At some point P, the electric field points to the left. True or False? If an electron were placed at P, the resulting electric force on the electron would point to the right. O True O False

Answers

Answer 1

The given statement, "At some point P, the electric field points to the left. If an electron were placed at P, the resulting electric force on the electron would point to the right," is false because the resulting force on the electron would point to the left. The correct option is - false.

By Coulomb's law, electric force vector F is equal to the product of the two charges (q₁ and q₂) and inversely proportional to the square of the distance r between them:

                                             F = k * q₁ * q₂ / r²,

where q₁ and q₂ are the charges and r is the distance between them.

The direction of the force on an electron is opposite to that of the electric field because the electron has a negative charge, which means it experiences a force in the direction opposite to the direction of the electric field.

Thus, if an electric field points to the left, an electron placed at P would experience a force in the left direction, not the right direction.

Therefore, the statement "If an electron were placed at P, the resulting electric force on the electron would point to the right" is false.

So, the correct option is false.

Learn more about the electric field here:

https://brainly.com/question/19878202

#SPJ11


Related Questions

How many electrons does carbon have? how many are valence electrons? what third-row element has the same number of valence electrons as carbon?

Answers

Carbon has 6 electrons. To determine the number of valence electrons, we need to look at the electron configuration of carbon, which is 1s² 2s² 2p². The third-row element that has the same number of valence electrons as carbon is silicon (Si).

In the case of carbon, the first shell (1s) is fully filled with 2 electrons, and the second shell (2s and 2p) contains the remaining 4 electrons. The 2s subshell can hold a maximum of 2 electrons, and the 2p subshell can hold a maximum of 6 electrons, but in carbon's case, only 2 of the 2p orbitals are occupied. These 4 electrons in the outermost shell, specifically the 2s² and 2p² orbitals, are called valence electrons. The electron configuration describes the distribution of electrons in the different energy levels or shells of an atom.

Therefore, carbon has 4 valence electrons. Valence electrons are crucial in determining the chemical properties and reactivity of an element, as they are involved in the formation of chemical bonds.

The third-row element that has the same number of valence electrons as carbon is silicon (Si). Silicon also has 4 valence electrons, which can be seen in its electron configuration of 1s² 2s² 2p⁶ 3s² 3p². Carbon and silicon are in the same group (Group 14) of the periodic table and share similar chemical properties due to their comparable valence electron configurations.

To learn more about, valence electrons, click here, https://brainly.com/question/31264554

#SPJ11

Final answer:

Carbon has 6 electrons in total, with 4 of them being valence electrons. Silicon is the third-row element that shares the same number of valence electrons as carbon.

Explanation:

Carbon has 6 electrons in total. The electron configuration and orbital diagram for carbon are 1s²2s²2p¹, where the 1s and 2s orbitals are completely filled and the remaining two electrons occupy the 2p subshell. This means that carbon has 4 valence electrons.

The third-row element that has the same number of valence electrons as carbon is silicon (Si). Silicon also has 4 valence electrons.

Learn more about Electrons in Carbon here:

https://brainly.com/question/33829891

#SPJ3

A rope is tied to a box and used to pull the box 1.0 m along a horizontal floor. The rope makes an angle of 30 degrees with the horizontal and has a tension of 5 N. The opposing friction force between the box and the floor is 1 N.
How much work does the tension in the rope do on the box? Express your answer in Joules to one significant figure.
How much work does the friction do on the box? Express your answer in Joules to one significant figure.
How much work does the normal force do on the box? Express your answer in Joules to one significant figure.
What is the total work done on the box? Express your answer in Joules to one significant figure.

Answers

1) To determine the work done by different forces on the box, we need to calculate the work done by each force separately. Work is given by the formula:

Work = Force × Distance × cos(theta

Force is the magnitude of the force applied,

Distance is the distance over which the force is applied, and

theta is the angle between the force vector and the direction of motion.

2) Work done by tension in the rope:

The tension in the rope is 5 N, and the distance moved by the box is 1.0 m. The angle between the tension force and the direction of motion is 30 degrees. Therefore, we have:

Work_tension = 5 N × 1.0 m × cos(30°)

Work_tension ≈ 4.33 J (to one significant figure)

3) Work done by friction:

The friction force opposing the motion is 1 N, and the distance moved by the box is 1.0 m. The angle between the friction force and the direction of motion is 180 degrees (opposite direction). Therefore, we have:

Work_friction = 1 N × 1.0 m × cos(180°)

4) Work done by the normal force:

The normal force does not do any work in this case because it acts perpendicular to the direction of motion. The angle between the normal force and the direction of motion is 90 degrees, and cos(90°) = 0. Therefore, the work done by the normal force is zero.

5) Total work done on the box:

The total work done on the box is the sum of the individual works:

Total work = Work_tension + Work_friction + Work_normal

Learn more about forces here : brainly.com/question/26115859
#SPJ11

A particle starts from rest and moves with a constant acceleration of 5 m/s2. It goes on for 10 s. Then, it slows down with constant acceleration for 500 m until it stops.
How much time does it take to stop during the last 500m?
Give your answer in [s].

Answers

We need to calculate the time taken by a particle to stops when it is moving with uniform accelaration.

Given,
Initial velocity (u) = 0 m/s

Acceleration (a) = 5 m/s²

Time taken (t) = 10 s

Distance (S) = 500 m

Final velocity (v) = 0 m/s

To calculate the time (t') taken by the particle to stop during the last 500 m we need to use the following kinematic equation:  

S = ut + (1/2)at² + v't'

Where

u = initial velocity = 0 m/s

a = deceleration (negative acceleration) = -5 m/s²

v' = final velocity = 0 m/s

S = distance = 500 m\

t' = time taken to stop

We can rewrite the equation as:  

t' = [2S/(a + √(a² + 2aS/v') )

]Putting the values we get,  

t' = [2 × 500/( -5 + √(5² + 2 × -5 × 500/0))]t' = [1000/5]t' = 200 s

Therefore, it takes 200 s for the particle to stop during the last 500 m.

We have given that a particle starts from rest and moves with a constant acceleration of 5 m/s2. It goes on for 10 s. Then, it slows down with constant acceleration for 500 m until it stops. We need to find how much time it takes to stop during the last 500m.Let us consider the motion of the particle in two parts. The first part is the motion with constant acceleration for 10 s.
The second part is the motion with constant deceleration until it stops. From the formula of distance,  
S = ut + (1/2)at² where, u is the initial velocity of the particle, a is the acceleration of the particle and t is the time taken by the particle. Using the above formula for the first part of the motion, we get,

S = 0 + (1/2) × 5 × (10)² = 250 m

So, the distance covered by the particle in the first part of the motion is 250 m.Now let us consider the second part of the motion. The formula for time taken by the particle to stop is,

t' = [2S/(a + √(a² + 2aS/v') )]

where, a is the deceleration of the particle and v' is the final velocity of the particle which is zero.

Now, substituting the values in the above equation, we get,

t' = [2 × 500/( -5 + √(5² + 2 × -5 × 500/0))]

t' = [1000/5]

t' = 200 s

Therefore, it takes 200 s for the particle to stop during the last 500 m.

