 m/s), v = final velocity (0), a = acceleration (-8 m/s², taken to be negative because we take direction of movement to be positive), and ∆x = stopping distance.

So

0² - (27 m/s)² = 2 (-8 m/s²) ∆x

x = (27 m/s)² / (16 m/s²)

x ≈ 45.6 m

The stopping distance of car achieved during the braking is of 45.56 m.

Given data:

The initial speed of car is, u = 27 m/s.

The final speed of car is, v = 0 m/s. (Because car comes to stop finally)

The magnitude of deacceleration is, [tex]a = 8\;\rm m/s^{2}[/tex].

In order to find the stopping distance of the car, we need to use the third kinematic equation of motion. Third kinematic equation of motion is the relation between the initial speed, final speed, acceleration and distance covered.

Therefore,

[tex]v^{2}=u^{2}+2(-a)s[/tex]

Here, s is the stopping distance.

Solving as,

[tex]0^{2}=27^{2}+2(-8)s\\\\s = 45.56 \;\rm m[/tex]

Thus, we can conclude that the stopping distance of car achieved during the braking is of 45.56 m.

Learn more about the kinematic equation of motion here:

https://brainly.com/question/11298125

Design a tension member and slip-critical splice to carry a factored load of 500 kips. Please use a wide-flange section for the tension member. Please use A572 Gr. 50 steel plates for the splice plates. Please use Group B, A490 bolts for the splice connection. The splice connection should be slip-critical, and have adequate strength after slip occurs as well. Please make any other assumptions you need in order to complete the problem. Provide detailed sketches and drawings for your design.

Answers

Answer:

Kindly check the explanation section.

Explanation:

For the design we are asked for in this question/problem there is the need for us to calculate or determine the strength in fracture and that of the yield. Also, we need to calculate for the block shear strength.

From the question, we have that the factored load = 500kips. Also, note that the tension splice must not slip.

Also, the shear force are resisted by friction, that is to say shear resistance = 1.13 × Tb × Ns.

Assuming our db = 3/4 inches, then the slip critical resistance to shear service load = 18ksi(refer to AISC manual for the table).

If db = 7/8 inches, then the shear force resistance for n bolt = 10.2kips, n > 49.6.

The yielding strength = 0.9 × Aj × Fhb= 736 kips > 500

The fracture strength = .75 × Ah × Fhb = 309 kips.

The bearing strength of 7/8 inches bolt at the edge hole and other holes = 46 kips and 102 kips.

PLEASE HELP EASY MULTIPLE CHOICE!!!!!!!!!!!

Answers

Answer:

options C is correct

Explanation:

asking questions is super in this education life

Answer:

option c should be the answer

Chris races his Audi north down a road for 1000 meters in 20 seconds, what is his velocity?

Answers

The answer is 1000/20. Or that’s what I’m guessing. Lol

Answer:

I think it would be 50 I am not really sure

Explanation:

I think you would have to divid 1000 by 20 Again I'm not sure

A car is traveling south at 8.77 m/s. It then begins a uniform acceleration until it reaches a velocity of 47.8 m/s over a period of 3.84s. What is the car's acceleration?

Please help !

Answers

Answer:

The acceleration of the car is 10.16m/s²

Explanation:

Given parameters:

  Initial velocity = 8.77m/s

   Final velocity = 47.8m/s

   Time duration  = 3.84s

Unknown:

Acceleration of the car = ?

Solution:

To find the acceleration, we must bear in mind that this physical quantity is the change in velocity with time;

     Acceleration  = [tex]\frac{V - U}{T}[/tex]

V is the final velocity

U is the initial velocity

T is the time taken

  Input the parameters and solve for acceleration;

      Acceleration  = [tex]\frac{47.8 - 8.77}{3.84}[/tex]   = 10.16m/s²

The acceleration of the car is 10.16m/s²

The Jamaican Bobsled Team is sliding down a hill in a toboggan at a rate of 5 m/s when he reaches an even steeper slope. If he accelerates at 2 m/s2 for the 5 m slope, how fast is he traveling when he reaches the bottom of the 5 m slope?

