Answer:
Octanol at sea level> Octane at sea level > Octane at high altitude > Hexane at high altitude
Explanation:
Let us have it behind our minds that the boiling points of alkanes depends on the length of the alkyl chain. The longer the chain length, the higher the boiling point of the alkane.
Also, octanol has hydrogen bonding between its molecules in addition to dispersion forces, hence it has a higher boiling point than octane and hexane at sea level.
So, the order of boiling points required at the specified altitudes is;
Octanol at sea level> Octane at sea level > Octane at high altitude > Hexane at high altitude
What type of equation is this?
AlCl3 + NaOH → Al(OH)3 + NaCL
double
single
synthesis
decomp
combustion
What important function do currents and areas of upwelling provide for living things
in the sea?
Recycles the ocean water through evaporation and precipitation
Brings nutrients up from deeper water for use by organisms
Mixes land and sea organisms to broaden the food web
Allows Earth to have weather and climate changes
Density of water calculation using a 10 mL graduated cylinder
10 mL graduated cylinder + 10 mL unknown liquid (g) 10 mL graduated cylinder (g) Volume of liquid (mL) Density (g/mL)
Trial 1 19.731 9.861 10.0
Trial 2 19.831 9.861 10.0
Trial 3 19.831 9.861 10.0
Trial 4 19.771 9.861 10.0
Trial 5 19.751 9.861 10.0
Required:
Calculate the average density for the gradudated cylinder measurements.
Answer:
Average density of the liquid = 0.992 g/mL
Explanation:
Density = mass/volume
mass of liquid = (mass of liquid + mass of cylinder) - mass of cylinder
Trial 1: mass of liquid = 19.731 - 9.861 = 9.87
volume of liquid = 10 mL
density of liquid = 9.87 g / 10 mL = 0.987 g/mL
Trial 2: mass of liquid = 19.831 - 9.861 = 9.97
volume of liquid = 10 mL
density of liquid = 9.97 g / 10 mL = 0.997 g/mL
Trial 3: mass of liquid = 19.831 - 9.861 = 9.97
volume of liquid = 10 mL
density of liquid = 9.97 g / 10 mL = 0.997 g/mL
Trial 4: mass of liquid = 19.771 - 9.861 = 9.91
volume of liquid = 10 mL
density of liquid = 9.91 g / 10 mL = 0.991 g/mL
Trial 5: mass of liquid = 19.751 - 9.861 = 9.89
volume of liquid = 10 mL
density of liquid = 9.89 g / 10 mL = 0.989 g/mL
Average density = (0.987 + 0.997 + 0.997 + 0.991 + 0.989)/5 = 4.961/5
Average density of the liquid = 0.992 g/mL
If you were to burn a candle inside of a closed jar and the mass of the
closed jar and candle was 50 grams to begin with, what would the mass of
the jar and smoke be after the candle is done burning?
Answer:
50g
Explanation:
At the end of the burning process, the mass of the jar and smoke should be 50g after the candle burning is done.
In most systems, the law of conservation of matter finds expression. According to this law "matter is neither created nor destroyed but atoms are rearranged".
In this kind of system, no matter is allowed to escaped and the starting mass of the reactants compared to that of the product will be the same.
52
p3
N?
Br1
CaBr2
Cas
Ca3P2
Cal2
Ca3N2
Cat2
K1
Mg2
Zn2
Fe3
The picture has my question
Answer:
b or c
Explanation:
Consider a reaction that connects the ends of a chain of carbons to form a ring. The closure of the ring results in the formation of a new chemical bond, with the bonding electrons going into a bonding sigma molecular orbital at a lower energy. Which of the following statements correctly describes the resulting enthalpy, entropy, and heat changes? Mark all that are correct.
A. The entropy of the surroundings decreases (AS surr < 0) because the closure of the ring results in fewer conformations for the system.
B. The system releases energy to the environment, because its internal energy decreases.
C. The entropy of the surroundings increases (AS surr > 0) because the surroundings absorb heat released by the reaction, and become more disordered.
D. The entropy of the system decreases (AS sys < 0) because the closure of the ring reduces the number of conformations the ring can adopt.
E. The enthalpy or internal energy of the system decreases (AH sys < 0) because the electrons that form the bond enter an orbital that is at a lower energy.
Answer:
The system releases energy to the environment, because its internal energy decreases.
The entropy of the surroundings increases (AS surr > 0) because the surroundings absorb heat released by the reaction, and become more disordered.