Thus, we can conclude that the time taken by the particle to stop during the last 500 m is 200 seconds.

to know more about uniform accelaration visit:

brainly.com/question/12920060

#SPJ11

. You will need a partner. Run a tight figure-eight at increasing speed on a flat surface. Why is it difficult to run the figure-eight course at high speeds?

Answers

Running a figure-eight course at high speeds is difficult due to the increased centripetal force requirements, challenges in maintaining balance and coordination, the impact of inertia and momentum, and the presence of lateral forces and friction that can affect stability and control.

Running a figure-eight course at high speeds can be difficult due to the following reasons:

Centripetal force requirements: In order to make tight turns in the figure-eight pattern, a significant centripetal force is required to change the direction of motion. As the speed increases, the centripetal force required also increases, making it more challenging to generate and maintain that force while running.

Balance and coordination: Running a figure-eight involves sharp turns and changes in direction, which require precise balance and coordination. At higher speeds, it becomes more challenging to maintain balance and execute quick changes in direction without losing control.

Inertia and momentum: With increasing speed, the inertia and momentum of the runner also increase. This makes it harder to change directions rapidly and maintain control while transitioning between different parts of the figure-eight course.

Lateral forces and friction: During turns, lateral forces act on the runner, pulling them towards the outside of the turn. These lateral forces, combined with the friction between the feet and the ground, can make it difficult to maintain stability and prevent slipping or sliding, especially at higher speeds.

Overall, running a figure-eight course at high speeds requires a combination of physical strength, coordination, balance, and control. The increased demands on these factors make it challenging to execute the course smoothly and maintain stability throughout.

To learn more about Centripetal force visit : https://brainly.com/question/898360

#SPJ11

Visible light shines upon a pair of closely-spaced thin slits. An interference pattern is seen on a screen located behind the slits. For which color of light will the distance between the fringes (as seen on the screen) be greatest? yellow-green green yellow

Answers

The distance between the fringes in an interference pattern, often referred to as the fringe spacing or fringe separation, is determined by the wavelength of the light used.

The greater the wavelength, the larger the fringe spacing.

Yellow-green light and green light are both within the visible light spectrum, with yellow-green having a longer wavelength than green.

Therefore, the distance between the fringes will be greater for yellow-green light compared to green light.

The fringe spacing, also known as the fringe separation or fringe width, refers to the distance between adjacent bright fringes (or adjacent dark fringes) in the interference pattern. It is directly related to the wavelength of the light used.

According to the principles of interference, the fringe spacing is determined by the path length difference between the light waves reaching a particular point on the screen from the two slits. Constructive interference occurs when the path length difference is an integer multiple of the wavelength, leading to bright fringes. Destructive interference occurs when the path length difference is a half-integer multiple of the wavelength, resulting in dark fringes.

Learn more about interference here : brainly.com/question/31857527
#SPJ11

Please explain steps for part A and what is the image distance,
di, in centimeters?
(11%) Problem 5: An object is located a distance do = 5.1 cm in front of a concave mirror with a radius of curvature r = 21.1 cm. 33% Part (a) Write an expression for the image distance, d;.

Answers

The image distance is 14.8 cm and it is virtual and upright. Image distance, di = -14.8 cm.

Part A: An expression for image distance, di The formula used to calculate the image distance in terms of the focal length is given as follows;

d = ((1 / f) - (1 / do))^-1

where;f = focal length do = object distance

So, we need to write an expression for the image distance in terms of the object distance and the radius of curvature, R.As we know that;

f = R / 2From the mirror formula;1 / do + 1 / di = 1 / f

Substitute the value of f in the above formula;1 / do + 1 / di = 2 / R Invert both sides; do / (do + di)

= R / 2di

= Rdo / (2do - R)

So, the expression for image distance is; di = Rdo / (2do - R)Substitute the given values;

di = (21.1 cm)(5.1 cm) / [2(5.1 cm) - 21.1 cm]

= -14.8 cm (negative sign indicates that the image is virtual and upright)

To know more about virtual visit:

https://brainly.com/question/31674424

#SPJ11

6. An electromagnetic wave travels in -z direction, which is -ck. What is/are the possible direction of its electric field, E, and magnetic field, B, at any moment? Electric field Magnetic field A. +E

Answers

For an electromagnetic wave traveling in the -z direction (opposite to the positive z-axis), the electric field (E) and magnetic field (B) are perpendicular to each other and to the direction of propagation.

Using the right-hand rule, we find that the electric field (E) will be in the +y direction. So, the correct answer for the electric field direction is:

A. +E (in the +y direction)

Since the magnetic field (B) is perpendicular to the electric field and the direction of propagation, it will be in the +x direction. So, the correct answer for the magnetic field direction is:

B. +x

Therefore, the correct answers are:

Electric field (E) direction: A. +E (in the +y direction)

Magnetic field (B) direction: B. +x

Learn more about electromagnetic wave here : brainly.com/question/29774932
#SPJ11

Part A The exhausterature of a neat age is 220 C Wust be the high temeture Camiciency is to be Express your answer using two significant figures 2 EVO ANO T: 406 Submit Pretul Aww Best Aswat X Incorrect; Try Again: 2 attempts remaining

Answers

The high temperature efficiency of the neat engine is 39%. Given the exhausterature of a neat age is 220°C. We have to calculate the high temperature Camiciency using two significant figures. The formula for calculating efficiency is:

Efficiency = (Useful energy output / Energy input) × 100%

Where, Energy input = Heat supplied to the engine Useful energy output = Work done by the engine

We know that the exhausterature of a neat age is 220°C. The maximum theoretical efficiency of a heat engine depends on the temperature of the hot and cold reservoirs. The efficiency of a heat engine is given by:

Efficiency = (1 - Tc / Th) × 100% where, Tc = Temperature of cold reservoir in Kelvin Th = Temperature of hot reservoir in Kelvin The efficiency can be expressed in decimal or percentage.

We can use this formula to find the high temperature efficiency of a neat engine if we know the temperature of the cold reservoir. However, this formula does not account for the internal friction, heat loss, or any other inefficiencies. Thus, the actual efficiency of an engine will always be lower than the maximum theoretical efficiency.

Let's assume the temperature of the cold reservoir to be 25°C (298 K).

Th = (220 + 273) K = 493 K

Now, efficiency, η = (1 - Tc / Th) × 100%

= (1 - 298 / 493) × 100%

= 39.46%

≈ 39%

To know more about temperature  visit:-

https://brainly.com/question/11464844

#SPJ11

What is the smallest equivalent resistance when three resistors
(1.11 Ω, 2.47 Ω, and 4.03 Ω) are connected together?

Answers

The smallest equivalent resistance when three resistors (1.11 Ω, 2.47 Ω, and 4.03 Ω) are connected together is 1.11 Ω.

The equivalent resistance of a series circuit is the sum of the individual resistances. In this case, the equivalent resistance is:

R_equivalent = R_1 + R_2 + R_3 = 1.11 Ω + 2.47 Ω + 4.03 Ω = 7.61 Ω

However, the smallest equivalent resistance can be achieved by connecting the resistors in parallel. In parallel, the equivalent resistance is:

R_equivalent = 1 / (1/R_1 + 1/R_2 + 1/R_3) = 1 / (1/1.11 Ω + 1/2.47 Ω + 1/4.03 Ω) = 1.11 Ω

Therefore, the smallest equivalent resistance when three resistors (1.11 Ω, 2.47 Ω, and 4.03 Ω) are connected together is 1.11 Ω.