Answers

Answer:

6.7 m/s

Explanation:

Given:

Δx = 5 m

v₀ = 5 m/s

a = 2 m/s²

Find: v

v² = v₀² + 2aΔx

v² = (5 m/s)² + 2 (2 m/s²) (5 m)

v = 6.7 m/s

The steam from a boiling pot of water is
A: conduction
B: Convection
C: radiation
D: Radiant energy

Answers

The steam from a boiling pot of water is B. Convection.

Take the regular compass and hold it so the case is vertical. Now use it to investigate the direction of the coil’s magnetic field at locations other than the central axis. What happens as you move away from the center axis toward the coil? What happens above the coil? Outside the coil? Below the coil?

Answers

Answer:

Please find the answer in the explanation

Explanation:

Take the regular compass and hold it so the case is vertical. Now use it to investigate the direction of the coil’s magnetic field at locations other than the central axis.

What happens as you move away from the center axis toward the coil? The direction of the magnetic compass needle will move in an opposite direction since the direction of the induced voltage is reversed.

What happens above the coil?

the needle on the magnetic compass will be deflected. Since compasses work by pointing along magnetic field lines

Outside the coil? The magnetic compass needle will experience no deflection. Since there is no induced voltage or current.

Below the coil?

The needle will move in an opposite direction.

g A child bounces a 50 g super ball on the sidewalk. The velocity change of the super bowl is from 27 m/s downward to 17 m/s upward. If the contact time with the sidewalk is 1 800 s, what is the magnitude of the average force exerted on the superball by the sidewalk

Answers

Answer:

The average force exerted on the superball by the sidewalk is 0.00122 N.

Explanation:

Given;

mass of the super ball, m = 50 g = 0.05 kg

initial velocity of the super bowl, u = -27 m/s (assuming downward motion to be negative)

final velocity of the super bowl, u = 17 m/s (assuming upward motion to be positive)

time of motion, t = 1800 s

The average force exerted on the superball by the sidewalk is given by;

[tex]F = ma\\\\F = \frac{m(v-u)}{t} \\\\F = \frac{0.05(17-(-27))}{1800}\\\\ F = \frac{0.05(44)}{1800}\\\\F = 0.00122 \ N[/tex]

Therefore, the average force exerted on the superball by the sidewalk is 0.00122 N.

A vector of components (−23, −22) is multiplied by the scalar value of −6. What is the magnitude and direction of the resultant vector?

Answers

Answer:

(1,)

Explanation:

Answer:

magnitude: 21.6; direction: 33.7°

Explanation:

Which object will require the greatest amount of force to change its motion?
A. A 148 kg object moving 131 m/s
B. A 153 kg object moving 127 m/s
C. A 160 kg object moving 126 m/s
O D. A 162 kg object moving 124 m/s

Answers

Answer: D 160kg object moving 126 m/s

Explanation:

An object having a mass of 162 kg and moving with a velocity of 124 m/sec will require the greatest amount of force to change its motion. The correct option is D.

What is force?

Force is defined as the push or pull applied to the body. Sometimes it is used to change the shape, size, and direction of the body.

If the object has to stop, the final velocity must be zero. If the time is constant, the amount of force only depends on the mass and the velocity at which the body is moving.

The amount of force on the object depends on the momentum of the body.

The momentum of the body is;

P = mv

Object D will require the greatest amount of force to change its motion. Because the momentum of the body for option D is the greatest.

Hence, the correct option is D.

Learn more about the Force, here;

https://brainly.com/question/26115859

#SPJ2

An object moving 20 m/s
experiences an acceleration of 4 m/s' for 8
seconds. How far did it move in that time?
Variables:
Equation and Solve:

Answers

Answer:

We are given:

initial velocity (u) = 20m/s

acceleration (a) = 4 m/s²

time (t) = 8 seconds

displacement (s) = s m

Solving for Displacement:

From the seconds equation of motion:

s = ut + 1/2 * at²

replacing the variables

s = 20(8) + 1/2 * (4)*(8)*(8)

s = 160 + 128

s = 288 m

What resistance must be connected in parallel with a 633-Ω resistor to produce an equivalent resistance of 205 Ω?

Answers

Answer:

303 Ω

Explanation:

Given

Represent the resistors with R1, R2 and RT

R1 = 633

RT = 205

Required

Determine R2

Since it's a parallel connection, it can be solved using.

