Atoms are found to move from one lattice position to another at the rate of 5×10^5jumpss at 400c° when the activation energy for their movement is 30,000 cal/mol. calculate the jump rate at 750c°.

Answers

Answer 1

The jump rate at 750°C is approximately [tex]1.84×10^24 jumps/s[/tex].

To calculate the jump rate at 750°C, we can use the Arrhenius equation:

[tex]k = A * exp(-Ea/RT)[/tex]

where k is the rate constant, A is the frequency factor, Ea is the activation energy, R is the gas constant (8.314 J/(mol·K)), and T is the temperature in Kelvin.

We are given that at 400°C, the jump rate is 5×10^5 jumps/s and the activation energy is 30,000 cal/mol. We need to find the jump rate at 750°C.

First, we need to convert the activation energy from calories per mole to joules per mole:

Ea = 30,000 cal/mol * 4.184 J/cal = 125,520 J/mol

Next, we need to convert the temperatures to Kelvin:

T1 = 400°C + 273.15 = 673.15 K

T2 = 750°C + 273.15 = 1023.15 K

Now we can use the Arrhenius equation to find the new jump rate:

[tex]k2 = A * exp(-Ea/RT2)[/tex]

We can solve for A by using the jump rate at 400°C:

[tex]5×10^5 jumps/s = A * exp(-Ea/RT1)[/tex]

[tex]A = 5×10^5 jumps/s * exp(Ea/RT1) = 5×10^5 jumps/s * exp(125,520 J/mol / (8.314 J/(mol·K) * 673.15 K)) = 6.95×10^12[/tex]

Now we can plug in A and the new temperature into the Arrhenius equation:

[tex]k2 = 6.95×10^12 * exp(-125,520 J/mol / (8.314 J/(mol·K) * 1023.15 K)) = 1.84×10^24[/tex]

Therefore, the jump rate at 750°C is approximately 1.84×10^24 jumps/s.

To know more about Arrhenius equation refer here

https://brainly.com/question/12907018#

#SPJ11


Related Questions

write the complete nuclear equation for the bombardent of a be9 atom with an particle to yield b12 . show the atomic number and mass number for each species in the equation.

Answers

The atomic number of the Be-9 nucleus is 4 (since it has 4 protons).

The mass number of the Be-9 nucleus is 9 (since it has 4 protons and 5 neutrons).

The alpha particle (He-4) has an atomic number of 2 (since it has 2 protons) and a mass number of 4 (since it has 2 protons and 2 neutrons).

The B-12 nucleus has an atomic number of 5 (since it has 5 protons).

The mass number of the B-12 nucleus is 12 (since it has 5 protons and 7 neutrons).

The neutron (1n) emitted has an atomic number of 0 (since it has no protons) and a mass number of 1 (since it has only 1 neutron).

The nuclear equation for the bombardment of a Be-9 atom with an alpha particle (He-4) to yield B-12 can be written as follows:

9Be + 4He → 12B + 1n

This equation shows that when a Be-9 atom is bombarded with an alpha particle (He-4), it results in the formation of a B-12 nucleus and a neutron (1n) is emitted.

Here's a breakdown of the atomic number and mass number for each species involved in the reaction:

The atomic number of the Be-9 nucleus is 4 (since it has 4 protons).

The mass number of the Be-9 nucleus is 9 (since it has 4 protons and 5 neutrons).

The alpha particle (He-4) has an atomic number of 2 (since it has 2 protons) and a mass number of 4 (since it has 2 protons and 2 neutrons).

The B-12 nucleus has an atomic number of 5 (since it has 5 protons).

The mass number of the B-12 nucleus is 12 (since it has 5 protons and 7 neutrons).

The neutron (1n) emitted has an atomic number of 0 (since it has no protons) and a mass number of 1 (since it has only 1 neutron).

Click the below link, to learn more about Nuclear equation:

https://brainly.com/question/29664510

#SPJ11

Do balloons of the same mass contain the same number of particles?

Answers

No, balloons of the same mass do not necessarily contain the same number of particles. The number of particles in a balloon is determined by its volume, not just its mass.

Balloons can be filled with various gases, such as helium or air, and each gas has a different density and molecular weight. The ideal gas law, which relates the pressure, volume, and temperature of a gas, states that the number of particles (molecules or atoms) in a given volume is proportional to the pressure and inversely proportional to the temperature.

Therefore, if two balloons have the same mass but are filled with different gases at the same temperature and pressure, they will contain different numbers of particles. Additionally, even if two balloons are filled with the same gas, variations in temperature, pressure, or leaks can cause differences in the number of particles they contain.

 To  learn  more  about mass click here:brainly.com/question/11954533

#SPJ11

calculate the total volume of gas (at 127 ∘c ∘ c and 747 mmhg m m h g ) produced by the complete decomposition of 1.44 kg k g of ammonium nitrate.

Answers

The total volume of gas produced by the complete decomposition of 1.44 kg k g of ammonium nitrate is 33.5 L.

The decomposition reaction of ammonium nitrate is given by:

NH4NO3(s) → N2(g) + 2H2O(g)

From the balanced chemical equation, we can see that 1 mole of ammonium nitrate produces 1 mole of nitrogen gas and 2 moles of water vapor. The molar mass of NH4NO3 is 80.04 g/mol, so 1.44 kg of NH4NO3 is equal to 18 moles.

To find the volume of gas produced, we can use the ideal gas law:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin.

First, we need to convert the temperature from Celsius to Kelvin:

T = 127°C + 273.15 = 400.15 K

Next, we need to convert the pressure from mmHg to atm:

747 mmHg / 760 mmHg/atm = 0.981 atm

Now we can plug in the values and solve for V:

V = nRT/P = (1 mole N2)(0.08206 L·atm/mol·K)(400.15 K)/0.981 atm

= 33.5 L

Therefore, the total volume of gas produced by the complete decomposition of 1.44 kg of ammonium nitrate at 127°C and 747 mmHg is 33.5 L.

For more questions on ammonium nitrate:

https://brainly.com/question/13678113

#SPJ11

The total volume of gas produced by the complete decomposition of 1.44 kg of ammonium nitrate at 127°C and 747 mmHg is 960.4 L.