Learn more about resistance with the given link,

https://brainly.com/question/17563681

#SPJ11

You are in physics lab (or online simulated lab these days) observing emission lines from a mystery element. You note that there are only three lines in the visible spectrum: 310 m, 400 m and 1377.8 nm. Use this information to construct the energy level diagram with the fewest levels. Assume that the higher levels are
closer together. Label all the levels with their energy in eV. The ionization energy of this atom is 4.10 eV.

Answers

Based on the provided emission lines of the mystery element (310 nm, 400 nm, and 1377.8 nm), we can construct an energy level diagram with the fewest levels. The ionization energy is given as 4.10 eV.

Starting from the ground state, we can label the levels as follows:

Ground state (n=1) with energy 0 eV Excited state 1 (n=2) with energy -3.10 eV (transition from n=2 to n=1 emits a 310 nm line) Excited state 2 (n=3) with energy -3.60 eV (transition from n=3 to n=1 emits a 400 nm line)Excited state 3 (n=4) with energy -3.72 eV (transition from n=4 to n=1 emits a 1377.8 nm line)

The ionization energy of 4.10 eV indicates that the energy level beyond Excited state 3 is unbound, representing the ionized state of the atom.

This energy level diagram with four levels (including the ground state) explains the observed emission lines in the visible spectrum and accounts for the ionization energy of the mystery element.

Learn more about energy here:

https://brainly.com/question/2003548

#SPJ11

Problem 2 (30 points) A microscopic spring-mass system has a mass m=7 x 10-26 kg and the energy gap between the 2nd and 3rd excited states is 1 eV. a) (2 points) Calculate in joules, the energy gap between the lst and 2nd excited states: E= J b) (2 points) What is the energy gap between the 4th and 7th excited states: E= ev c) (1 point) To find the energy of the ground state, which equation can be used ? (check the formula_sheet and select the number of the equation) d) (1 point) Which of the following substitutions can be used to calculate the energy of the ground state? 0 (6.582 x 10-16) (1) (6.582 x 10-16) (1) (6.582x10-16) 01 O2 X 1 e) (3 points) The energy of the ground state is: E= eV f) (1 point) To find the stiffness of the spring, which equation can be used ? (check the formula_sheet and select the number of the equation)

Answers

a) The energy gap between the first and second excited states is 9 eV, which is equal to 1.442 × 10^-18 J.

b) The energy gap between the fourth and seventh excited states is 27 eV.

c) The equation used to find the energy of the ground state is E = (n + 1/2) × h × f.

d) The correct substitution to calculate the energy of the ground state is (1/2) × (6.582 × 10^-16 J·s) × 9.

e) The energy of the ground state is E = (1/2) × (6.582 × 10^-16 J·s) × 9 eV.

f) The stiffness of the spring can be found using the equation k = mω^2.

a) To calculate the energy gap between the first and second excited states, we can assume that the energy levels are equally spaced. Given that the energy gap between the second and third excited states is 9 eV, we can conclude that the energy gap between the first and second excited states is also 9 eV. Converting this to joules, we use the conversion factor 1 eV = 1.602 × 10^−19 J. Therefore, the energy gap between the first and second excited states is E = 9 × 1.602 × 10^−19 J.

b) Since we are assuming equally spaced energy levels, the energy gap between any two excited states can be calculated by multiplying the energy gap between adjacent levels by the number of levels between them. In this case, the energy gap between the fourth and seventh excited states is 3 times the energy gap between the second and third excited states. Therefore, the energy gap between the fourth and seventh excited states is 3 × 9 eV = 27 eV.

c) The energy of the ground state can be calculated using the equation E = (n + 1/2) × h × f, where E is the energy, n is the quantum number (0 for the ground state), h is the Planck's constant (6.626 × 10^−34 J·s), and f is the frequency.

d) The correct substitution to calculate the energy of the ground state is (1/2) × (6.582 × 10^−16 J·s) × 9.

e) Substituting the values, the energy of the ground state is E = (1/2) × (6.582 × 10^−16 J·s) × 9 eV.

f) To find the stiffness of the spring, we can use Hooke's law, which states that the force exerted by a spring is proportional to the displacement from its equilibrium position. The equation for the stiffness of the spring is given by k = mω^2, where k is the stiffness, m is the mass, and ω is the angular frequency.

Learn more About energy gap from the given link

https://brainly.com/question/7247723

#SPJ11

A microscopic spring-mass system has a mass m=7 x 10⁻²⁶ kg and the energy gap between the 2nd and 3rd excited states is 9 eV.

a) Calculate in joules, the energy gap between the lst and 2nd excited states: E=____ J

b) What is the energy gap between the 4th and 7th excited states: E= ____ ev

c) To find the energy of the ground state, which equation can be used ? (check the formula_sheet and select the number of the equation)

d) Which of the following substitutions can be used to calculate the energy of the ground state?

2 x 9

(6.582 × 10⁻¹⁶) (9)

(6.582x10⁻¹⁶)²/2

1/2(6.582 x 10⁻¹⁶) (9)

(1/2)9

e) (The energy of the ground state is: E= ____ eV

f) (1 point) To find the stiffness of the spring, which equation can be used ? (check the formula_sheet and select the number of the equation)

A certain capacitor, in series with a resistor, is being charged. At the end of 15 ms its charge is 75% of the final value. Find the time constant for the process. (in ms) Your Answer: Answer

Answers

To find the time constant for the charging process of a capacitor in series with a resistor, we can use the fact that the charge reaches 75% of the final value after a certain time. By analyzing the exponential charging equation, we can determine the time constant. In this case, the time constant is found to be 20 ms.

The charging of a capacitor in series with a resistor follows an exponential growth pattern given by the equation Q = Qf(1 - e^(-t/RC)), where Q is the charge at time t, Qf is the final charge, R is the resistance, C is the capacitance, and RC is the time constant. We are given that at the end of 15 ms, the charge reaches 75% of the final value.

Substituting these values into the equation, we can solve for the time constant RC. Rearranging the equation, we have 0.75 = 1 - e^(-15/RC). Solving for RC, we find that RC is equal to 20 ms, which is the time constant for the charging process.

To learn more about Resistor - brainly.com/question/30672175

#SPJ11

Solar radiation strikes Earth's atmosphere each day. These collisions knock electrons off of atoms and create very many lons. Pain carries the electrons to the ground so that, to a good approximation, Earth's surface can be thought of as a uniform ahell of negative charge −Q and the atmosphere can be thought of as a concentric shell of positive charge +Q. - What is the magnitude of the resulting electric field (due to this arrangement of charges) that an astronaut on the Moon would measure? (Assume the Moon is outside of Earth's atmosphere.) - What is the magnitude of the resulting electric field that a geologist would measure after tunneling to some point deep inside the Earth?

Answers

The exact magnitude of the electric field measured by the geologist would depend on their depth inside the Earth and the specific charge distribution within Earth's surface and atmosphere.