1/Rt = 1/R1 + 1/R2

Substitute values for R1 and RT

1/205 = 1/633 + 1/R2

Collect Like Terms

1/R2 = 1/205 - 1/633

Take LCM

1/R2 = (633 - 205)/(205 * 633)

1/R2 = 428/129765

Take reciprocal of both sides

R2 = 129765/428

R2 = 303 --- approximated

Calculate the work WC done by the gas during the isothermal expansion. Express WC in terms of p0, V0, and Rv.

Answers

Complete Question

The complete question is shown on the first and second uploaded image

Answer:

The expression is  [tex]W_c =  P_o V_o ln (R_v)[/tex]  

Explanation:

Generally smallest workdone done by  a gas is mathematically represented as

          [tex]dW  =  PdV[/tex]

Generally for an isothermal process

    [tex]PV  =  nRT = constant [/tex]

=>   [tex]P = \frac{nRT}{V}[/tex]

Generally the total workdone is mathematically represented as

   [tex]W_c =  \int\limits^{v_f}_{V_o} {\frac{nRT}{V} } \, dV[/tex]

=> [tex]W_c = nRT  \int\limits^{V_f}_{V_o} {\frac{1}{V} } \, dV[/tex]

=>  [tex]nRT [lnV]   | \left \ {V_f}} \atop {V_o}} \right.[/tex]

=>  [tex]W_c = nRT [ln(V_f) - ln(V_o)][/tex]

=>  [tex]W_c = nRT ln \frac{V_f}{V_o}[/tex]

From the question [tex]\frac{V_f}{V_o }  =  R_v[/tex]

=> [tex]W_c =  P Vln (R_v)[/tex]

at initial  state

[tex]W_c =  P_o V_o ln (R_v)[/tex]  

A uniform magnetic field of magnitude 0.72 T is directed perpendicular to the plane of a rectangular loop having dimensions 8.2 cm by 14 cm. Find the magnetic flux through the loop.

Answers

Answer:

Explanation:

Magnetic flux is expressed as the product of magnetic field and cross sectional area.

Φ = BAsintheta

Given

B = 0.72T

A = 8.2cm×14cm

A = 0.082m × 0.14m

Area = 0.01148m²

Theta = 90°

Substitute into the formula

Φ = BAsintheta

Φ = 0.72(0.01148)sin90°

Φ = 0.72(0.01148)(1)

Φ = 0.0082656

Hence the magnetic flux through the loop is 8.2656 × 10^-3 Weber

If the power supply is to be made safe by increasing its internal resistance, what should the internal resistance be for the maximum current in the above situation to be Imax

Answers

The complete question is;

A person with body resistance between his hands of 10 kΩ accidentally grasps the terminals of a 16-kV power supply. What is the power dissipated in his body?

A) If the internal resistance of the power supply is 1600 Ω , what is the current through the person's body?

B) What is the power dissipated in his body?

C) If the power supply is to be made safe by increasing its internal resistance, what should the internal resistance be for the maximum current in the above situation to be I_max = 1.00mA or less?

Answer:

A) I = 1.379 A

B) P = 19016.41 W

C) r = 15990000 Ω

Explanation:

A) We are given;

Internal resistance of the power supply; r = 1600 Ω

Body resistance between hands; R = 10kΩ = 10000 Ω

Power supply voltage; E =16 kV = 16000 V

Formula for the current through the person's body with internal resistance is given by;

I = E/(R + r)

Thus;

I = 16000/(10000 + 1600)

I = 1.379 A

B) Formula for power dissipated is;

P = I²R

P = 1.379² × 10000

P = 19016.41 W

C) Now, we are told that the maximum current should be I_max = 1.00mA or less. So, I_max = 0.001 A

Thus, from I = E/(R + r) and making r the subject, we have;

r = (E/I) - R

r = (16000/0.001) - 10000

r = 15990000 Ω

How much would a 15.0 kg object weigh on that planet? Round the answer to the nearest whole number.

Answers

Answer:

168

Explanation:

Answer: a 15 kg object would weigh the most on Neptune

168 N

The feeling of weightlessness occurs because _____________________.

there is no supporting force under your mass.
there is no gravity present.
there is only a small amount of gravity present.

Answers

Answer:

there is only a small amount of gravity present.