Explanation: To solve this problem, we need to use the ideal gas law, PV=nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin. We can first find the number of moles of gas produced by calculating the amount of ammonium nitrate in moles (1.44 kg divided by the molar mass of NH4NO3), then multiplying by the stoichiometric ratio of gas produced per mole of ammonium nitrate (2 moles of gas per mole of NH4NO3).

Next, we can use the given temperature and pressure to convert the number of moles of gas into volume using the ideal gas law. It's important to note that the given temperature is in Celsius, so we need to convert it to Kelvin by adding 273.15. After plugging in the values and solving for V, we get a total volume of 960.4 L.

Learn more about ammonium nitrate here :

brainly.com/question/13678113

#SPJ11

The enthalpy change for the following reaction is -121 kJ. Using bond energies, estimate the C-H bond energy in CH4(g).CH4(g) + Cl2(g) = CH3Cl(g) + HCl(g)____kJ/Mol

Answers

We can estimate the C-H bond energy in CH4(g) using bond energies, but the exact value may be different from the literature value of 414 kJ/mol due to the complexity of the reaction.


In order to estimate the C-H bond energy in CH4(g) using bond energies, we need to first understand the concept of bond energy and how it relates to enthalpy. Bond energy is the energy required to break a specific type of bond in a molecule. The enthalpy change, on the other hand, is the heat absorbed or released in a reaction.
To estimate the C-H bond energy in CH4(g), we need to consider the bonds that are broken and formed in the reaction. In this case, we have one C-H bond broken in the reactant and one C-H bond formed in the product. The bond energy for C-H bond is around 414 kJ/mol.
Using the bond energy approach, we can calculate the energy required to break the C-H bond in CH4(g), which is 414 kJ/mol. Therefore, the enthalpy change for breaking four C-H bonds in CH4(g) would be 4 x 414 kJ/mol = 1656 kJ/mol.
However, we know from the given reaction that the enthalpy change is -121 kJ/mol. This means that the energy released in forming the new bonds is greater than the energy required to break the old bonds. Therefore, the C-H bond energy in CH4(g) is less than 414 kJ/mol.

To know more about enthalpy visit :

https://brainly.com/question/16720480

#SPJ11

a basic solution is 1.35×10−5m in calcium hydroxide, ca(oh)2. what is the ph of the solution at 25.0∘c?

Answers

The pH of the basic solution is 9.43 at 25°C.

To solve this problem, we need to use the concept of pH and the equilibrium constant for the dissociation of calcium hydroxide. The dissociation equation is as follows:

Ca(OH)₂(s) ⇌ Ca²⁺(aq) + 2OH⁻(aq)


The equilibrium constant expression for this reaction is:

Kw = [Ca²⁺][OH⁻]²

where Kw is the ion product constant for water, which is 1.0×10⁻¹⁴ at 25°C.

We can use this expression to calculate the concentration of hydroxide ions, [OH⁻], in the solution.

First, we need to find the concentration of Ca²⁺ ions in the solution. Since calcium hydroxide is a strong base, it dissociates completely in water. Therefore, the concentration of Ca²⁺ ions is equal to the concentration of hydroxide ions, which is given by:

[OH⁻] = [tex]\sqrt{[tex]\frac{Kw}{[Ca²⁺] }[/tex]}[/tex] = [tex]\sqrt{(1.0×10⁻¹⁴)/(1.35×10⁻⁵)}[/tex] = 2.72×10⁻⁵ M



Next, we can use the definition of pH to calculate the pH of the solution:

pH = -log[H⁺]

Since this is a basic solution, the concentration of H⁺ ions is very low and can be neglected. Therefore, we can use the concentration of hydroxide ions to calculate the pH:

pH = 14 - pOH = 14 - (-log[OH⁻]) = 14 + log(2.72×10⁻⁵) = 9.43

Therefore, the pH of the solution is 9.43 at 25°C.

To know more about pH, refer here:

https://brainly.com/question/16001508#

#SPJ11

In a titration, a sample of HCI required 19. 14 mL of a 0. 7971 M NaOH solution to reach the endpoint. Calculate moles of NaOH dispensed

Answers

The moles of NaOH dispensed in the titration of HCI is 0.01523 moles.

To calculate the moles of NaOH dispensed, we can use the formula:

moles of NaOH = Molarity of NaOH x volume of NaOH used (in liters)

First, convert the volume of NaOH used from milliliters (mL) to liters (L) by dividing by 1000:

19.14 mL ÷ 1000 mL/L = 0.01914 L

Next, plug in the values into the formula:

moles of NaOH = 0.7971 M x 0.01914 L = 0.01523 moles

Therefore, the number of moles of NaOH dispensed during the titration of HCI is 0.01523 moles.

Learn more about moles here.

https://brainly.com/questions/15209553

#SPJ11

7. Predict the structure of product obtained when cis-2-hexene is allowed to react with Zn/CHyl Draw Fischer projection formula(s) of the major product(s) of the reaction between Z-3methyl 3-hexene and cold, alkaline KMno4 I Briefly, but clearly, explain the following observation When 2-methylbutane reacts with Ch/hv, the monochlorinated products consist of four constitutional isomers in significant yields. However, when the same alkane is allowed to react with Br2/ hv, there is only one major monobromination product.

Answers

When cis-2-hexene reacts with Zn/CHyl, the product obtained is a trans-2-hexene. The reaction proceeds through a syn addition of hydrogen atoms from the Zn/CHyl reagent to the double bond of cis-2-hexene. The resulting intermediate is a trans-2-hexene, which is the major product of the reaction.

The Fischer projection formula of the trans-2-hexene is:

   H      H

   |      |

H--C--C--C--C--C--H

   |      |

   H      CH3

When Z-3-methyl-3-hexene reacts with cold, alkaline KMnO4, the major product obtained is 3-methyl-3-hexanone. The reaction proceeds via oxidative cleavage of the double bond, leading to the formation of two carbonyl groups. The resulting ketone is the major product of the reaction.

The Fischer projection formula of the 3-methyl-3-hexanone is:

   O

   ||

H--C--C--C--C--C--O

   |      |

   CH3    CH3

The observation that monochlorinated products of 2-methylbutane with Cl/hv consist of four constitutional isomers in significant yields, while the same alkane with Br2/hv results in only one major monobromination product, can be explained by the difference in the reactivity of Cl and Br radicals.

Cl radicals are less selective and more reactive than Br radicals. Therefore, when 2-methylbutane reacts with Cl/hv, multiple monochlorination products can be formed due to the random abstraction of H atoms by Cl radicals from different positions of the alkane. In contrast, Br radicals are more selective and less reactive.

