Answer:
the compressor power is -223.12 hP { -ve indicate work done }
Volumetric flow rate at exit = 262.74 ft³/s
Explanation:
Given the data in the question;
p₁ = 14.2 psi = 0.978 bar
p₂ = 120 psi = 8.268 bar
T₁ = 60°F = 288.706 K
T₂ = 500°F = 533.15 K
Q₁ = 1200 ft³/min = 20ft³/s = 0.566 m³/s
δ₁ = p₁/RT₁ = 0.978 × 10⁵ / ( 287 × 288.706) = 1.18 kg/m³
δ₂ = P₂/RT₂ = 8.268 × 10⁵ / ( 287 × 533.15 ) = 5.4 kg/m³
so
ω₁ = δ₁Q₁ = 1.18 × 0.566 = 0.668 kg/s
we know that; ω₁ = ω₂ { in a steady flow }
ω₂ = δ₂Q₂
Q₂ = ω₂/δ₂
Q₂ = 0.668 / 5.4 = 0.1237 m³/s
Hence Volumetric flow rate at exit = 262.74 ft³/s
from the steady state energy equation;
ω( h₁ - h₂ ) = dW/dt
{ where h = CpT)
( Cp = 1.005 )
dW/dt = ωCp( T₁ - T₂ )
we substitute
dW/dt = 0.668 × 1.005( 288.706 - 533.15 )
dW/dt = 0.67134 × -244.444
dW/dt = -164.105 kW = -223.12 hP
Hence, the compressor power is -223.12 hP { -ve indicate work done }
At steady state, the power input of a refrigeration cycle is 500 kW. The cycle operates between hot and cold reservoirs which are at 550 K and 300 K, respectively. a) If cycle's coefficient of performance is 1.6, determine the rate of energy removed from the cold reservoir, in kW. b) Determine the minimum theoretical power required, in kW, for any such cycle operating between 550 K and 300 K
Answer:
The answer is below
Explanation:
Given that:
Hot reservoir temperature ([tex]T_H[/tex]) = 550 K, Cold reservoir temperature ([tex]T_C[/tex]) = 300 K, power input ([tex]W_{cycle}=500 \ kW[/tex]), cycle's coefficient of performance([tex]\beta_{actual}[/tex]) = 1.6
a) The rate of energy removal in the cold reservoir ([tex]Q_C[/tex]) is given by the formula:
[tex]Q_C=\beta_{actual}* W_{cycle}\\\\Q_C=1.6*500\\\\Q_C=800\ kW[/tex]
b) The maximum cycle's coefficient of performance([tex]\beta_{max}[/tex]) is:
[tex]\beta_{max}=\frac{T_C}{T_H-T_C}=\frac{300}{550-300}=1.5\\\\For\ minimum\ theoretical\ power\ \beta_{max}=\beta_{actual}=1.5\\\\W_{cycle}=\frac{Q_C}{\beta_{actual}} =\frac{800}{1.5} \\\\W_{cycle}=533.3\ kW[/tex]