Explanation:

this is because the only force acting upon your body during free fall is the force of gravity which is a non contact force.

A 10-ohm resistor has a constant current. If 1200 C of charge flow through it in 4 minutes what
is the value of the current?
A. 3.0 A
B 5.0 A
C. 11 A
D. 15 A
E. 20A

Answers

Answer:

B 5.0 A .

Explanation:

Hello.

In this case, since we know the charge (1200 C), time (4 min =240 s) and resistance (10Ω) which is actually not needed here, we compute the current as follows:

[tex]I=\frac{Q}{t}[/tex]

Then, for the given data, we obtain:

[tex]I=\frac{1200C}{4min}*\frac{1min}{60s}\\\\I=5A[/tex]

Therefore, answer is B 5.0 A .

Best regards!

Other Questions
Choose the correct verb:The feeder (use, used) to be under a big tree in our backyard. o use o used a.What is the length of AA?b.What is the length of BBBoth in units Guys pls answer this for me in a minute it is really hard WILL GIVE BRAINLST FOR WHOEVER ANSWERS FIRST Which of the following equations is equivalent to 6(3p 2) = 20?Group of answer choices9p 4 = 209p 8 = 2018p 12 = 2018p 2 = 20 How was DNA evidence used to prove that Dr. Sam Sheppard did not murder his wife? what are the main pros of cloning In a factor market, firms deliver payments in all of the following forms EXCEPT:A.rentB.profitC.loansD.wages How do you think chemical change is defined? solve for x-30=5(x+1) Marge's plan costs .14 cents per minute plus a monthly fee of $24. Dan's plan costs .12 cents per minute plus a monthly fee of $28. How many minutes (m) are required for both plans to cost the same for the month? Help please!!!!!!! and thank you A common health myth is that people should drink at least eight glasses of water per day. While staying hydrated is important, why could this advice be inaccurate for different people? (Site 1) 1 I ain't no valedictorian. I'll give you that. But I'm certainly not the loser my step-father Johnnie likes to think I am, either. Mr. oh-so-famous local Johnnie Pipehead of "Johnnie on the Spot Plumbing." (Real clever name, huh?) Just because he only took the requisite twelve years to make it through school and graduate from his alma mater, and I took slightly longer, that doesn't make me a loser. So what if I took "the road less traveled by" and added a one-year, scenic detour to my journey--thanks to Algebra, Physical Science, and well...Latin. Did I mention Chemistry? Let's just say I liked Latin but Latin didn't much care for me. Just because I took thirteen years in all to get out of Melancholy High with a diploma doesn't make me some loser. Being nothing at all, now THAT would make me a loser.2 I am something. But what I am, and what I'll be, are two countries at war at present. Battles, I've had them. Many battles. Literal ones...figurative ones...too many. Figurative language...see there? At least I did learn a few somethings in Mr. J's English class.3 I could've been the valedictorian. Of somewhere. Of some school that had a bunch of unmotivated kids like me. Then, maybe I would have gone to those Physical Science study halls. Maybe I would have actually done my homework in Mr. Pugnacious' class. Real name, Pugliese. Wrestling coach. Don't you just love that moniker? For a wrestling coach...Pugnacious. Funny stuff, huh? Made that up. It stuck. Guy's got a bulldog face but a little tail-wagging personality. Had everything but the panting. And the drool. Too much caffeine I suppose. Too happy. Loved his math, that Pugnacious.The author creates a humorous tone through the use ofA) formal language. B) informal language. C) parallel structure. D) chronological order. Calculate the work WC done by the gas during the isothermal expansion. Express WC in terms of p0, V0, and Rv. 2. Which of the following statements is true of tertiaryconsumers in an ecosystem?A) There are more secondary consumers thantertiary consumers.B) They are caten by secondary consumers.C) They contain the most biomass out of all of thetrophievels.D) They are the largest trophic level.E) This level of the food chain has the highestamount of diversity. how can vaccinating individual people will help protect a whole population from malaria Simplify the algebraic expression by combining like (or similar) terms.5+9x+2 2. By forming a political party, people gain moreinfluence over government by banding togetherwith numbers.Its a true or false helpppp 5/680 long divison explanation Please help, it would mean alot! :)7 points!