The entropy of the system decreases (AS sys < 0) because the closure of the ring reduces the number of conformations the ring can adopt.
The enthalpy or internal energy of the system decreases (AH sys < 0) because the electrons that form the bond enter an orbital that is at a lower energy.
Explanation:
Now we know that when a reaction is exothermic heat is given off. In this case, we have a reaction that connects the ends of a chain of carbons to form a ring. The bonding electrons now move into a lower energy bonding sigma molecular orbital.
This leads to a decrease in the entropy and enthalpy of the system because energy is given off, the closure of the ring reduces the number of conformations the ring can adopt and the electrons that form the bond enter an orbital that is at a lower energy.
The entropy of the surroundings is increased as energy is given out. The surroundings absorb heat released by the reaction, and become more disordered.
2. What is the final temperature when a 32.0 g piece of diamond at 33.5°C is heated with 360 J of energy?
(Cp = 0.509
Answer:
55.6 °C
Explanation:
From the question given above, the following data were obtained:
Mass (M) of diamond = 32.0 g
Initial temperature (T₁) = 33.5°C
Heat (Q) required = 360 J
Specific heat capacity (C) of diamond = 0.509 J/gºC
Final temperature (T₂) =?
Next, we shall determine the change in temperature. This can be obtained as follow:
The final temperature can be obtained as follow:
Mass (M) of diamond = 32.0 g
Heat (Q) required = 360 J
Specific heat capacity (C) of diamond = 0.509 J/gºC
Change in temperature (ΔT ) =?
Q = MCΔT
360 = 32 × 0.509 × ΔT
360 = 16.288 × ΔT
Divide both side by 16.288
ΔT = 360 / 16.288
ΔT = 22.1 °C
Finally, we shall determine the final temperature. This can be obtained as follow:
Initial temperature (T₁) = 33.5°C
Change in temperature (ΔT ) = 22.1 °C
Final temperature (T₂) =?
ΔT = T₂ – T₁
22.1 = T₂ – 33.5
Collect like terms
22.1 + 33.5 = T₂
T₂ = 55.6 °C
Therefore, the final temperature is 55.6 °C.
The orbit closest to the nucleus has ___________ energy.
Answer:
inonic bonds with cavalent bonds
Explanation:
ionic bonds
35.2 J of heat is
applied to 16.0 g
of a substance.
Temp rises by 7.2
K. Specific Heat?
The specific heat : c = 0.306 J/g K
Further explanationGiven
Heat = 35.2 J
Mass = 16 g
Temperature difference : 7.2 K =
Required
The specific heat
Solution
Heat can be calculated using the formula:
Q = mc∆T
Q = heat, J
m = mass, g
c = specific heat, joules / g ° C
∆T = temperature difference, ° C / K
Input the value :
c = Q / m.∆T
c = 35.2 / 16 x 7.2
c = 0.306 J/g K
Which two climates have very low levels of precipitation
A dry and polar
B polar and highlands
C highlands and temperate marine
D temperature marine and temperature continental
Answer:
B highlands and polar, very little percipitation is found in polar regions, and high lands contributes to that
Explanation:
Answer:
B!
Explanation:
got it right on quiz. edu2021
ou are a work study for the chemistry department. Your supervisor has just asked you to prepare 500 mL of 3 M HCl for tomorrow’s undergraduate experiment. In the stockroom explorer, you will find a cabinet called "stock solutions". Open this cabinet to find a 2.5 L bottled labeled "11.6 M HCl". The concentration of the HCl is 11.6 M. Please prepare a flask
Answer:
Add to a 500mL volumetric flask 300mL of water, the 129mL of the 11.6M HCl solution and then complete to volume with water
Explanation:
To make 500mL = 0.500L of a 3M HCl from the 11.6M HCl stock we need first to find the moles of HCl we need:
Moles HCl:
0.500L * (3mol / L) = 1.5 moles of HCl are needed
These moles are obtained from the 11.6M HCl solution. The volume required is:
1.5mol * (1L / 11.6moles HCl) = 0.129L = 129mL must be added to the solution.
That means to prepare the 500mL of the 3M HCl you need to:
Add to a 500mL volumetric flask 300mL of water, the 129mL of the 11.6M HCl solution and then complete to volume with water
Answer:
Calculation: 11.6 M × V = 3.0 M × 0.500 liters
V = 0.13 liters
Steps for dilution:
Measure out 0.13 liters of the concentrated solution of 11.6 M HCl using a volumetric pipet.