To determine the magnitude of the resulting electric field due to the arrangement of charges between Earth's surface and atmosphere, we can use Gauss's law for electric fields.

Electric field measured by an astronaut on the Moon:

Assuming the Moon is outside Earth's atmosphere, the net charge enclosed within the surface of the Moon is zero since it is not affected by the charges on Earth. Therefore, an astronaut on the Moon would measure zero electric field due to the arrangement of charges between Earth's surface and atmosphere.

Magnitude of electric field measured by an astronaut on the Moon: 0

Electric field measured by a geologist deep inside the Earth:

When a geologist tunnels to a point deep inside the Earth, we can still consider Earth's surface and atmosphere as the source of the charges. However, as the geologist tunnels deeper, the electric field due to the charges on the surface and atmosphere will decrease because the distance between the geologist and the charges increases.

The magnitude of the resulting electric field due to the arrangement of charges decreases with distance from the charges. Therefore, a geologist deep inside the Earth would measure a significantly reduced electric field compared to the surface of the Earth or the atmosphere.

The exact magnitude of the electric field measured by the geologist would depend on their depth inside the Earth and the specific charge distribution within Earth's surface and atmosphere. Without further information, it is difficult to provide an exact value for the electric field at a specific depth inside the Earth.

Learn more about electric field from the given link!

https://brainly.com/question/19878202

#SPJ11

if an eye is farsighted the image defect is:
a) distant objects image is formed in front of the retina
b) near objects image is formed behind the retina
c) lens of the eye cannot focus on distant objects
d) two of the above

Answers

If an eye is farsighted the image defect is that distant objects image is formed in front of the retina. Therefore, the answer is a) distant objects image is formed in front of the retina.

An eye that is farsighted, also known as hyperopia, is a visual disorder in which distant objects are visible and clear, but close objects appear blurred. The farsightedness arises when the eyeball is too short or the refractive power of the cornea is too weak. As a result, the light rays converge at a point beyond the retina instead of on it, causing the near object image to be formed behind the retina.

Conversely, the light rays from distant objects focus in front of the retina instead of on it, resulting in a blurry image of distant objects. Thus, if an eye is farsighted the image defect is that distant objects image is formed in front of the retina.

To learn more about retina visit;

https://brainly.com/question/15141911

#SPJ11

If an applied force on an object acts antiparallel to the direction of the object's movement, the work done on by the applied force is: Negative Cannot be determined by the problem. Positive Zero

Answers

If an applied force on an object acts antiparallel to the direction of the object's movement, the work done by the applied force is negative.

The transfer of energy from one object to another by applying a force to an object, which makes it move in the direction of the force is known as work. When the applied force acts in the opposite direction to the object's movement, the work done by the force is negative.

The formula for work is given by: Work = force x distance x cosθ where,θ is the angle between the applied force and the direction of movement. If the angle between force and movement is 180° (antiparallel), then cosθ = -1 and work done will be negative. Therefore, if an applied force on an object acts antiparallel to the direction of the object's movement, the work done by the applied force is negative.

Learn more about work done here:

https://brainly.com/question/32263955

#SPJ11

A 5.0 μFμF capacitor, a 11 μFμF capacitor, and a 17 μFμF
capacitor are connected in parallel.
What is their equivalent capacitance?

Answers

The question involves finding the equivalent capacitance when three capacitors, with capacitance values of 5.0 μF, 11 μF, and 17 μF, are connected in parallel. The objective is to determine the combined capacitance of the parallel arrangement.

When capacitors are connected in parallel, their capacitances add up to give the equivalent capacitance. In this case, the three capacitors with capacitance values of 5.0 μF, 11 μF, and 17 μF are connected in parallel. To find the equivalent capacitance, we simply add up the individual capacitances.

Adding the capacitance values, we get:

5.0 μF + 11 μF + 17 μF = 33 μF

Therefore, the equivalent capacitance of the three capacitors connected in parallel is 33 μF. This means that when these capacitors are connected in parallel, they behave as a single capacitor with a capacitance of 33 μF.

Learn more about Capacitor:

https://brainly.com/question/32648063

#SPJ11

Figure P31.48 shows a low-pass filter: the output voltage is taken across the capacitor in an L-R-C seriescircuit. Derive an expression for Vout / Vs, the ratio of the output and source voltage amplitudes, as a function of the angular frequency ω of the source. Show that when ω is large, this ratio is proportional to ω-2 and thus is very small, and show that the ratio approaches unity in the limit of small frequency.

Answers

Answer:

Vout / Vs = |(R - j(ωL - 1 / ωC)) / (R + (ωL - 1 / ωC)² - j(2ωL + 1 / ω

Explanation:

To derive the expression for Vout / Vs, the ratio of the output and source voltage amplitudes in a low-pass filter, we can analyze the behavior of the

circuit.

In an L-R-C series circuit, the impedance (Z) of the circuit is given by:

Z = R + j(ωL - 1 / ωC)

where R is the

resistance

, L is the inductance, C is the capacitance, j is the imaginary unit, and ω is the angular frequency of the source.

The output voltage (Vout) can be calculated using the voltage divider rule:

Vout = Vs * (Zc / Z)

where Vs is the source voltage and Zc is the impedance of the capacitor.

The impedance of the capacitor is given by:

Zc = 1 / (jωC)

Now, let's substitute the expressions for Z and Zc into the voltage divider equation:

Vout = Vs * (1 / (jωC)) / (R + j(ωL - 1 / ωC))

To simplify the expression, we can multiply the numerator and denominator by the complex conjugate of the denominator:

Vout = Vs * (1 / (jωC)) * (R - j(ωL - 1 / ωC)) / (R + j(ωL - 1 / ωC)) * (R - j(ωL - 1 / ωC))

Expanding the denominator and simplifying, we get:

Vout = Vs * (R - j(ωL - 1 / ωC)) / (R + jωL - j / (ωC) - jωL + 1 / ωC + (ωL - 1 / ωC)²)

Simplifying further, we obtain:

Vout = Vs * (R - j(ωL - 1 / ωC)) / (R + (ωL - 1 / ωC)² - j(2ωL + 1 / ωC))

The magnitude of the output voltage is given by:

|Vout| = |Vs * (R - j(ωL - 1 / ωC)) / (R + (ωL - 1 / ωC)² - j(2ωL + 1 / ωC))|

To find the ratio Vout / Vs, we divide the magnitude of the output voltage by the magnitude of the source voltage:

Vout / Vs = |(R - j(ωL - 1 / ωC)) / (R + (ωL - 1 / ωC)² - j(2ωL + 1 / ωC))|

Now, let's simplify this expression further.

We can write the complex quantity in the numerator and denominator in polar form as:

R - j(ωL - 1 / ωC) = A * e^(-jφ)

and

R + (ωL - 1 / ωC)² - j(2ωL + 1 / ωC) = B * e^(-jθ)

where A, φ, B, and θ are real numbers.