Therefore, when 2-methylbutane reacts with Br2/hv, only one major monobromination product is formed due to the selective abstraction of H atoms from a specific position of the alkane, leading to the formation of a specific product.

For more such questions on double bond

https://brainly.com/question/27879143

#SPJ11

how many ways are there to arrange three quanta among three one-dimensional oscillators?

Answers

Answer:

There are a total of 27 ways to arrange three quanta among three one-dimensional oscillators.

Explanation:

Each oscillator can have zero, one, two, or all three quanta, resulting in 4 possible arrangements per oscillator. Since there are three oscillators, the total number of arrangements is 4 x 4 x 4 = 27.

It is important to note that this question only refers to one-dimensional oscillators. If the oscillators were three-dimensional, the number of arrangements would be much larger as there would be multiple energy levels and modes of vibration to consider.

To know more about quanta, visit:

https://brainly.com/question/31972146

#SPJ11

calculate the enthalpy change for the following reaction given: dc-h= 414 kj/mol, dcl-cl=243 kj/mol, dc-cl=339 kj/mol, dh-cl=431 kj/mol. ch4 cl2 → ch3cl hcl

Answers

To calculate the enthalpy change for the given reaction: CH4 + Cl2 → CH3Cl + HCl, we will use the bond enthalpies provided (DC-H, DCl-Cl, DC-Cl, DH-Cl). We'll follow these steps:



1. Determine the bonds broken in the reactants.


2. Determine the bonds formed in the products.


3. Calculate the total enthalpy change for the reaction.

Step 1: Bonds broken in reactants:


- 1 DC-H bond in CH4 (414 kJ/mol)


- 1 DCl-Cl bond in Cl2 (243 kJ/mol)

Step 2: Bonds formed in products:


- 1 DC-Cl bond in CH3Cl (339 kJ/mol)


- 1 DH-Cl bond in HCl (431 kJ/mol)


Step 3: Calculate the total enthalpy change for the reaction:
Enthalpy change = (Σ bond enthalpies of bonds broken) - (Σ bond enthalpies of bonds formed)


Enthalpy change = (414 kJ/mol + 243 kJ/mol) - (339 kJ/mol + 431 kJ/mol)


Enthalpy change = (657 kJ/mol) - (770 kJ/mol)


Enthalpy change = -113 kJ/mol


The enthalpy change for the given reaction CH4 + Cl2 → CH3Cl + HCl is -113 kJ/mol.

To know more about CH4 + Cl2 → CH3Cl + HCl refer here

https://brainly.com/question/24141694#

#SPJ11

A student conducts a reaction at 298 K in a rigid vessel and the reaction goes to completion. The temperature of the reaction vessel drops during the reaction. Which of the following can be determined about ∆So for the reaction?
∆So < 0 at 298 K, since ∆H < 0 and ∆G > 0.
∆S o < 0, since the reaction goes nearly to completion at 298 K.,
∆So > 0, since the reaction is thermodynamically unfavorable at 298 K
∆So > 0, since the reaction is thermodynamically favorable at 298 K.

Answers

Since the reaction goes to completion, it means that the products are more stable than the reactants. Based on this information, we can determine that ∆H is negative, and the reaction is thermodynamically favorable at 298 K.

In conclusion, based on the given information, we can say that ∆So < 0 at 298 K, since ∆H < 0 and the reaction is exothermic. If the temperature of the reaction vessel drops during a reaction that goes to completion in a rigid vessel at 298 K, it suggests that the reaction is exothermic.
Now, the sign of ∆S cannot be determined solely from the given information. However, we can make an educated guess that ∆S is likely negative because the reaction is going to completion in a rigid vessel. A rigid vessel constrains the system's volume, and the reaction's completion suggests that there is little to no change in volume during the reaction. Typically, reactions with little to no change in volume have negative values of ∆S. Therefore, it is reasonable to assume that ∆So is negative since it reflects the change in entropy of the system.
However, we cannot definitively determine the sign of ∆S, but it is likely negative due to the constraints of the rigid vessel.

to know more about thermodynamics visit:

brainly.com/question/13669873

#SPJ11

click in the answer box to activate the palette. give the formula of the conjugate base of h2co3.

Answers

The formula for the conjugate base of H2CO3 is HCO3-, which is a weak base that acts as a buffer in the blood to help maintain a stable pH.

To activate the palette, simply click in the answer box. The conjugate base of H2CO3 can be found by removing one hydrogen ion (H+) from each of the two acidic protons in H2CO3. This results in the formation of the bicarbonate ion, HCO3-.

The formula for the conjugate base of H2CO3, or bicarbonate ion, is HCO3-. This ion is formed when one H+ ion is removed from each of the two acidic protons in H2CO3. Bicarbonate is a weak base and acts as a buffer in the blood, helping to maintain a stable pH. It is an important component of the carbon dioxide-bicarbonate buffer system, which plays a crucial role in regulating the pH of the blood. When the blood becomes too acidic, bicarbonate acts as a base and accepts excess H+ ions, thereby raising the pH. Conversely, when the blood becomes too basic, carbonic acid (H2CO3) is formed and releases H+ ions, thereby lowering the pH.

Know more about palette here:

https://brainly.com/question/12884871

#SPJ11

what is the return value of the following function call? assume that infd is a valid file descriptor. lseek(infd, 0, seek_end); -1 1 0 the file size in bytes of the file corresponding to infd

Answers

The possible return values of this function call are:

If the function call succeeds, it returns the file size in bytes of the file corresponding to infd.

If the function call fails, it returns -1 and sets errno to indicate the error.

The return value of the function call lseek(infd, 0, SEEK_END) depends on whether it succeeds or fails. The lseek() function is used to change the file offset of the open file associated with the file descriptor infd. In this case, the function call sets the file offset to the end of the file.

If the function call succeeds, it returns the resulting file offset as a off_t type value. In this case, the resulting file offset will be the file size in bytes of the file corresponding to infd.

If the function call fails, it returns -1 and sets errno to indicate the error. Possible errors include EBADF if infd is not a valid file descriptor, ESPIPE if infd refers to a pipe or FIFO, or EINVAL if the whence argument (in this case, SEEK_END) is invalid.