Transfer this into solution into a 500 milliliter volumetric flask.
Add water to the flask until it reaches a total volume of 500 milliliters.
Solution: V = 0.13 liters
Explanation:
Which of these describes the essential conclusion of the Rutherford experiment? The atom contains a very small nucleus that contains most of its mass. The proton is positively charged and the neutron has no charge? Atoms are solid spheres with electrons suspended in them like chocolate chips in a cookie. Mass is neither made nor consumed in a chemical reaction.
Answer:
The atom contains a vey small small nucleus that contains most of its mass.
Explanation:
The Rutherford gold leaf experiment concluded that most (99%) of all the mass of an atom is in the nucleus of the atom, that the nucleus is very small (105 times small than the size of the atom) and that is is positively charged.
Use the periodic table to select the element that best fits each of the following descriptions.
Noble gas:
O oxygen
O chlorine
Okrypton
Answer:
Krypton
Explanation:
a certain kind of pea plant has an allele for tall and an allele for short but its overall phenotype is tall.
Answer:
Tt
Explanation:
T= Dominant tall
t= non-dominant short.
Dominant always shows over non-dominant.
Question 7 (1 point)
Order the levels of organization from smallest to largest.
11. Organism
1 2. Cell
13. Organ System
1 4. Organ
1 5. Tissue
Pls answer this ASAP thank you
Answer:
The anwer is not D the anwer is A
Explanation:
a reaction vessel contains a small piece of magnesium metal and air (20%) of which is oxygen gas. The mixture is ignited and burns with a burst of light and heat, producing solid magneisum oxide. The mass of mgO, however, is less than the initital mass of magnesium and oxygen combined. What loss of mass
Answer: see below
Explanation:
Mg burning in air gives MgO and a smaller amount of Mg3N2
2Mg+O2=2MgO. 2*24.3+32=2*40.3
3Mg+N2=Mg3N2
Ignoring the nitride, MgO loss of mass during the reaction can be ascribed to
(1) relativistic loss as energy (too small to be measurable)
(2) During the reaction, which is strongly exothermic, a fraction f the material is blown off as tiny particles which adhere to the vessel.
What is the density of an object that has a mass of 28.1g and a volume of 96.2mL? Select the correct answer below: 0.292g/mL 2703g/mL 1.00g/mL 3.42g/mL
Answer:
0.292 g/mL.
Explanation:
From the question given above, the following data were obtained:
Mass of object = 28.1 g
Volume of object = 96.2 mL
Density of object =..?
Density of an object is simply defined as the mass of the object per unit volume of the object. Mathematically, it can be expressed as:
Density = mass / volume
With the above formula, we can obtain the density of the object as follow:
Mass of object = 28.1 g
Volume of object = 96.2 mL
Density of object =..?
Density = mass / volume
Density = 28.1 / 96.2
Density of object = 0.292 g/mL
Thus the density of the object is 0.292 g/mL
Help pls!!!!!!!!!!!!!!!!!!!
Answer:
water
Explanation:
water is made up of both hydrogen and oxygen (h2o)
2021 by Mrs. Groves Closes at 2/9/2021, 12
Which layer of Earth is divided into plates?
Mantle
Crust
Inner core
Outer core
Answer:
It would be the Mantle,I believe
Help solve please, it’s due in less than an hour or so.
sorry i can only figure out 1 but the answer is
------------------------------------------------------------------
124
hope you do good on your test :D
Which of the following is an example of a physical change, but not a chemical change?
Answer:
Boiling Water
Explanation:
Boiling water is an example of physical change and not and not a chemical change because the water vapor still has the same molecular structure as liquid water.If the bubbles were caused by the decomposition of a molecule into gas then boiling would be a chemical change.
Answer:
A chemical change results from a chemical reaction, while a physical change is when matter changes forms but not chemical identity. Examples of chemical changes are burning, cooking, rusting, and rotting. Examples of physical changes are boiling, melting, freezing, and shredding
Explanation:
Pls answer this two ASAP PLSSSSSSSS
Answer:
1. aa
2. They have similar DNA
Explanation:
1. According to the question 1, wrinkled seeds (A) are dominant over round seeds (a) in pea plants. This means that, based on the law of dominance proposed by Mendel, wrinkled seeds will be expressed over round seeds in a heterozygous state (Aa).