Taking the magnitude of the numerator and denominator:

|A * e^(-jφ)| = |A| = A

and

|B * e^(-jθ)| = |B| = B

Therefore, we have:

Vout / Vs = |(R - j(ωL - 1 / ωC)) / (R + (ωL - 1 / ωC)² - j(2ωL + 1 / ωv

Vout / Vs = |(R - j(ωL - 1 / ωC)) / (R + (ωL - 1 / ωC)² - j(2ωL + 1 / ω

Learn more about

voltage

here:

brainly.com/question/32002804

#SPJ11

Electroncoration Part A Wandectron is accelerated from rest through a potential difference of 9.9 kV, what is the magnitude (absolute value) of the change in potential energi

Answers

When an electron is accelerated from rest through a potential difference of 9.9 kV, its resulting speed is approximately 5.9 x 10⁷ m/s.

The resulting speed of an electron accelerated through a potential difference can be calculated using the formula [tex]v = \sqrt{(2qV/m)}[/tex], where v is the speed, q is the charge of the electron, V is the potential difference, and m is the mass of the electron.
In this case, the charge of the electron (q) is [tex]1.60 \times 10^{-19} C[/tex], and the potential difference (V) is 9.9 kV, which can be converted to volts by multiplying by 1000. The mass of the electron (m) is [tex]9.11 \times 10^{-31} kg[/tex].

Plugging these values into the formula, we get [tex]v = \sqrt{(\frac {2 \times 1.60 \times 10^{-19} C \times 9900 V}{9.11 \times 10^{-31} kg}}[/tex]. Evaluating this expression gives us v ≈ 5.9 x  10⁷ m/s.

Therefore, the resulting speed of the electron accelerated through a potential difference of 9.9 kV is approximately 5.9 x 10⁷ m/s.

Learn more about acceleration here:

https://brainly.com/question/28743430

#SPJ11

The complete question is:

If an electron is accelerated from rest through a potential difference of 9.9 kV, what is its resulting speed? [tex](e = 1.60 \times 10{-19} C, k= 8.99 \times 10^9 N \cdot m^2/C^2, m_{el} = 9.11 \times 10^{-31} kg)[/tex]

A. 5.9 x 10⁷ m/s B. 2.9 x 10⁷ m/s C. 4.9 x 10⁷ m/s D. 3.9 x 10⁷ m/s

Consider a non-rotating space station in the shape of a long thin uniform rod of mass 8.85 x 10^6 kg and length 737 meters. Rocket motors on both ends of the rod are ignited, applying a constant force of F = 5.88 x 10^5 N to each end of the rod as shown in the diagram, causing the station to rotate about its center. If the motors are left running for 2 minutes and 37 seconds before shutting off, then how fast will the station be rotating when the engines stop? 1 1.62 rpm 2 0.65 rpm 3 2.59 rpm 4 3.11 rpm

Answers

The space station, has a mass of 8.85 x 10^6 kg and length of 737 meters. After running for 2 minutes and 37 seconds, the motors shut off, and the station will be rotating at approximately 1.62 rpm.

To determine the final rotational speed of the space station, we can use the principle of conservation of angular momentum.

The initial angular momentum (L_initial) of the space station is zero since it is initially at rest. The final angular momentum (L_final) can be calculated using the formula:

L_final = I × ω_final

where:

I is the moment of inertia of the space station

ω_final is the final angular velocity (rotational speed) of the space station

The moment of inertia of a uniform rod rotating about its center is given by:

[tex]I=\frac{1}{12} *m*L^{2}[/tex]

where:

m is the mass of the rod

L is the length of the rod

Substituting the given values:

m = 8.85 x [tex]10^{6}[/tex] kg

L = 737 m

[tex]I=\frac{1}{12} *(8.85*10^{6} )*737m^{2}[/tex]

Now, let's convert the time interval of 2 minutes and 37 seconds to seconds:

Time = 2 minutes + 37 seconds = (2 * 60 seconds) + 37 seconds = 120 seconds + 37 seconds = 157 seconds

The total torque (τ) exerted on the space station by the rocket motors is equal to the force applied (F) multiplied by the lever arm (r). Since the motors are applied at the ends of the rod, the lever arm is equal to half of the length of the rod:

r = [tex]\frac{L}{2} = \frac{737m}{2}[/tex]  = 368.5 m

The torque can be calculated as:

τ = F × r

Substituting the given force:

F = 5.88 x [tex]10^{5}[/tex] N

τ = (5.88 x [tex]10^{5}[/tex] N) × (368.5 m)

Now, using the conservation of angular momentum, we equate the initial and final angular momenta:

L_initial = L_final

0 = I × ω_initial (initial angular velocity is zero)

0 = I × ω_final

Since ω_initial is zero, the final angular velocity is given by:

ω_final = τ ÷ I

Substituting the values of τ and I:

ω_final = [tex]\frac{(5.88 *10^{5}) *(368.5m)}{\frac{1}{12} *(8.858 *10^{6} kg)*(737m^{2}) }[/tex]

Calculating the final angular velocity:

ω_final ≈ 1.62 rad/s

To convert the angular velocity to revolutions per minute (rpm), we use the conversion factor:

1 rpm = [tex]\frac{2\pi rad}{60s}[/tex]

Converting ω_final to rpm:

ω_final_rpm = (1.62 rad/s) × [tex]\frac{60s}{2\pi rad}[/tex]

Calculating the final rotational speed in rpm:

ω_final_rpm ≈ 1.62 rpm

Therefore, the space station will be rotating at approximately 1.62 rpm when the engines stop.

The answer is 1) 1.62 rpm.

Learn more about velocity here:

https://brainly.com/question/30559316

#SPJ11

A delivery truck travels 31 blocks north, 18 blocks east, and 26 blocks south. Assume the blooks are equal length What is the magnitude of its final displacement from the origin? What is the direction of its final displacement from the origin? Express your answer using two significant figures.

Answers

The magnitude of final displacement is from the origin is approximately 36 blocks and the direction of the final displacement from the origin is approximately 59° (measured counterclockwise from the positive x-axis or east direction).

To calculate the magnitude of the final displacement, we can use the Pythagorean theorem, which states that in a right triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.

In this case, we can consider the north-south displacement as one side and the east-west displacement as the other side of a right triangle. The final displacement is the hypotenuse of this triangle.

Given:

North displacement = 31 blocks (positive value)

East displacement = 18 blocks (positive value)

South displacement = 26 blocks (negative value)

To calculate the magnitude of the final displacement:

Magnitude = sqrt((North displacement)^2 + (East displacement)^2)

Magnitude = sqrt((31)^2 + (18)^2)

Magnitude = sqrt(961 + 324)

Magnitude = sqrt(1285)

Magnitude ≈ 35.88

Rounded to two significant figures, the magnitude of the final displacement from the origin is approximately 36 blocks.

To determine the direction of the final displacement from the origin, we can use trigonometry. We can calculate the angle with respect to a reference direction, such as north or east.

Angle = atan((North displacement) / (East displacement))

Angle = atan(31 / 18)

Angle ≈ 59.06°

Rounded to two significant figures, the direction of the final displacement from the origin is approximately 59° (measured counterclockwise from the positive x-axis or east direction).

Thus, rounded to two significant figures, the magnitude of final displacement is from the origin is approximately 36 blocks and the direction of the final displacement from the origin is approximately 59° (measured counterclockwise from the positive x-axis or east direction).

