Answer:
α = kt
ω = [tex]\frac{kt^2}{2}[/tex]
θ = [tex]\frac{kt^3}{6}[/tex]
Explanation:
given data
Initial velocity ω = 0
time t = 10 s
Number of revolutions = 20
solution
we will take here first α = kt .....................1
and as α = [tex]\frac{d\omega}{dt}[/tex]
so that
[tex]\frac{d\omega}{dt}[/tex] = kt ..................2
now we will integrate it then we will get
∫dω = [tex]\int_{0}^{t} kt\ dt[/tex] .......................3
so
ω = [tex]\frac{kt^2}{2}[/tex]
and
ω = [tex]\frac{d\theta}{dt}[/tex] ..............4
so that
[tex]\frac{d\theta}{dt}[/tex] = [tex]\frac{kt^2}{2}[/tex]
now we will integrate it then we will get
∫dθ = [tex]\int_{0}^{t}\frac{kt^2}{2} \ dt[/tex] ...............5
solve it and we get
θ = [tex]\frac{kt^3}{6}[/tex]
10 kg/s Propane at 10 bar and 20 C is directed to an adiabatic rigid mixer and is mixed with 20 kg/s Propane at 10 bar and 40 C. What is the final volumetric flow rate in (m3/s) of the resulting mixture.
Answer:
The final volumetric flow rate will be "76.4 m³/s".
Explanation:
The given values are:
[tex]\dot{m_{1}}=10 \ kg/s[/tex]
[tex]\dot{m_{2}}=20 \ Kg/s[/tex]
[tex]T_{1}=293 \ K[/tex]
[tex]T_{2}=313 \ K[/tex]
[tex]P_{1}=P_{2}=P_{3}=10 \ bar[/tex]
As we know,
⇒ [tex]E_{in}=E_{out}[/tex]
[tex]\dot{m_{1}}h_{1}+\dot{m_{2}}h_{2}=\dot{m_{3}}h_{3}[/tex]
[tex]e_{1}\dot{v_{1}}h_{1}+e_{2}\dot{v_{2}}h_{2}=e_{3}\dot{v_{3}}h_{3}[/tex]
[tex]\frac{P_{1}}{RP_{1}}\dot{v_{1}} \ C_{p}T_{1}+ \frac{P_{2}}{RP_{2}}\dot{v_{2}} \ C_{p}T_{1}=\frac{P_{3}}{RP_{3}}\dot{v_{3}} \ C_{p}T_{3}[/tex]
⇒ [tex]\dot{v_{3}}=\dot{v_{1}}+\dot{v_{2}}[/tex]
[tex]=\frac{\dot{m_{1}}}{e_{1}}+\frac{\dot{m_{2}}}{e_{2}}[/tex]
On substituting the values, we get
[tex]=\frac{10}{10\times 10^5}\times 8314\times 293+\frac{20\times 8314\times 313}{10\times 10^5}[/tex]
[tex]=76.4 \ m^3/s[/tex]