However, since the round seed phenotype is a recessive trait, it will only be expressed when the alleles for round seeds (a) are the same in the gene i.e. aa genotype.
2. Based on the information in question 2, Ricky, who is working on a family tree for his school project, realizes that his close relatives all look similar in the pictures he collected. This is possible because of the SIMILARITY OF THEIR DNA (genetic material). Note that, relatives are connected by the genes that are inherited from one another, hence, they possess a similar DNA, which is the most valid reason for the resemblance.
How many atoms are in 0.580 moles of CO2?
Answer:
[tex]1.05x10^{24}atoms[/tex]
Explanation:
Hello!
In this case, according to the definition of the Avogadro's number, it is possible to realize that one molecule of CO2 contains 3 moles of atoms, one of carbon and two of oxygen, thus, we have:
[tex]0.580molCO_2*\frac{3mol\ atoms}{1molCO_2} =1.74mol\ atoms[/tex]
Then, we use the Avogadro's number to obtain:
[tex]1.74mol\ atoms*\frac{6.022x10^{23}atoms}{1mol\ atoms} \\\\1.05x10^{24}atoms[/tex]
Best regards!
Which upgrade to a school will most likely reduce the school's consumption of
nonrenewable resources?
Answer: if they use solar collection panels
Explanation:
Which orbital is partially filled in the Zirconium (ZI) atom?
Answer:
4d orbital.
Explanation:
Hello!
In this case, since zirconium's atomic number is 40, we fill in the electron configuration up to 40 as shown below:
[tex]1s^2,2s^2,2p^6, 3s^2,3p^6,4s^2,3d^{10},4p^6,5s^2,4d^2[/tex]
Thus, the orbital 4d is partially filled.
Best regards!
Gaseous butane CH3CH22CH3 will react with gaseous oxygen O2 to produce gaseous carbon dioxide CO2 and gaseous water H2O. Suppose 0.58 g of butane is mixed with 0.874 g of oxygen. Calculate the maximum mass of water that could be produced by the chemical reaction. Round your answer to 3 significant digits.
Answer:
0.378 g of H₂₂O can be produced.
Explanation:
The combustion reaction is:
2CH₃(CH₂)₂CH₃ + 13O₂ → 8CO₂ + 10H₂O
We convert the mass of reactants to moles:
0.58 g . 1mol / 58.1g = 0.00998 moles of butane
0.874 g . 1mol / 32g = 0.0273 moles of O₂
Oxygen is the limiting reactant. Look at stoichiometry.
2 moles of butane need 13 moles of oxygen to react
Then, 0.00998 moles of gas may react to (0.00998 . 13) / 2 = 0.06487 moles of oyxgen. I only have 0.0273 moles, so i do not have enough oxygen to complete the reaction.
Let's find out the product.
13 moles of oyxgen can produce 10 moles of water.
Then 0.0273 moles of O₂ may produce (0.0273 . 10)/13 = 0.021 moles
We convert to mass → 0.021 mol . 18g /1mol = 0.378 g
Choose the correct statement regarding the behavior of water.Group of answer choicesThe heat capacity of liquid water is greater than the heat capacity of solid ice.The water phase with the smallest temperature increase when adding 10 kcal of heat is solid ice.Ice has a higher density than liquid water and therefore sinks.The water phase with the smallest temperature increase when adding 10 kcal of heat is gas vapor.The heat capacity of gas vapor is greater than the heat capacity of liquid water.
Answer:
The water phase with the smallest temperature increase when adding 10 kcal of heat is solid ice.
Explanation:
The rest of the statements are incorrect. The density of ice is lower than the density of water. The heat capacity of solid ice is greater almost twice the heat capacity of the liquid water. The heat capacity of vapors is less than heat capacity of liquid.
Calculate the number of moles in 15.5g of CaSO4.5H2O
Answer:
No. of moles = 0.0685
Explanation:
Given mass, m = 15.5g
We need to find the number of moles in 15.5 g of CaSO₄.5H2O
First, we find the mass of CaSO₄.5H2O.
M = (1×40)+(1×32)+(4×16)+(5×18)
M = 226 g/mol
We know that,
Number of moles = given mass/molar mass
[tex]n=\dfrac{15.5\ g}{226\ g/mol}\\\\n=0.0685\ \text{mol}[/tex]
Hence, there are 0.0685 moles in 15.5 g of CaSO₄.5H2O.