Learn more about displacement https://brainly.com/question/321442

#SPJ11

Puzzle: Three Questions About Black Holes A Answer the following two questions about black holes with a paragraph justifying your answer: 1. If black holes are "black" (do not emit light) then how do astronomers know that they exist? Give at least two examples. 2. Which is likely to be more common in our Galaxy: white dwarfs or black holes? Why? 3. Suppose that the amount of mass in a black hole doubles. Does the event horizon change? If so, how does it change? If not, explain why.

Answers

1. Astronomers know that black holes exist through indirect observations and the detection of their effects on surrounding matter.

2. White dwarfs are likely to be more common in our Galaxy compared to black holes due to their formation process and evolutionary pathways.

3. The event horizon of a black hole does not change when the amount of mass in it doubles.

How do astronomers gather evidence for the existence of black holes?  

Astronomers can infer the existence of black holes through indirect observations. They detect the effects of black holes on surrounding matter, such as the gravitational influence on nearby stars and gas.

For example, the orbit of a star can exhibit deviations that indicate the presence of a massive unseen object like a black hole.

Additionally, the emission of X-rays from the accretion disks of black holes provides another observational signature.

Which celestial objects are more abundant in our Galaxy: white dwarfs or black holes?

White dwarfs are expected to be more common in our Galaxy compared to black holes. This is because white dwarfs are the remnants of lower-mass stars, which are more abundant in the stellar population.

On the other hand, black holes are formed from the collapse of massive stars, and such events are less frequent. Therefore, white dwarfs are likely to outnumber black holes in our Galaxy.

Does the event horizon of a black hole change when its mass doubles?

When the mass of a black hole doubles, the event horizon, which is the boundary beyond which nothing can escape its gravitational pull, remains unchanged.

The event horizon is solely determined by the mass of the black hole and not its density or size. Thus, doubling the mass of a black hole does not alter its event horizon.

Learn more about existence of black holes

brainly.com/question/31646631

#SPJ11

Express 18/4 as a fraction of more than 1

Answers

When expressed as a fraction of more than 1, 18/4 is equivalent to 4 and 1/2.

To express 18/4 as a fraction of more than 1, we need to rewrite it in the form of a mixed number or an improper fraction.

To start, we divide the numerator (18) by the denominator (4) to find the whole number part of the mixed number. 18 divided by 4 equals 4 with a remainder of 2. So the whole number part is 4.

The remainder (2) becomes the numerator of the fraction, while the denominator remains the same. Thus, the fraction part is 2/4.

However, we can simplify this fraction further by dividing both the numerator and the denominator by their greatest common divisor, which is 2. Dividing 2 by 2 equals 1, and dividing 4 by 2 equals 2. Therefore, the simplified fraction is 1/2.

Combining the whole number part and the simplified fraction, we get the final expression: 18/4 is equivalent to 4 and 1/2 when expressed as a fraction of more than 1.

To learn more about fractions

https://brainly.com/question/10354322

#SPJ8

If I apply an acceleration for (2.440x10^0) seconds of (5.68x10^0) m/s2 when I hav an initial velocity of +(3.5200x10^0) m/s, what final velocity do I have?

Answers

The final velocity is approximately 1.74272 × 10¹ m/s.

To find the final velocity, we can use the kinematic equation:

v = u + at,

where

v is the final velocity,

u is the initial velocity,

a is the acceleration, and

t is the time.

Given:

Initial velocity (u) = + 3.5200 × 10 m/s

Acceleration (a) = 5.68 × 10 m/s²

Time (t) = 2.440 × 10 seconds

Substituting these values into the equation, we have:

v = 3.5200 × 10 m/s + 5.68 × 10 m/s² × 2.440 × 10 seconds.

v = (3.5200 + 5.68 × 2.440) × 10 m/s.

v = (3.5200 + 13.9072) × 10 m/s.

v = 17.4272 × 10 m/s.

v = 1.74272 × 10¹ m/s.

Therefore, the final velocity is approximately 1.74272 × 10¹ m/s.

Learn more about Equations of Kinematics from the given link:

https://brainly.com/question/28712225

#SPJ11

6 of 10 Problem#13 (Please Show Work 30 points) An AC appliance cord has its hot and neutral wires separated by 3.00 mm and carries a 5.00-A current. (a) What is the average force per meter between the wires in the cord? (b) What is the maximum force per meter between the wires? (c) Are the forces attractive or repulsive? (d) Do appliance cords need any special design features to compensate for these forces?

Answers

(a) The average force per meter between the hot and neutral wires in the AC appliance cord is calculated by using the formula F = μ₀I²d / (2πr), where F is the force, μ₀ is the permeability of free space, I is the current, d is the separation distance, and r is the radius of the wires.

(b) The maximum force per meter between the wires occurs when the wires are at their closest distance, so it is equal to the average force.

(c) The forces between the wires are attractive.

(d) Appliance cords do not require special design features to compensate for these forces.

Step 1:

(a) The average force per meter between the hot and neutral wires in the AC appliance cord can be calculated using the formula F = μ₀I²d / (2πr).

(b) The maximum force per meter between the wires occurs when they are at their closest distance, so it is equal to the average force.

(c) The forces between the wires in the cord are attractive due to the direction of the current flow. Electric currents create magnetic fields, and these magnetic fields interact with each other, resulting in an attractive force between the wires.

(d) Appliance cords do not require special design features to compensate for these forces. The forces between the wires in a typical appliance cord are relatively small and do not pose a significant concern.

The materials used in the cord's construction, such as insulation and protective coatings, are designed to withstand these forces without any additional design considerations.

When electric current flows through a wire, it creates a magnetic field around the wire. This magnetic field interacts with the magnetic fields created by nearby wires, resulting in attractive or repulsive forces between them.

In the case of an AC appliance cord, where the current alternates in direction, the forces between the wires are attractive. However, these forces are relatively small, and appliance cords are designed to handle them without the need for additional features.

The insulation and protective coatings on the wires are sufficient to withstand the forces and ensure safe operation.

Learn more about force

brainly.com/question/30507236

#SPJ11

A converging lens has a focal length of 86.0 cm. Locate the images for the following object distances, If they exist. Find the magnification. (Enter 0 in the q and M fields if no image exists.) Select all that apply to part (a). real virtual upright inverted no image (b) 24.6 cm

Answers

For an object located at a distance of 24.6 cm from the lens, the image formed will be real, inverted, and the magnification will be less than 1. For an object located at a distance of 86 cm from the lens, the image formed will be at infinity.

A converging lens is one that converges light rays and refracts them to meet at a point known as the focal point. In this context, we have a converging lens with a focal length of 86.0 cm. We will locate images for specific object distances, where applicable. Additionally, we will calculate the magnification factor of each image.

Objects that are farther away than the focal length from a converging lens have a real image formed. The image is inverted, and the magnification is less than 1.

Objects that are located within one focal length of a converging lens have a virtual image formed. The image is upright, and the magnification is greater than 1. No image is formed when an object is located at the focal length of a lens.

Objects that are located within one focal length and the lens have a virtual image formed. The image is upright, and the magnification is greater than 1.

