Answer: The speed of the moon's rotation keeps the same side always facing Earth.
Explanation: Please mark me brainiest
Answer:
The speed of the Moon's rotation keeps the same side always facing Earth.
Explanation:
got it right on study island :)
helpppppppppppppppppppppppppppp............
an object is moving with initial velocity of 5 m/s. After 10 seconds final velocity is 10 m/s. Calculate its acceleration.
Answer:
0.5 m/s 2 is the acceleration
Explanation:
hope it helped!!!
Two vectors have magnitudes 3 and 4 . how are the directions of the two vectors related if: a/the sum has magnitude 7.0
Infrared radiation from young stars can pass through the heavy dust clouds surrounding them, allowing astronomers here on Earth to study the earliest stages of star formation, before a star begins to emit visible light. Suppose an infrared telescope is tuned to detect infrared radiation with a frequency of 1.61THz. Calculate the wavelength of the infrared radiation. Round your answer to 3 significant digits.
Answer:
λ = 1.86 x 10⁻⁴ m = 186 μm
Explanation:
The relationship between the wavelength and the frequency of a wave is given by the following equation:
[tex]c = f\lambda\\\\\lambda = \frac{c}{f}[/tex]
where,
λ = wavelength of infrared radiation = ?
c = speed of infrared radiation = speed of light = 3 x 10⁸ m/s
f = frequency of infrared radiation = 1.61 THz = 1.61 x 10¹² Hz
Therefore,
[tex]\lambda = \frac{3\ x\ 10^8\ m/s}{1.61\ x\ 10^{12}\ Hz}[/tex]
λ = 1.86 x 10⁻⁴ m = 186 μm
Types of telescope
for Space
observation
Answer:The three main types are reflecting telescopes, refracting telescopes, and catadioptric telescopes. Radio telescopes collect and focus radio waves from distant objects. Space telescopes orbit Earth, collecting wavelengths of light that are normally blocked by the atmosphere.
Answer:
oii me manda mensagem fofo vc tem namorada fofo
According to Lenz's law, the current is induced in the closed conducting loop in such a direction that the magnetic field induced by this current opposes the change in the flux through the loop.
a. True
b. False
Answer:
True
Explanation:
It is true that the real definition of lenz's law in magnetism is the current is induced in the closed conducting loop in such a direction that the magnetic field induced by this current opposes the change in the flux through the loop.
This means that induced current opposes the very cause that produces it.
A transparent oil with index of refraction 1.15 spills on the surface of water (index of refraction 1.33), producing a maximum of reflection with normally incident violet light (wavelength 400 nm in air). Assuming the maximum occurs in the first order, determine the thickness of the oil slick.
Answer:
The thickness of the oil slick. t = 173.91 nm
Explanation:
Oil film thickness t is given by the equation
[tex]t = \frac{\lambda}{2n}[/tex]
where λ = wavelength of incident light in air = 400 nm
and n = index of refraction of oil
therefore,
[tex]t =\frac{400}{2\times 1.15}\\t= 173.91 nm[/tex]
The thickness of the oil slick. t = 173.91 nm
What is the difference between center of mass and center of gravity?
Answer:
Centre of mass is the point at which the distribution of mass is equal in all directions, and does not depend on gravitational field. Centre of gravity is the point at which the distribution of weight is equal in all directions, and does depend on gravitational field.
Answer:
Centre of mass is the point at which the distribution of mass is equal in all directions, and does not depend on gravitational field.
Centre of gravity is the point at which the distribution of weight is equal in all directions, and does depend on gravitational field.
hope this helps you ☺️☺️
A student with a mass of 52 kg, starts from rest and travels down a 2 m slide. What is
the KE of the student at the bottom of the slide?
Answer:
https://www.ux1.eiu.edu/~cfadd/1350/Hmwk/Ch08/Ch8.html
Explanation:
Another word for kinetic energy
could be
energy.
A. Safe
B. Moving
C. Stored
D. Potential
Answer:
moving
Explanation:
hope it helped!!!
Answer:
B
Explanation:
What would the current be for a circuit that has a voltage of 0.8 V and a resistance of 0.01 Q?
0 1 = 0.01 A
0 1 = 0.8 A
0 1 = 80 A
O I = 0.08 A
Answer:
80 A
Explanation:
Hi there!
Ohm's law states that [tex]V=IR[/tex] where V is the voltage, I is the current and R is the resistance.
Plug the given information into Ohm's law (V=0.8, R=0.01) and solve for I
[tex]V=IR\\0.8=I(0.01)[/tex]
Divide both sides by 0.01 to isolate I
[tex]0.8=I(0.01)\\\frac{0.8}{0.01}= \frac{I(0.01)}{0.01} \\80=I[/tex]
Therefore, the current for this circuit would be 80 A.
I hope this helps!
Which type of diffraction occurs when the point source and the screen are at finite distances from the obstacle forming the diffraction pattern?
A. fraunhofer
B. fresnel
C. far-field
D. single slit
In an NMR experiment, the RF source oscillates at 34 MHz and magnetic resonance of the hydrogen atoms in the sample being in- vestigated occurs when the external field Bext has magnitude 0.78 T. Assume that Bint and Bext are in the same direction and take the pro- ton magnetic moment component u, to be 1.41 X 10-26 J/T. What is the magnitude of Bint?
Answer:
[tex]B_{int}=-0.015T[/tex]
Explanation:
From the question we are told that:
RF source oscillation speed [tex]\sigma= 34 MHz[/tex]
The external field [tex]Bext =0.78 T[/tex].
Pro- ton magnetic moment component [tex]\mu=1.41 X 10-26 J/T[/tex]
Generally the equation for magnitude of [tex]B_{int}[/tex] is mathematically given by
[tex]B_{int}=B_{ext}-\frac{h\triangle \sigma}{2 \mu}[/tex]
[tex]B_{int}=0.78-\frac{6.6*10^{-34}*34*10^6}{2*1.41*10^{26}}[/tex]
[tex]B_{int}=0.78-0.7957[/tex]
[tex]B_{int}=-0.015T[/tex]