Click the below link, to learn more about return value of function call:

https://brainly.com/question/12939282

#SPJ11

Barite dissolves based on the following reaction: BaSO4 ↔Ba2+ + SO42- calculate the solubility product (ksp) of barite at 25˚c and 1 atm

Answers

The solubility product (Ksp) of barite at 25˚C and 1 atm is approximately 4.84 × 10^-10.

The solubility product (Ksp) of barite at 25˚C and 1 atm can be calculated using the following expression:

Ksp = [Ba2+][SO42-]

To determine the values of [Ba2+] and [SO42-], we need to know the solubility of barite in water.

At 25˚C, the solubility of barite is approximately 2.2 × 10^-5 mol/L.

Since barite dissolves based on the following reaction:

BaSO4  →  Ba2+ + SO42-

The concentration of Ba2+ and SO42- can be calculated using the stoichiometry of the reaction.

For every 1 mole of BaSO4 that dissolves, 1 mole of Ba2+ and 1 mole of SO42- are produced.

Therefore, [Ba2+] = [SO42-] = x (assuming that the solubility of barite is x)

Substituting these values into the expression for Ksp:

Ksp = [Ba2+][SO42-]

      = x^2

Thus, the solubility product (Ksp) of barite at 25˚C and 1 atm is approximately 4.84 × 10^-10.

To know more about the solubility product (ksp), click below.

https://brainly.com/question/31384470

#SPJ11

place the following in order of increasing bond energy between carbon and oxygen. co co2 co32−

Answers

The bond energy between two atoms is the amount of energy required to break the bond between them. Generally, the bond energy between two atoms depends on the strength of the bond, which in turn depends on the types of atoms involved and the arrangement of the electrons between them.

The bond energy between carbon and oxygen can vary depending on the particular molecule and the type of bond present. In general, the bond energy between carbon and oxygen increases as the bond becomes stronger. Based on this, we can arrange the following compounds in order of increasing bond energy between carbon and oxygen:

co32− < CO < CO2

The carbonate ion, CO32−, has the weakest bond between carbon and oxygen due to the presence of two negatively charged oxygen atoms that can repel each other, leading to a less stable bond between carbon and oxygen. This makes it the compound with the lowest bond energy between carbon and oxygen.

CO has a triple bond between carbon and oxygen, making it slightly more stable than CO32−. However, the bond between carbon and oxygen is still relatively weak, resulting in a higher bond energy compared to CO32−.

CO2 has two double bonds between carbon and oxygen, making it the most stable of the three compounds. It has the highest bond energy between carbon and oxygen due to the presence of multiple strong double bonds.

In summary, the order of increasing bond energy between carbon and oxygen is CO32− < CO < CO2.

To know more about strength refer here

https://brainly.com/question/9367718#

#SPJ11

What is the maximum percent recovery for acetanilide when recrystallizing 5.0 g from water?

Answers

The maximum percent recovery for acetanilide can be calculated using the formula:

% recovery = (actual yield / theoretical yield) * 100%

The theoretical yield is the maximum amount of acetanilide that can be obtained from the recrystallization, assuming complete recovery of all the solute.

The actual yield is the amount of acetanilide that is actually obtained from the recrystallization.

Since the solubility of acetanilide in water increases with temperature, we can assume that all 5.0 g of acetanilide will dissolve when the water is heated to boiling.

When the solution cools, some of the acetanilide will recrystallize out of the solution, while the rest will remain in solution.

Assuming that all of the acetanilide in the solution recrystallizes out, the theoretical yield would be 5.0 g.

However, since some acetanilide may remain in solution or be lost during filtration, we cannot assume that the actual yield will be equal to the theoretical yield.

Therefore, the maximum percent recovery cannot be calculated without knowing the actual yield of acetanilide obtained from the recrystallization.

To know more about filtration refer here

https://brainly.com/question/31504556#

#SPJ11

In beta oxidation of linoleic acid, what is the cost in total ATPs for the presence of the two double bonds compared to the saturated carbon chain stearic acid? (hint: how many more electron carriers is produced in beta oxidation for stearic acid vs linoleic acid and how does that affect # of ATPs)

Answers

The presence of the two double bonds in linoleic acid increases the number of electron carriers produced during beta oxidation, which ultimately leads to the production of more ATPs.


In beta oxidation of linoleic acid, the cost in total ATPs is higher compared to the saturated carbon chain stearic acid. Linoleic acid has two double bonds, which means that it requires two more rounds of beta oxidation compared to stearic acid, which only requires one. During each round of beta oxidation, one molecule of FADH2 and one molecule of NADH are produced, which can be used to generate ATP through oxidative phosphorylation. Therefore, stearic acid produces two electron carriers in one round of beta oxidation, while linoleic acid produces only one.
Since stearic acid only requires one round of beta oxidation, it produces two electron carriers (FADH2 and NADH) and generates a net of 8 ATPs through oxidative phosphorylation. On the other hand, linoleic acid requires two rounds of beta oxidation, which produces a total of four electron carriers (two FADH2 and two NADH). These four electron carriers can generate a net of 18 ATPs through oxidative phosphorylation.
Therefore, the presence of the two double bonds in linoleic acid increases the number of electron carriers produced during beta oxidation, which ultimately leads to the production of more ATPs. However, the cost of beta oxidation is higher for linoleic acid compared to stearic acid due to the additional rounds required.

To know more about Double bonds visit:

https://brainly.com/question/31535069

#SPJ11

How will the addition of HCl affect the equilibrium system represented by the equation shown?.

Answers

Answer:  Equilibirum will shift towards left.

Explanation:

To determine addition of HCl will affect the equilibrium system, Analyze the equation and consider stoichiometry and Le Chatelier's principle.

Le Chatelier's principle states "if a system at equilibrium is subjected to a change, the system will respond in a way that minimizes the effect of that change".

Suppose the  HCl is added the solution,then  it will increase the concentration of hydrogen ions (H+) in the solution. And , this increase in H+ concentration will potentially shift the equilibrium of the reaction to either the left or the right, to minimize the effect

Suppose , if in a  reaction the production of hydrogen ions (H+) is on the product side, then the increase in H+ concentration will shift the equilibrium towards left, favoring the formation of reactants.

Therefore the equilibrium will move towards the left .

Learn more about equilibrium here:
https://brainly.com/question/32275424?referrer=searchResults

#SPJ12

calculate the amount of heat required to heat 725 g of water from 22.1oc to 100.0oc. (swater = 4.184jg-1oc-1) A. 236.3 kJB. 15.3 kJC. 0.51 kJD. -64.1 kJ

Answers

The amount of heat required to heat 725 g of water from 22.1oC to 100.0oC is approximately 236.3 kJ.


To calculate the amount of heat required to heat 725 g of water from 22.1oC to 100.0oC, we can use the formula:
Q = m × c × ΔT
where Q is the amount of heat, m is the mass of the water, c is the specific heat capacity of water, and ΔT is the change in temperature.

Substituting the given values, we get:
Q = 725 g × 4.184 J/g.oC × (100.0oC - 22.1oC)
Q = 725 g × 4.184 J/g.oC × 77.9oC
Q = 236337.08 J or 236.3 kJ (rounded to one decimal place)

Therefore, the amount of heat required to heat 725 g of water from 22.1oC to 100.0oC is approximately 236.3 kJ. This is a significant amount of heat and highlights the importance of understanding the properties of water when studying thermodynamics and heat transfer.

To know more about heat capacity of water visit:

https://brainly.com/question/24130199

#SPJ11

In aqueous solutions at 25°C, the sum of the hydroxide ion and hydronium ion concentrations (H30+) |+ [OH-]) equals 1 x 10-14 O True False

Answers

The statement "In aqueous solutions at 25°C, the sum of the hydroxide ion and hydronium ion concentrations ([H₃O⁺] + [OH⁻]) equals 1 x 10⁻¹⁴" is actually false because it is their ionic product that equals 1 x 10⁻¹⁴  which is a constant known as the ion product constant of water ([tex]K_{w}[/tex]).

The ion product constant of water ([tex]K_{w}[/tex]) is defined as the product of the concentrations of the hydronium and hydroxide ions in a solution at a given temperature.

At 25°C, the value of Kw is 1 x 10⁻¹⁴, which means that in any aqueous solution, the product of the hydronium and hydroxide ion concentrations will always be equal to 1 x 10⁻¹⁴.

Mathematically, it is expressed as:

[tex]K_{w}[/tex] = [H₃O⁺] × [OH⁻] = 1 x 10⁻¹⁴

This relationship is important in understanding the concept of pH, which is a measure of the acidity or basicity of a solution.

When the hydronium ion concentration is higher than the hydroxide ion concentration, the solution is acidic, and the pH value will be less than 7. On the other hand, when the hydroxide ion concentration is higher than the hydronium ion concentration, the solution is basic, and the pH value will be greater than 7. When the two concentrations are equal, the solution is neutral, and the pH value is 7.

Therefore, the product of the hydroxide and hydronium ion concentrations equals 1 x 10⁻¹⁴, not the sum. The relationship between these concentrations determines the acidity or alkalinity of a solution, which is quantified by the pH and pOH scales.

In summary, the statement is false because the product, not the sum, of the hydroxide ion and hydronium ion concentrations equals 1 x 10⁻¹⁴ at 25°C in aqueous solutions.

To know more about the ion product constant of water, refer here:

https://brainly.com/question/8794778#

#SPJ11

The ground-state electron configuration of a particular atom is (Kr]4d05825p'. The element to which this atom belongs is: Rb Cd In Sn Sr

Answers

The element to which this atom belongs is Indium (In).

The ground-state electron configuration provided is [Kr]4d10 5s2 5p1.

To determine the element this atom belongs to, we can add up the total number of electrons:

[Kr] represents Krypton, which has 36 electrons, plus:

4d10 → 10 electrons,

5s2 → 2 electrons,

5p1 → 1 electron.

Total electrons = 36 + 10 + 2 + 1 = 49.

The element with an atomic number of 49 is Indium (In).

To know more about the ground-state electron configuration, click below.

https://brainly.com/question/29423653

#SPJ11

Find the ph of a buffer that consists of 0.91 m hbro and 0.49 m kbro (pka of hbro = 8.64).

Answers

To find the pH of a buffer consisting of 0.91 M HBrO and 0.49 M KBrO with a pKa of 8.64, you can use the Henderson-Hasselbalch equation. The equation is:

pH = pKa + log10([A-]/[HA])

Where:


- pH is the pH of the buffer solution


- pKa is the acid dissociation constant (8.64 in this case)


- [A-] is the concentration of the conjugate base (KBrO, 0.49 M)


- [HA] is the concentration of the weak acid (HBrO, 0.91 M)


Now, plug in the values into the equation:

pH = 8.64 + log10(0.49/0.91)

Calculate the log value:

pH = 8.64 + log10(0.5385)

pH = 8.64 + (-0.269)

Finally, add the pKa and the calculated log value:

pH = 8.64 - 0.269 = 8.371

Therefore, the pH of the buffer that consists of 0.91 M HBrO and 0.49 M KBrO with a pKa of 8.64 is approximately 8.37.

To know more about  Henderson-Hasselbalch equationrefer here

https://brainly.com/question/13423434#

#SPJ11

Calculate the change in entropy that occurs in the system when 15.0 g of acetone (C3H6O) vaporizes from a liquid to a gas at its normal boiling point (56.1 ∘C). Express your answer using three significant figures.

Answers

The change in entropy when 15.0 g of acetone vaporizes at its normal boiling point is 22.8 J/K, expressed with three significant figures.

To calculate the change in entropy (ΔS) when acetone vaporizes, you need to use the formula ΔS = q/T, where q is the heat absorbed during the phase change and T is the temperature in Kelvin.

First, convert the boiling point of acetone from Celsius to Kelvin: T = 56.1 + 273.15 = 329.25 K.

Next, find the enthalpy of vaporization (ΔHvap) for acetone, which is 29.1 kJ/mol.

Now, you need to determine the number of moles (n) of acetone in 15.0 g.

The molar mass of acetone is 58.08 g/mol, so n = 15.0 / 58.08 ≈ 0.258 mol.

Calculate the heat absorbed during vaporization:

q = n * ΔHvap = 0.258 mol * 29.1 kJ/mol = 7.50 kJ. Remember to convert this to J: q = 7500 J.

Finally, calculate the change in entropy:

ΔS = q/T = 7500 J / 329.25 K = 22.8 J/K.

Learn more about entropy at

https://brainly.com/question/13135498

#SPJ11

The active ingredient in milk of magnesia is Mg(OH)2. Complete and balance the following equation. Mg(OH)2 + _____

Answers

The active ingredient in milk of magnesia is Mg(OH)₂. Complete and balance the following equation: Mg(OH)₂ + 2 HCl → MgCl₂ + 2 H₂O.

To balance the equation, we need to ensure that the number of atoms of each element is the same on both sides of the equation. We can start by counting the number of atoms of each element in the reactants and products:

Reactants: Mg(OH)₂ + HCl

Products: MgCl₂ + H₂O

Mg: 1 Mg in reactants, 1 Mg in products (balanced)

O: 2 O in reactants, 2 O in products (balanced)

H: 4 H in reactants, 2 H in products (not balanced)

Cl: 1 Cl in reactants, 2 Cl in products (not balanced)

To balance the equation, we can add a coefficient of 2 in front of HCl to balance the hydrogen atoms, and a coefficient of 1 in front of MgCl₂ to balance the chlorine atoms:

Mg(OH)₂ + 2 HCl → MgCl₂ + 2 H₂O

Now the equation is balanced, with 2 atoms of Mg, 4 atoms of O, 6 atoms of H, and 2 atoms of Cl on both sides.

To know more about milk of magnesia, refer here:

https://brainly.com/question/1619275#

#SPJ11

identify which compound is more acidic and explain your choice: acetophenone or benzaldehyde

Answers

Benzaldehyde is more acidic than acetophenone because its conjugate base is more stable, allowing for better delocalization of the negative charge over the entire phenyl ring.

To determine which compound is more acidic between acetophenone and benzaldehyde, we need to consider their molecular structures and the stability of their conjugate bases.

Understand the molecular structures of acetophenone and benzaldehyde.
Acetophenone has a structure of C6H5C(O)CH3, where a carbonyl group is attached to a methyl group and a phenyl group. Benzaldehyde has a structure of C6H5CHO, where a carbonyl group is directly attached to a phenyl group.

Consider the stability of their conjugate bases.
When a compound loses a hydrogen ion (H+), it forms a conjugate base. A more stable conjugate base indicates a more acidic compound. The conjugate bases of acetophenone and benzaldehyde are formed by losing a hydrogen ion from their carbonyl groups, resulting in a negative charge on the oxygen atom.

Compare the conjugate base stability.
Benzaldehyde's conjugate base has a more stable resonance structure due to the direct attachment of the carbonyl group to the phenyl group, allowing for better delocalization of the negative charge over the entire phenyl ring. In contrast, acetophenone's conjugate base has a less stable resonance structure because the negative charge cannot be delocalized over the entire phenyl ring due to the presence of the methyl group.

In conclusion, benzaldehyde is more acidic than acetophenone because its conjugate base is more stable, allowing for better delocalization of the negative charge over the entire phenyl ring.

Learn more about benzaldehyde

brainly.com/question/31684857

#SPJ11

What is the temperature dependence for the spontaneity of the following reaction?
CH3OH(g)+O2(g)→CO2(g)+H2O(g)
ΔH=−434 kJ mol−1, ΔS=−43 J K−1mol−1

Answers

For temperatures below 10,093 K, the reaction is spontaneous (ΔG < 0). For temperatures above 10,093 K, the reaction is non-spontaneous           (ΔG > 0).

The temperature dependence for the spontaneity of a reaction is determined by the sign of the change in Gibbs free energy, ΔG, with respect to temperature, T. The equation for ΔG is ΔG = ΔH - TΔS, where ΔH is the change in enthalpy, ΔS is the change in entropy, and T is the temperature in Kelvin. For this specific reaction, we know that ΔH is negative (-434 kJ mol^-1) and ΔS is also negative (-43 J K^-1mol^-1). To determine the temperature dependence, we need to calculate ΔG at different temperatures.

We can use the equation ΔG = ΔH - TΔS and the fact that ΔG = -RTlnK, where R is the gas constant (8.314 J K^-1mol^-1) and K is the equilibrium constant. ΔG = ΔH - TΔS
where ΔH is the enthalpy change, T is the temperature in Kelvin, and ΔS is the entropy change.
For the given reaction:
ΔH = -434 kJ/mol = -434,000 J/mol
ΔS = -43 J/(K·mol)
To find the temperature at which the reaction becomes spontaneous, we need to determine when ΔG becomes negative. A negative ΔG indicates a spontaneous reaction.
Set ΔG = 0 and solve for T:
0 = -434,000 J/mol - T(-43 J/(K·mol))
T = (-434,000 J/mol) / (43 J/(K·mol))
T ≈ 10,093 K

To know more about temperatures visit :-

https://brainly.com/question/31792425

#SPJ11

calculate the concentration of h3o at equilibrium if the initial concentration of hclo2 is 1.51×10−2 m

Answers

The concentration of H3O+ at equilibrium depends on the equilibrium constant of the reaction, which is not given.


To calculate the concentration of H3O+ at equilibrium, we need to know the equilibrium constant (Keq) of the reaction between HClO2 and water.

The balanced equation for the reaction is:

HClO2 + H2O ⇌ H3O+ + ClO2-

Assuming that the reaction is in a dilute aqueous solution at standard temperature and pressure, the equilibrium constant expression is:

Keq = [H3O+][ClO2-]/[HClO2][H2O]

Without knowing the value of Keq, we cannot calculate the concentration of H3O+ at equilibrium.

However, we do know that HClO2 is a weak acid and will only partially ionize in water, so the concentration of H3O+ at equilibrium will be less than the initial concentration of HClO2.

For more such questions on constant, click on:

https://brainly.com/question/19340344

#SPJ11

The concentration of H3O+ at equilibrium is 1.60×10^-2 M.

To calculate the  concentration of H3O+ at equilibrium, we need to use the equilibrium constant expression for the reaction: HClO2(aq) + H2O(l) ⇌ H3O+(aq) + ClO2-(aq). The equilibrium constant for this reaction is given by the expression: K = [H3O+][ClO2-]/[HClO2]. The initial concentration of HClO2 is given as 1.51×10^-2 M. Assuming that the change in concentration of H3O+ and ClO2- is "x" at equilibrium, the concentration of H3O+ at equilibrium can be calculated as [H3O+] = [ClO2-] = x and [HClO2] = 1.51×10^-2 - x. Substituting these values in the equilibrium constant expression and solving for "x" gives us the concentration of H3O+ at equilibrium as 1.60×10^-2 M.

learn more about Equilibrium here

brainly.com/question/30807709?

#SPJ11

how much energy is released when a μ−μ− muon at rest decays into an electron and two neutrinos? neglect the small masses of the neutrinos

Answers

The energy released when a μ−μ− muon at rest decays into an electron and two neutrinos can be calculated using Einstein's famous equation E=mc². Since the muon has a rest mass of 105.7 MeV/c² and the electron has a rest mass of 0.511 MeV/c², the total mass before the decay is 2 x 105.7 MeV/c² = 211.4 MeV/c². After the decay,MeV/c².

Therefore, the energy released in this decay is E = (211.4 MeV/c²) - 0 MeV/c² = 211.4 MeV. So, approximately 211.4 MeV of energy is released when a μ−μ− muon at rest decays into an electron and two neutrinos, neglecting the small masses of the neutrinos.To determine the energy released when a muon at rest decays into an electron and two neutrinos, you'll need to consider the following terms: muon mass, electron mass, and energy conservation. Here's a step-by-step explanation:

Convert the muon and electron masses into energy using Einstein's famous equation, E=mc^2, where E is energy, m is mass, and c is the speed of light.The mass of a muon (μ-) is 105.7 MeV/c^2, and the mass of an electron is 0.511 MeV/c^2.Calculate the energy equivalent for the muon and electron masses:
  E_muon = (105.7 MeV/c^2) * (c^2) = 105.7 MeV
  E_electron = (0.511 MeV/c^2) * (c^2) = 0.511 MeV

To know more about electron visit:

https://brainly.com/question/28977387

#SPJ11

use the standard potential values from the data tables to calculate the equilibrium constant for the reaction of solid tin with copper(ii) ion: sn(s) 2 cu2 ⇄ sn2 (aq) 2 cu (aq)

Answers

The equilibrium constant for the reaction of solid tin with copper is 6.5 × 10⁹ .

The reduction process is given as,

Sn + 2 Cu²⁺ ⇄ Sn²⁺ + 2 Cu⁺

Sn → Sn²⁺ + 2e                     E°(Sn/Sn²⁺) = 0.14 V

(Cu²⁺ + e⁻ → Cu⁺) × 2            E°(Cu/Cu⁺) = 0.15 V

-----------------------------------------------------------------------------------------

Sn + 2 Cu²⁺ → Sn²⁺ + 2 Cu⁺

Nernst equation

E cell = E° cell - 0.059/n log Q

At equilibrium,

E cell = 0 Q = Keq

∴ E° cell = 0.059/2 log Keq

(0.29 × 2) / 0.059 = log Keq

9.3 = log Keq

10^9.3 = Keq

By taking antilog,

Keq = 6.5 × 10⁹

Hence, the equilibrium constant for the reaction of solid tin with copper is  

6.5 × 10⁹ .

Learn more about Equilibrium constant from the link given below.

https://brainly.com/question/10038290

#SPJ4

A k-dimensional hypercube on 2^k vertices is defined recursively: The base case_ a 1- dimensional hypercube, is the line segment graph. Each higher dimensional hypercube is constructed by taking tWo copies of the previous hypercube and using edges to connect the corresponding vertices (these edges are shown in gray): Here are the first three hypercubes: 1D: 2D: 3D= Prove that every k-dimensional hypercube has a Hamiltonian circuit (use induction):

Answers

We will prove by induction that every k-dimensional hypercube has a Hamiltonian circuit.

Base case: For k=1, the line segment graph has a Hamiltonian circuit.

Inductive step: Assume that every (k-1)-dimensional hypercube has a Hamiltonian circuit. Consider a k-dimensional hypercube. Divide it into two (k-1)-dimensional hypercubes as shown in the figure. By the inductive hypothesis, each of these has a Hamiltonian circuit. Start at any vertex and traverse the first hypercube's Hamiltonian circuit, then traverse the edge connecting the two hypercubes, and then traverse the second hypercube's Hamiltonian circuit in reverse order. This gives a Hamiltonian circuit for the k-dimensional hypercube, which completes the proof by induction.

To know more about Hamiltonian circuit, here

brainly.com/question/27586562

#SPJ4

his minor mineral is absorbed in the stomach and is in the blood within minutes after consumption a. selenium b. chromium c. boron d. fluoride

Answers

The answer to your question is c. boron.

Boron is a minor mineral that is essential for many functions in the body, including bone health, brain function, and hormone regulation. It is absorbed in the stomach and enters the bloodstream within minutes after consumption. Boron is found in many foods, including nuts, fruits, and vegetables, but it is not a widely recognized nutrient. While boron deficiency is rare, it is still important to ensure adequate consumption through a balanced diet. In conclusion, boron is a minor mineral that is rapidly absorbed in the stomach and enters the bloodstream within minutes after consumption, making it an essential nutrient for many bodily functions.

To know more about boron visit:

https://brainly.com/question/31235857

#SPJ11

Other Questions
Thermodynamics: Potassium Nitrate Dissolving in Water Introduction When potassium nitrate (KNO3) dissolves in water, it dissociates into potassium ions Ky and nitrate ions (NO3-). Once sufficient quantities of K+ and NO3' are in solution, the ions recombine to form solid KNO3. Eventually, for every pair of ions that forms, another pair recombines. As a result, the concentrations of these ions remain constant; we say the reaction is at equilibrium. The solubility equilibrium of KNO3 is represented by the equation KNO:(s) = K (aq) + NO: (aq) where opposing arrows indicate that the reaction is reversible. We call this system, with undissolved solid that is in equilibrium with its dissolved ions, a saturated solution. We can describe the saturated solution with its fixed concentrations of ions with an equilibrium constant expression. Ksp = [K+] [NO:] The sp stands for solubility product and the square brackets around the ions symbolize molar concentrations in moles/liter (M). The equation serves as a reminder that the equilibrium constant not only is concerned with solubility but also is expressed as a product of the molarities of respective ions that make up the solid. The Ksp values can be large (greater than 1) for very soluble substances such as KNO3 or very small (less than 10-10) for insoluble compounds such as silver chloride. Further, as the solubility of a compound changes with temperature, its Ksp values change accordingly because Ksp is, likewise a function of temperature. Thermodynamics We use thermodynamics to understand how and why KNO3 dissolves in water. The enthalpy change, AH, for KNO3 dissolving in water provides the difference in energy between solid KNO3 and its dissolved ions. If AH is positive, heat must be added for KNO3 to dissolve. On the other hand, if AH is negative, dissolving KNO3 in water releases heat. The entropy change, AS, for KNO3 dissolving in water indicates the relative change in disorder with respect to solid KNO3. We therefore expect AS for solid KNO3 dissolving in water to be positive because there are 2 moles of ions that are being formed from the disintegration of 1 mole of KNO3. Hence 2 moles of products have more disorder compared to 1 mole of the reactants. Finally the free energy change, AG, for KNO3 dissolving in water indicates whether the process occurs spontaneously or not. If AG is negative, solid KNO3 spontaneously dissolves in water. The equilibrium constant is related to the free energy change through the equation AG =-RTINKS Recall that the free energy change is related to enthalpy and entropy through the Gibbs- Helmholtz equation AG = AH-TAS Combining the two preceding equations and algebraically rearranging them provides the following equation into the form of a straight line (y=mx+b) In Ksp =- A Therefore, a plot of InKsp vs. (9) will be linear with a slope equal to - and a y intercept value equal to . It is assumed that AH is constant and therefore independent of temperature. Pre-Lab Questions 1. What is a saturated solution? 2. Potassium chloride (KCl) dissolves in water and establishes the following equilibrium in a saturated solution: KCI K (aq) + Cl" (aq) The following Ksp data was determined as a function of the Celsius temperature. Temp (C) Ksp Temp. (K) (4) (K1) InKsp AG (J/mol) 20.0 40.0 18.5 60.0 24.8 80.0 30.5 13.3 a. Complete the entries in this table by converting temperature to Kelvin scale and calculate the corresponding values for ), InKsp and AG. b. Using an excel worksheet, plot InKsp as a function of () and display the trendline. Print the graph and tape or glue it into your notebook. c. Use the slope on the equation obtained in (b) to calculate the AH value for KCl dissolving in water. d. Calculate the value of AS at 20.0C. Using the intercept, calculate the average value of AS for the reaction. Are there any significant differences between the two AS values you have calculated? 3. Mary Wollstonecraft wrote in Ms. magazine.TrueFalse How many hours must be traveled by car for each hour of rock climbing to make the risks of fatality by car equal to the risk of fatality by rock climbing? A cylindrical pressure vessel is subjected to a normal force F and a torque. P = 80 psi F=500lb T=70 lb. ft t=0.1 in din = 4in Oyp = 30ksi Will the material fail under Tresca's yielding criterion ? The Kb value of the oxalate ion, C2O42-, is 1.9 10-10. Is a solution of K2C2O4 acidic, basic, or neutral? Explain by selecting the single best answer. Select answer from the options below Neutral, because the K2C2O4 does not dissolve in water. Neutral, because K2C2O4 is a salt formed when oxalic acid is neutralized by KOH. Acidic, because the oxalate ion came from oxalic acid. None of these. Basic, because the oxalate ion hydrolyzes in water. write a python function that takes in a relation on the set - {0, 1, 2, 3} and return a boolean value indicating whether the given relation is an equivalence relation. Calculate the degrees of freedom that should be used in the pooled-variance t test, using the given information. s* =4 s2 = 6 n1 = 16 n2 = 25 0 A. df = 25 B. df = 39 C. df = 16 D. df = 41 Which of these technologies are NOT part of the retrieval of data from a REMOTE web site?A) RSSB) XMLC) AJAXD) SOAPE) Web Service if a potential loss on a contingent liability is remote, the liability usually is express the sum in closed form (without using a summation symbol and without using an ellipsis ). n r = 0 n r x9r a galvanic cell has the overall reaction: 2Fe(NO3)2(aq) +Pb(NO3)2(aq) -2Fe(No3)3(aq) +Pb(s)Which is the half reaction Occurring at the cathode? In a bag there are pink buttons, yellow buttons and blue buttons Un comerciante a vendido un comerciante ha vendido una caja de tomates que le cost 150 quetzales obteniendo una ganancia de 40% Hallar el precio de la venta the demand for a product is = () = 300 where x is the price in dollars. Consider a community of 3 households. The marginal benefit/inverse demand for police protection services (denoted as S) for each household is given below:MB1 = 140 SMB2 = 100 SMB3 = 50 SThe marginal cost of providing police protection services is 200 per unit. Police protection services are a nonrival good.The community is committed to treating the police protection services as nonexcludable.What is the efficient quantity of police protection services for this community? Show your calculation.If police services are supplied at a price of 200 per unit, what is the private non-cooperative equilibrium quantity of police protection services bought by the households? Provide a brief explanation.If MB1= 230 2S, with MB2, MB3, and MC the same as above, how do the efficient quantity and the private equilibrium quantity change?Is the Deadweight Loss associated with the Private Provision Equilibrium larger or smaller for the original community (parts a and b) or the second community (part c)? Right a nine hundreddd wrdddd essssaa on the screenshot Roys Toys is a manufacturer of toys and childrens products. The following are selected items appearing in a recent balance sheet.Cash and short-term investments$47.3Receivables159.7Inventories72.3Prepaid expenses and other current assets32.0Total current liabilities130.1Total liabilities279.4Total stockholders' equity344.0Dollar amounts stated above are in millions.a-1. Using the information above, compute the amounts of Roy's Toys quick assets. (Enter your answer in millions of dollars rounded to 1 decimal place.)a-2. Using the information above, compute the amounts of Roy's Toys total current assets. (Enter your answer in millions of dollars rounded to 1 decimal place.)b-1. Compute for Roy's Toys quick ratio. (Round your answer to 1 decimal place.)b-2. Compute for Roy's Toys current ratio. (Round your answer to 1 decimal place.)b-3. Compute for Roy's Toys dollar amount of working capital. (Enter your answer in millions of dollars rounded to 1 decimal place.) 5. Which of the following statements shows the best expectations to have about the audience for your essay?A. Don't assume your readers know anything at all about your topic.O B. Expect your readers to be experts in the field of your topic.O C. Assume that your readers know more than you do about your topic.D. Don't expect your readers to know as much as you do about your topic. the aw of aoc usually decreases over the years.True/False light travels at 186,283 miles every second. how many feet per hour does light travel? round your answer to one decimal place, if necessary.