For an object located at a distance of 24.6 cm from the lens, the image formed will be real, inverted, and the magnification will be less than 1.

Therefore, the correct answers for part

(a) are real, inverted. The magnification is given by:

M = -d_i/d_oM = - (86)/(86 - 24.6)M = - 0.56

For an object located at a distance of 86 cm from the lens, the image formed will be at infinity.

No image will exist, and the correct answer for part (b) is no image.

The question should be:
For a converging lens with a focal length of 86.0 cm, we must determine the positions of the images formed for the given object distances, if they exist Find the magnification. (Enter 0 in the q and M fields if no image exists.) Select all that apply to part (a). real virtual upright inverted no image (b) 24.6 cm real virtual upright inverted no image.

Learn more about image at: https://brainly.com/question/27841226

#SPJ11

A single conservative force F=(5.0x−8.0)iN, where x is in meters, acts on a particle moving along an x axis. The potential energy U associated with this force is assigned a value of 24 J at x=0. (a) What is the maximum positive potential energy? At what (b) negative value and (c) positive value of x is the potential energy equal to zero?

Answers

(a) There is no maximum positive potential energy, (b) When x is -6.4 m, the potential energy is zero and (c) When x is 6.4 m, the potential energy is zero.

To find the maximum positive potential energy, we need to determine the maximum value of U.

Given:

Force, F = (5.0x - 8.0) N

Potential energy at x = 0, U = 24 J

(a) Maximum positive potential energy:

The maximum positive potential energy occurs when the force reaches its maximum value. In this case, we can find the maximum value of F by setting the derivative of F with respect to x equal to zero.

dF/dx = 5.0

Setting dF/dx = 0, we have:

5.0 = 0

Since the derivative is a constant, it does not equal zero, and there is no maximum positive potential energy in this scenario.

(b) Negative value of x where potential energy is zero:

To find the negative value of x where the potential energy is zero, we set U = 0 and solve for x.

U = 24 J

5.0x - 8.0 = 24

5.0x = 32

x = 32 / 5.0

x ≈ 6.4 m

So, at approximately x = -6.4 m, the potential energy is equal to zero.

(c) Positive value of x where potential energy is zero:

We already found that the potential energy is zero at x ≈ 6.4 m. Since the potential energy is an even function in this case, the potential energy will also be zero at the corresponding positive value of x.

Therefore, at approximately x = 6.4 m, the potential energy is equal to zero.

Learn more about potential energy from the given link :

https://brainly.com/question/13997830

#SPJ11

A diatomic ideal gas occupies 4.0 L and pressure of 100kPa. It is compressed adiabatically to 1/4th its original volume, then cooled at constant volume back to its original temperature. Finally, it is allowed to isothermally expand back to
its original volume.
A. Draw a PV diagram B. Find the Heat, Work, and Change in Energy for each process (Fill in Table). Do not assume anything about the net values to fill in the
values for a process.
C. What is net heat and work done?

Answers

A)Draw a PV diagram

PV diagram is drawn by considering its constituent processes i.e. adiabatic process, isochoric process, and isothermal expansion process.

PV Diagram: From the initial state, the gas is compressed adiabatically to 1/4th its volume. This is a curve process and occurs without heat exchange. It is because the gas container is insulated and no heat can enter or exit the container. The second process is cooling at a constant volume. This means that the volume is constant, but the temperature and pressure are changing. The third process is isothermal expansion, which means that the temperature remains constant. The gas expands from its current state back to its original state at a constant temperature.

B) Find the Heat, Work, and Change in Energy for each process

Heat for Adiabatic Compression, Cooling at constant volume, Isothermal Expansion  will be 0, -9600J, 9600J respectively. work will be -7200J, 0J, 7200J respectively. Change in Energy will be -7200J, -9600J, 2400J.

The Heat, Work and Change in Energy are shown in the table below:

Process                                       Heat      Work         Change in Energy

Adiabatic Compression                0         -7200 J          -7200 J

Cooling at constant volume     -9600 J      0                 -9600 J

Isothermal Expansion               9600 J    7200 J           2400 J

Net Work Done = Work Done in Adiabatic Compression + Work Done in Isothermal Expansion= 7200 J + (-7200 J) = 0

Net Heat = Heat Absorbed during Cooling at Constant Volume + Heat Released during Isothermal Expansion= -9600 J + 9600 J = 0

C) What is net heat and work done?

The net heat and work done are both zero.

Net Work Done = Work Done in Adiabatic Compression + Work Done in Isothermal Expansion = 0

Net Heat = Heat Absorbed during Cooling at Constant Volume + Heat Released during Isothermal Expansion = 0

Therefore, the net heat and work done are both zero.

Learn more about work: https://brainly.in/question/22847362

#SPJ11

1. A steel bar of area 20mm² is under a force of 5000N, work out the stress. (3 marks)

Answers

Stress is a measure of the internal force experienced by a material due to an applied external force. To calculate the stress in the steel bar, we can use the formula: Stress = Force / Area. Therefore, the stress in the steel bar is 250,000,000 N/m² or 250 MPa (megapascals).

Given:

Force = 5000 N

Area = 20 mm²

First, we need to convert the area to square meters since the force is given in Newtons, which is the SI unit.

1 mm² = (1/1000)^2 m² = 1/1,000,000 m²

Area in square meters (A) = 20 mm² * (1/1,000,000 m²/mm²) = 0.00002 m²

Now we can calculate the stress:

Stress = Force / Area

Stress = 5000 N / 0.00002 m²

Stress = 250,000,000 N/m²

Therefore, the stress in the steel bar is 250,000,000 N/m² or 250 MPa (megapascals).

To learn more about, internal force, click here, https://brainly.com/question/32068975

#SPJ11

Use Gauss's Law to find the electric field inside and outside a solid metal sphere of radius R with charge Q.

Answers

Gauss's Law can be used to find the electric field inside and outside a solid metal sphere of radius R with charge Q.

Gauss's Law states that the electric flux through any closed surface is proportional to the total electric charge enclosed within the surface.

This can be expressed mathematically as:∫E.dA = Q/ε0

Where E is the electric field, A is the surface area, Q is the total electric charge enclosed within the surface, and ε0 is the permittivity of free space

total charge:ρ =[tex]Q/V = Q/(4/3 π R³)[/tex]

where ρ is the charge density, V is the volume of the sphere, and Q is the total charge of the sphere

.Substituting this equation into Gauss's Law,

we get:[tex]∫E.dA = ρV/ε0 = Q/ε0E ∫dA = Q/ε0E × 4πR² = Q/ε0E = Q/(4πε0R²)[/tex]

the electric field inside and outside the solid metal sphere is given by:

E =[tex]Q/(4πε0R²)[/tex]For r ≤ R (inside the sphere)

E = [tex]Q/(4πε0r²)[/tex]For r > R (outside the sphere)

:where r is the distance from the center of the sphere.

To know more about Gauss's Law visit:

https://brainly.com/question/13434428

#SPJ11

An 13.9-kg stone at the end of a steel (Young's modulus 2.0 x 10¹1 N/m²) wire is being whirled in a circle at a constant tangential speed of 11.1 m/s. The stone is moving on the surface of a frictionless horizontal table. The wire is 3.24 m long and has a radius of 1.42 x 10³ m. Find the strain in the wire

Answers

The strain in the wire is 3.1 x 10⁻⁴ or 0.00031 or 0.031%. This means that the steel wire is stretched by 0.031% due to the weight of the stone and the circular motion.

Mass of the stone, m = 13.9 kg

Speed of the stone, v = 11.1 m/s

Length of the wire, L = 3.24 m

Radius of the wire, r = 1.42 x 10³ m

Young's modulus of steel wire, Y = 2.0 x 10¹¹ N/m²

Formula used:

Strain, ε = (FL)/AY

where, F is the force applied

L is the length of the wire

A is the area of cross-section of the wire

Y is the Young's modulus of the wire

For a wire moving in a horizontal circle, the tension, T in the wire is given by

T = mv²/r

where, m is the mass of the stone

v is the speed of the stoner is the radius of the circle

Substituting the given values, we get:

T = (13.9 kg) x (11.1 m/s)² / (1.42 x 10³ m)

   = 15.9 NA

s the stone is moving on a frictionless surface, the only force acting on the stone is the tension in the wire. Hence, the tension in the wire is also equal to the force acting on it. Therefore, we use T in place of F to calculate the strain.

ε = (T x L) / (A x Y)

We need to find ε.

Solving for ε, we get:

ε = (T x L) / (A x Y)

  = (15.9 N x 3.24 m) / [(π x (1.42 x 10⁻³ m)²)/4 x (2.0 x 10¹¹ N/m²)]

  = 3.1 x 10⁻⁴ or 0.00031 or 0.031%

Therefore, the strain in the wire is 3.1 x 10⁻⁴ or 0.00031 or 0.031%. This means that the steel wire is stretched by 0.031% due to the weight of the stone and the circular motion.

Learn more About strain from the given link

https://brainly.com/question/17046234

#SPJ11

Other Questions
Fill out the VIR chart for this electrical circuit You will get down vote if you copy the answer from otherquestions or get it wrongWhich of the following codes is used for submitting claims for services provided by Physicians? A. LOINC B. CPT C. ICD-CM D. SNOMED-CT A21 and 23 For Problems A21-A23, construct a linear mapping L: VW that satisfies the given properties.A21 V = R, W = P2(R); L (1,0,0) = x, L(0, 1, 0) = 2x, L (0, 0, 1) = 1 + x + x 2A22 V = P2(R), W Range(L) = Span = 1 0 M2x2(R); Null(Z) 0 = {0} andA23 V = M2x2(R), W = R4; nullity(Z) = 2, rank(L) = 2, and L (6 ) - 1 1 0 Open-Ended Policy Prompt: Respond To The Following Prompt And Cite At Least One Reading And One Reliable Outside Source That You Find Through An Internet Search. When Doing A Citation, Use The Following Form: (Last Name Of Author, Publication, Year...If No Author List The Organization Instead Of Last Name). The Answer Should Be Roughly Two Paragraphs. 15. You measure the specific heat capacity of a gas and obtain the following results: Cp = -1 (1.130.04) kJ kg- K-, and Cy = (0.72 0.03) kJ kg- K-. State whether this gas is more likely to be monatomic or diatomic. State the confidence level of your answer by calculating the number of standard deviations. Q15: y = 1.57 0.09 (most likely monatomic ~10, diatomic ruled out by ~1.90). Charlie plans to join his classmate on a fieldtrip 1.Find the force on a particle of mass m=1.7010-27kg and charge q=1.6010-19C if it enters a field B=5 mT with an initial speed of v=83.5 km/s. Assume the velocity is in the x direction and the magnetic field enters perpendicular to the screen. Also make a schematic drawing of these vectors. Don't forget to place your reference system.2.Find the force on a straight conductor of length 0.3 m, which carries a current of 5 A in the negative z-direction. In that space there is a magnetic field given by the vector B=3.510-3Ti-3.510-3Tj . Make a schematic drawing of the situation. (We do not require precision in your drawing for the direction of the magnetic field, only approximate).3.A conductor of length 2.5 m is located at z=0, x=4m with a current of 12 A in the -y direction. Find the magnetic field that exists in that region if the force on the conductor is F=-1.2010-2N(-12i-12j).4.A long thin wire carries a current I. A metal bar of length L is moving with a constant speed v as shown in the figure. Point a is a distance d from the wire a) Calculate the electromotive force induced in the bar. b) If the bar is replaced by a rectangular circuit of resistance R, what is the magnitude of the induced current in the circuit? Concept Vocabulary: template, parameter, model. The three concept vocabulary words from the text are related. With your group, determine what the words have in common. How do these words enhance the impact of the text? which company is best to invest from NIKE and ADIDAS on thebasis of Gross Profit margin ratio and a current ratio andinventory turnover ratio of 2021 data Workplace diversity and inclusion is becoming an increasingly important topic for all of the following reasons EXCEPT:A. More jobs are becoming service-oriented and fewer are manufacturing-orientedB. Increasing globalizationC. The U.S. workforce is becoming more racially and ethnically diverseD. The U.S. workforce is getting younger in age suppose a manufacturing plant purchased a new heating system in december, 2015 and, after installing and testing the equipment, it was put into service on january 1, 2016. the total cost to put the equipment into service was $55,000; it is expected to have a useful life of 5 years and a salvage value of $5,000. ANSWER ASAPList and briefly describe the three phases of the uterine cycle. Brief Exercise 9-7 (Algo) Retail inventory method; average cost [LO9-3] Kiddie World uses a periodic inventory system and the retail inventory method to estimate ending inventory and cost of goods sold. The following data are available for the quarter ending September 30, 2021: Estimate ending inventory and cost of goods sold (average cost). (Round ratio calculation to 2 decimal places (i.e., 0.1234 should be entered as 12.34%). What is the probabilty of picking a red ball from a basket of 24 different balls I need a discussion response for the below questions, please answer the below questions, and I'll upvote if you can adequately answer and not plagiarize; thank you.What actions (steps) will you take to increase public awareness and appreciation for STEM?Will you reach out to K12 schools? And also, what kinds of activities will you do for various(different) levels of education?Will you provide (supply) outreach to underrepresented communities?The more you can involve the community in the work and research required of your mission, the better. Ensure that all outreach that you provide is related to STEM education overall. Please explain in detail :Please discuss the areas that are unique in hospice settings inrelation to the role of the health information professional. Perform the indicated operations. 4+5^2.4+5^2 = ___ Which of the following is not a characteristic of Shakespeare's plays? Explore the Quranic Verses related to Ethics and Morality andcategorize them into segments like Human, Society, Business,Economic, Culture and Politics Description Description This assignment focuses on Piaget's theory of cognitive development, Vygotsky's theory of sociocultural development, and language development. Instructions Write a 1-2 page paper in which you summarize the strengths and weaknesses of Piaget's stages of cognitive development and Vygotsky's sociocultural theory of development. Describe how cognitive and sociocultural development support language development. In your paper you should address: - The strengths and weaknesses of Piaget's theories. - The strengths and weaknesses of Vygotsky's theories. - Identify the elements of each theory that you think are the strongest and/or the most problematic, and explain why you think so. Assignment Submission: