Calculate the pH for the following 1.0M weak acid solutions:a. HCOOH Ka = 1.8 x 10-4 [
Answer: pH=2.38
Explanation:
To calculate the pH, let's first write out the equation. Then, we will make an ICE chart. The I in ICE is initial quantity. In this case, it is the initial concentration. The C in ICE is change in each quantity. The E is equilibrium.
HCOOH ⇄ H⁺ + HCOO⁻
I 1.0M 0 0
C -x +x +x
E 1.0-x x x
For the steps below, refer to the ICE chart above.
1. Since we were given the initial of HCOOH, we can fill this into the chart.
2. Since we were not given the initial for H⁺ and HCOO⁻, we will put 0 in their place.
3. For the change, we need to add concentration to the products to make the reaction reach equilibrium. We would add on the products and subtract from the reactants to equalize the reaction. Since we don't know how much the change in, we can use variable x.
4. We were given the Kₐ of the solution. We know [tex]K_{a} =\frac{product}{reactant}=\frac{[H^+][HCOO^-]}{[HCOOH]}[/tex].
5. The problem states that the Kₐ=1.8×10⁻⁴. All we have to so is to plug it in and to solve for x.
[tex]1.8*10^-^4 =\frac{x^2}{0.1-x}[/tex]
6. Once we plug this into the quadratic equation, we get x=0.00415.
7. The equilibrium concentration of [H⁺]=0.00415. pH is -log(H⁺).
-log(0.00415)=2.38
Our pH for the weak acid solution is 2.38.
Which best describes the act of using senses or tools to gather information? creating a hypothesis making an observation summarizing the results recording the measurements
Answer:
B - Making an Observation
Explanation:
Making an observation best describes the act of using senses or tools to gather information. Therefore, option B is correct.
What are senses in the scientific method?The five senses—sight, taste, touch, hearing, and smell—gather data about our surroundings that the brain interprets. Based on prior experience (and subsequent learning), as well as by combining the data from each sensor, we make sense of this information.
Information gleaned from your five senses is referred to as an observation. These are smell, taste, touch, hearing, and sight. When you see a bird or hear it sing, you notice it.
The term observation, which is also used to sense five aspects of the world including vision, taste, touch, smell, and hearing, is used to describe utilizing the senses to examine the world, employing tools to take measurements, and looking at prior research findings.
Thus, option B is correct.
To learn more about the scientific method, follow the link:
https://brainly.com/question/7508826
#SPJ7
A pentavalent cation atom has 20 and 15 neutrons as protons. Find the electron quantity and mass number respectively. (40 pts.) a) 20 and 15 b) 15 and 20 c) 15 and 35 d) 35 and 15 e) 10 and 20
Answer:
C.
Explanation:
Since the mass number is the number of protons and neutrons added together, the answer is 35. Since the questions are respectively electron quantity and mass number, the only answer choice with 35 as the second choice is C, so that is the correct answer.
(-)-Cholesterol has a specific rotation of -32o. A mixture of ( )- and (-)-cholesterol was analyzed by polarimetry, and the observed rotation was 14o. What is the percent composition of the ( ) isomer in this mixture
Answer:
(+)-cholesterol = 71.88%
(-)-cholesterol = 28.12%
Explanation:
Asuming 1 gram of sample is dissolved in 1mL of water and the sample cell was 1dm long.
Enantiomeric excess is defined as the amount of pure enantiomer in a sample. The formula is:
ee = [α]mixture / [α]pure enantiomer.
Replacing:
ee = 14° / 32°×100 = 43.75%
As the sample is 14°, There is an excess of (+)-cholesterol and 56.25% is a 1:1 mixture of enantiomers.
That means percent composition of enantiomers is:
(+)-cholesterol = 43.75% + 56.25%/2 = 71.88%(-)-cholesterol = 56.25%/2 = 28.12%What is the specific heat of a 85.01 g piece of an unknown metal that exhibits a 45.2°C temperature change upon absorbing 1870 J of heat?
Answer:
[tex]0.48~\frac{J}{g~^{\circ}C}[/tex]
Explanation:
In this question, we have to remember the relationship between Q (heat) and the specific heat (Cp) the change in temperature (ΔT), and the mass (m).
[tex]Q=m*Cp*ΔT[/tex]
The next step is to identify what values we have:
[tex]Q~=~1870~J[/tex]
[tex]m~=~85.01~g[/tex]
[tex]ΔT~=~45.2~^{\circ}C[/tex]
[tex]Cp~=~X[/tex]
Now, we can plug the values and solve for "Cp":
[tex]1870~J=~85.01~g~*Cp*45.2~^{\circ}C[/tex]
[tex]Cp=\frac{1870~J}{85.01~g~*45.2~^{\circ}C}[/tex]
[tex]Cp=0.48~\frac{J}{g~^{\circ}C}[/tex]
The unknow metal it has a specific value of [tex]0.48~\frac{J}{g~^{\circ}C}[/tex]
I hope it helps!
Without doing any calculations, match the following thermodynamic properties with their appropriate numerical sign for the following endothermic reaction. 2N2(g) + O2(g)2N2O(g) Clear All > 0 Hrxn < 0 Srxn = 0 Grxn > 0 low T, < 0 high T Suniverse < 0 low T, > 0 high T
Answer:
∆H > 0
∆Srxn <0
∆G >0
∆Suniverse <0
Explanation:
We are informed that the reaction is endothermic. An endothermic reaction is one in which energy is absorbed hence ∆H is positive at all temperatures.
Similarly, absorption of energy leads to a decrease in entropy of the reaction system. Hence the change in entropy of the reaction ∆Sreaction is negative at all temperatures.
The change in free energy for the reaction is positive at all temperatures since ∆S reaction is negative then from ∆G= ∆H - T∆S, we see that given the positive value of ∆H, ∆G must always return a positive value at all temperatures.
Since entropy of the surrounding= - ∆H/T, given that ∆H is positive, ∆S surrounding will be negative at all temperatures. This is so because an endothermic reaction causes the surrounding to cool down.
when dissolved in water, an acid or a base breaks down into a. a proton and an electron b. two negative ions c. a positive and a negative ion d. a positive ion and a proton
Answer:
C. A positive and a negative ion
Explanation:
Acids and bases are made up of charged particles known as ions. The ions present in acids are oppositely charged and are held together by strong electrostatic forces. When acids or bases are dissolved in water, the electrostatic forces holding their individual molecules together are weakened and these ions are free to move apart in a process known as dissociation. Dissociation occurs because of the attraction between the positive and negative ions in the acid and bases and the negative and positive polarity of water.
For example, when an acid like hydrochloric acid is dissolved in water it dissociates into positive and negative ions as follows:
HCl(aq) -----> H+ + Cl-
When a base like sodium hydroxide is dissolved in water, it dissociates into positive and negative ions as follows:
NaOH(aq) ----> Na+ + OH-
Answer:
yeah C is correct
Explanation:
Pb(OH)Cl, one of the lead compounds used in ancient Egyptian cosmetics, was prepared from PbO according to the following recipe: PbO(s) NaCl(aq) H2O(l) --> Pb(OH)Cl(s) NaOH(aq) How many grams of PbO and how many grams of NaCl would be required to produce 10.0 g of Pb(OH)Cl
Answer:
8.59 g
2.25 g
Explanation:
According to the given situation the calculation of grams of PbO and grams of NaCL is shown below:-
Moles of Pb(OH)CL is
[tex]= \frac{Mass}{Molar\ mass}[/tex]
[tex]= \frac{10.0 g}{259.65g / mol}[/tex]
= 0.0385 mol
Mass of PbO needed is
[tex]= 0.385mol Pb(OH) Cl\times \frac{1 mol PbO}{1molpb (OH) cl} \times \frac{223.2g PbO}{1mol PbO}[/tex]
After solving the above equation we will get
= 8.59 g
Mass of NaCL needed is
[tex]= \frac{1mol\ NaCl}{1molPb\ (OH)Cl} \times \frac{58.45NaCl}{1mol NaCl}[/tex]
After solving the above equation we will get
= 2.25 g
Therefore we have applied the above formula.
Choose the situation below that would result in an endothermic ΔHsolution.
a) When |ΔHsolute| > |ΔHhydration|
b) When |ΔHsolute| is close to |ΔHhydration|
c) When |ΔHsolute| < |ΔHhydration|
d) When |ΔHsolvent| >> |ΔHsolute|
e) There isn't enough information to determine.
Answer:
Option A - When |ΔHsolute| > |ΔHhydration|
Explanation:
A solution is defined as a homogeneous mixture of 2 or more substances that can either be in the gas phase, liquid phase, solid phase.
The enthalpy of solution can either be positive (endothermic) or negative (exothermic).
Now, we know that enthalpy is amount of heat released or absorbed during the dissolving process at constant pressure.
Now, the first step in thus process involves breaking up of the solute. This involves breaking up all the intermolecular forces holding the solute together. This means that the solute molecules are separate from each other and the process is always endothermic because it requires energy to break interaction. Thus;
The enthalpy ΔH1 > 0.
Thus, the enthalpy of the solute has to be greater than the enthalpy of hydration.
An endothermic ΔHsolution occurs when |ΔH solute| < |ΔH hydration|.
A substance dissolves in water when the solute - solvent interaction exceeds the solute - solute solute interaction. The energy required to break the bonds between solutes is the ΔHsolute and the energy released when solute - solvent interaction take place is called the ΔHhydration.
We know that when |ΔH solute| < |ΔH hydration|, energy is required to break up the solute - solute interaction and ΔHsolution is endothermic.
Learn more: https://brainly.com/question/1340582
At what geographical location would the boiling point of water be lowest?
A. Boston, Massachusetts
B. The coast of the Atlantic Ocean
C. The Dead Sea
D. The top of Mount Everest
Answer:
I think it would be the Dead Sea
Explanation:
Because the dead sea is already usually in the warmer temperatures, the boiling point of the water would be lower than the rest.
Description (with words) of water just above melting temperature. What intermolecular forces do you expect to find in water in liquid state
Answer:
intermolecular dipole-dipole hydrogen bonds
Explanation:
Water is a polar molecule. Recall that the central atom in water is oxygen. The molecule is bent, hence it has an overall dipole moment directed towards the oxygen atom. Since it has a permanent dipole moment, we expect that it will show dipole-dipole interactions in the liquid state.
Similarly, water contains hydrogen and oxygen. Recall that hydrogen bonds are formed when hydrogen is covalently bonded to highly electronegative elements. Hence, water in the liquid state exhibits strong hydrogen bonding. The unique type of dipole-dipole interaction in liquid water is actually hydrogen bonding, hence the answer.
Each unknown mixture contains 5 metal constituents. Select the 5 metal ions that you have identified as being present in your mixture. Please double check your selections before you hit the submit button. a. Ca b. Co c. Cr d. Fe e. K f. Mn g. Zn
Explanation:
A metal ion is a type of atom compound that has an electric charge.
Such atoms willingly lose electrons in order to build positive ions called cations. The selected Ions are :
[tex]1. Mn^2^+\\\ 2. Ca^2^+\\\ 3. Co^2^+\\\ 4. Fe^2^-\\\ 5. K^+[/tex]
Determine the limiting reactant (LR) and the mass (in g) of nitrogen that can be formed from 50.0 g N 2O 4 and 45.0 g N 2H 4. Some possibly useful molar masses are as follows: N 2O 4 = 92.02 g/mol, N 2H 4 = 32.05 g/mol.
N 2O 4( l) + 2 N 2H 4( l) → 3 N 2( g) + 4 H 2O( g)
a) LR = N2O4, 45.7 g N2 formed
b) LR = N2O4, 105 g N2 formed
c) LR = N2H4, 13.3 g N2 formed
d) LR = N2H4, 59.0 g N2 formed
e) No LR, 45.0 g N2 formed
Answer:
Option A. LR = N2O4, 45.7g N2 formed
Explanation:
The balanced equation for the reaction is given below:
N2O4(l) + 2N2H4(l) → 3N2(g) + 4H2O(g)
Next, we shall determine the masses of N2O4 and N2H4 that reacted and mass of N2 produced from the balanced equation. This is illustrated below:
Molar mass of N2O4 = 92.02 g/mol
Mass of N2O4 from the balanced equation = 1 x 92.02 = 92.02 g
Molar mass of N2H4 = 32.05 g/mol
Mass of N2H4 from the balanced equation = 2 x 32.05 = 64.1g
Molar mass of N2 = 2x14.01 = 28.02g/mol
Mass of N2 from the balanced equation = 3 x 28.02 = 84.06g
Summary:
From the balanced equation above,
92.02g of N2O4 reacted with 64.1g of N2H4 to produce 84.06g of N2.
Next, we shall determine the limiting reactant. This can be obtained as follow:
From the balanced equation above,
92.02g of N2O4 reacted with 64.1g of N2H4.
Therefore, 50g of N2O4 will react with = (50 x 64.1)/92.02 = 34.83g of N2H4.
From the calculations made above, we can see that only 34.83g out 45g of N2H4 is required to react completely with 50g of N2O4.
Therefore, N2O4 is the limiting reactant and N2H4 is the excess reactant.
Finally, we shall determine the mass of N2 produced from the reaction.
In this case the limiting reactant will be used as it will produce the maximum yield of N2 since all of it is used up in the reaction.
The limiting reactant is N2O4 and the mass N2 produced can be obtained as illustrated below:
From the balanced equation above,
92.02g of N2O4 reacted to produce 84.06g of N2.
Therefore 50g of N2O4 will react to produce = (50 x 84.06)/92.02 = 45.7g of N2.
Therefore, 45.7g of N2 were produced from the reaction.
At the end of the day,
The limiting reactant is N2O4 and 45.7g of N2 were produced from the reaction.
what is the molarity of a solution that contains 49.8 grams of nai and is dissolved in enough water to make 1.50 liters
Answer: The molarity of solution is 0.221 M
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.
[tex]Molarity=\frac{n}{V_s}[/tex]
where,
n = moles of solute
[tex]V_s[/tex] = volume of solution in L
moles of [tex]NaI[/tex] = [tex]\frac{\text {given mass}}{\text {Molar mass}}=\frac{49.8g}{149.89g/mol}=0.332mol[/tex]
Now put all the given values in the formula of molality, we get
[tex]Molarity=\frac{0.332mol}{1.50L}[/tex]
[tex]Molarity=0.221mol/L[/tex]
Therefore, the molarity of solution is 0.221 M
Which element has the largest atomic radius
Answer:
Francium
Explanation:
The atomic radius increases from top to bottom in a group, and decreases from left to right across a period.
so francium (Fr) is the largest atom or has highest radii.
Hope this helps & please mark as brainiest!
Answer:
Francium has the largest atomic radius.
The general trend for atomic radii is increasing from top to bottom and decreasing from left to right so the one with the largest atomic radius will be in the bottom left of the periodic table.
Write the empirical formula
Answer:
[tex]1) NH_{4}IO_{3}\\2) Pb(IO_{3})_{4} \\3) NH_{4}(C_{2}H_{3}O_{2})\\4) Pb(C_{2}H_{3}O_{2})_{4}[/tex]
Explanation:
[tex]1) NH_{4}^{+}IO_{3}^{-} ---> NH_{4}IO_{3}\\2) Pb^{4+}(IO_{3}^{-})_{4} --->Pb(IO_{3})_{4} \\3) NH_{4}^{+}(C_{2}H_{3}O_{2})^{-} ---> NH_{4}(C_{2}H_{3}O_{2})\\4) Pb^{4+}(C_{2}H_{3}O_{2})^{-} _{4} --->Pb(C_{2}H_{3}O_{2})_{4}[/tex]
Why Graphite is Diamagnetic?
Answer: Through years of studying and research ;
Graphite has shown that in weak and quantizing magnetic fields it is material is a highly anisotropie diamagnetic substance whose non-oscillating part of the magnetic suscepti- bility weakly depends on magnetic field.
Explanation:
Diamagnetism is a (very) weak form of magnetism which is caused (induced) by a change in the orbital motion of electrons mostly due to an applied magnetic field.
Identify which of the following are carbohydrates.
Check oh that apply
Answer:
3d and 4th
Explanation:
Carbohydrates general formula (CH2O)n.
Not 1st one because it has NH2-group.
2nd - C3H6O4, also it is acid.
3d - C3H6O3
4th - C6H12O6
Among the given compounds only compound present in 3rd option is a carbohydrate.
What are carbohydrates?Carbohydrates are the organic molecules which are made up of oxygen atom, carbon atom and hydrogen atom and general molecular formula of carbohydrates is CₙH₂ₙOₙ, where n is the number of atoms.
In the carbohydrate molecule, alcoholic group and aldehyde groups may present.
First given compound is not a carbohydrates as in that NH₃ group is present.Second given compound is also not a carbohydrate as in that carboxylic (-COOH) group is present.Third compound is a carbohydrate as in that compound same number of carbon and oxygen atoms are present and number of hydrogen atom is double to C & O atom.Fourth compound is also not a carbohydrate, as in that molecule number of carbon and oxygen atom is same but number of hydrogen is not double with respect to C & O.Hence compound C is carbohydrate.
To know more about carbohydrates, visit the below link:
https://brainly.com/question/26200989
When hydrocarbons are burned in a limited amount of air, both CO and CO2 form. When 0.430 g of a particular hydrocarbon was burned in air, 0.446 g of CO, 0.700 g of CO2, and 0.430 g of H2O were formed.
Required:
a. What is the empirical formula of the compound?
b. How many grams of O2 were used in the reaction?
c. How many grams would have been required for complete combustion?
Answer:
(a) The empirical formula of the compound is
m(CxHy) + m(O2) = m(CO) + m(CO2) + m(H2O).
(b) The grams of O2 that were used in the reaction is 1.146 g
(c) The amount of O2 that would have been required for complete combustion is 1.401 g.
Explanation:
a. m(CxHy) + m(O2) = m(CO) + m(CO2) + m(H2O)
(b) Using law of conservation of mass from above
m(O2) = m(CO) + m(CO2) + m(H2O) - m(CxHy)
m(O2) = 0.446 + 0.700 + 0.430 - 0.430
m(O2) = 1.146 g
The grams of O2 that were used in the reaction is 1.146 g
(c) for complete combustion, we need to oxidized CO to CO2
Then, 2CO +O2 = 2CO2
m(add)(O2) = M(O2)*¢(O2)/2 = M(O2) * {(m(CO))/(2M(CO))}
m(add)(O2) = 32 * {(0.446)/(2*28)} = 0.255 g
Note; Molar mass of O2 = 32, CO = 28
m(total)(O2) = m(O2) + m(add)(O2)
m(total)(O2) = 1.146 + 0.255 = 1.401 g
The amount of that grams would have been required for complete combustion is 1.401 g.
Note (add) and (total) were used subscript to "m"
What is the half-life for the first order decay of 14C according to the reaction, 146C — 147N +e- ?
The rate constant for the decay is 1.21 x10-4 year-1
Answer:
5727 years or 5730 (rounded to match 3 sig figs) whichever one your teacher prefers
Explanation:
First Order decay has a half life formula of Half Life = Ln (2) / k = 0.693/K
Half-life = 0.693/k = 0.693/1.21 x10-4 = 5727 years or 5730 (rounded to match 3 sig figs)
This should be correct because if you google the half-life of 14 C it is ~ 5700 years
Question 11: How does the energy of a photon emitted when the electron moves from the 3rd orbital to the 2nd orbital compare to the energy of a photon absorbed when the electron moves from the 2nd orbital to the 3rd orbital?
Answer:
Explanation:
The energy of a photon emitted when the electron moves from the 3rd orbital to the 2nd orbital is exactly same as the energy of a photon absorbed when the electron moves from the 2nd orbital to the 3rd orbital
What volume of 6.00 M hydrochloric acid is needed to prepare 500 mL of 0.100 M solution?
Answer:
8.33mL or .0083L
Explanation:
Use m1 * V1 = m2 * V2
6.00M(x) = 0.100M(500mL)
solve for x
x= (.1 * 500) / 6
x=8.333 mL
A 0.187 M weak acid solution has a pH of 3.99. Find Ka for the acid. Express your answer using two significant figures.
Answer:
5.56 × 10⁻⁸
Explanation:
Step 1: Given data
Concentration of the weak acid (Ca): 0.187 MpH of the solution: 3.99Step 2: Calculate the concentration of H⁺
We will use the following expression.
pH = -log [H⁺]
[H⁺] = antilog -pH = antilog -3.99 = 1.02 × 10⁻⁴ M
Step 3: Calculate the acid dissociation constant (Ka)
We will use the following expression.
[tex]Ka = \frac{[H^{+}]^{2} }{Ca} = \frac{(1.02 \times 10^{-4})^{2} }{0.187} = 5.56 \times 10^{-8}[/tex]
What is the mass of 3.45 moles
NO2?
(N = 14.01 g/mol, O = 16.00 g/mol)
Answer:
158.7 g
Its the right answer
A student wants to prepare a salt starting with H2SO4. Select all of the compound types that can react with H2SO4 to form a salt.
1. salt
2. acid
3. acid salt
4. basic oxide
5. base
6. metal
7. acidic oxide
Answer:
4 and 6 would work for this
Calculate the free energy of formation of NaBr(s) given the following information: NaBr(s) → Na(s) + 1/2Br2(l), ∆G° = 349 kJ/mol
The given question is incomplete, the complete question is:
Calculate the free energy of formation of NaBr(s) given the following information: NaBr(s) → Na(s) + 1/2Br2(l), ΔG° = 349 kJ/mol
A) –309 kJ/mol
B) –329 kJ/mol
C) None of the above
D) –349 kJ/mol
E) –369 kJ/mol
Answer:
The correct answer is option D, that is, -349 kJ/mol.
Explanation:
Based on the given information, the reaction is:
NaBr (s) ⇔ Na (s) + 1/2 Br₂ (l), the ΔG° of the reaction given is 349 kJ per mole. In the given question, it is clearly mentioned that there is a need to determine the free energy of the formation of NaBr. Thus, there is a need to keep Na (s) and Br₂ (l) at the reactant side and NaBr (s) at the product side.
Therefore, there is a need to reverse the reaction and change the sign on ΔG.
Now the reaction will become,
Na (s) + 1/2 Br₂ (l) ⇔ NaBr (s), and the ΔG° will now become -349 kJ per mole. Hence, -349 kJ per mole is the free energy of the formation of NaBr (s).
Can a catalyst change an exothermic reaction into an endothermic reaction or vice versa? Please explain your answer.
Answer:
A catalyst cannot change an exothermic reaction into an endothermic reaction or vice versa.
Explanation:
Catalyst is basically a substance that enables a chemical reaction to occur at a faster rate as compared to the reaction without catalysis. It lowers the activation energy and temperature for a chemical reaction and a catalyst itself does not goes through any permanent chemical change. This means it does not get used in the process.
Exothermic and endothermic are the chemical reaction. Exothermic reactions absorb energy. This energy is absorbed in the form of heat. When the energy is released in the form of heat then this reaction is called endothermic. So one absorbs the heat and the other releases it.
As we know that the catalyst does not undergo change at the end of the reaction so the energy or heat whether is absorbed or emitted or you can say whether the reaction is exothermic or endothermic, the total energy stays unchanged during the reaction. So with and without a catalyst, if both have same reactants and products and the difference in enthalpy between products and reactants will be the same.
A package contains 1.33 lb of ground round. If it contains 29% fat, how many grams of fat are in the ground round? The book is saying 91g I keep getting 175g. Can someone please explain?
Answer:
To obtain the grams of fat that the ground round has, knowing that it weighs 1.33 pounds we must pass this value to grams. Since 1 pound equals 453.59 grams, 1.33 pounds equals 603.27 (453.59 x 1.33).
Now, to obtain 29 percent of 603.27, we must make the following calculation: 603.27 / 100 x 29, which gives a total of 174.94 grams.
In this way, your reasoning is correct and it is probably a mistake in the book.
A chemist measures the energy change Delta H during the following
2Fe2O3(s)->4FeO(s)+O2(g).
1) this reactions is: Endothermic or exothermic.
2) suppose 94.2g of Fe2O3 react. will any heat be relased or absorbed. yes absorbed. yes releases. no.
3) If you said heat will be released or absorbed in the second part of the question. calculate how much heat will be absored or released. be sure your answer has correct number of significant digits.
Answer: 1) Endothermic
2) Yes, absorbed.
3) 166.86 kJ will be absorbed.
Explanation:
1) To determine if a reaction is endothermic (heat is absorbed by the system) or exothermic (heat is released by the system), first calculate its change in Enthalpy, which is given by:
ΔH = [tex]H_{products} - H_{reagents}[/tex]
For the reaction 2Fe₂O₃(s) ⇒ 4FeO(s) + O₂(g):
Enthalpy of Reagent (Fe₂O₃(s))
Enthalpy of formation for Fe₂O₃(s) is - 822.2 kJ/mol
The reaction needs 2 mols of the molecule, so:
H = 2(-822.2)
H = - 1644.4
Enthalpy of Products (4FeO(s) + O₂(g))
Enthalpy of formation of O₂ is 0, because it is in its standard state.
Enthalpy of formation of FeO is - 272.04 kJ/mol
The reaction produces 4 mols of iron oxide, so:
H = 4(-272.04)
H = -1088.16
Change in Enthalpy:
ΔH = [tex]H_{products} - H_{reagents}[/tex]
ΔH = - 1088.16 - (-1644.4)
ΔH = + 556.2 kJ/mol
The change in enthalpy is positive, which means that the reaction is absorving heat. Then, the chemical reaction is Endothermic.
2) When Fe₂O₃(s) reacts, heat is absorbed because it is an endothermic reaction.
3) Calculate how many mols there is in 94.2 g of Fe₂O₃(s):
n = [tex]\frac{mass}{molar mass}[/tex]
n = [tex]\frac{94.2}{160}[/tex]
n = 0.6 mols
In the reaction, for 2 mols of Fe₂O₃(s), 556.2 kJ are absorbed. Then:
2 mols --------------- 556.2 kJ
0.6 mols ------------- x
x = [tex]\frac{0.6*556.2}{2}[/tex]
x = 167 kJ
It will be absorbed 167 kJ of energy, when 94.2 g of Fe₂O₃(s) reacts.
which factor is most responsible for the fact that water is a liquid rather than a gas at room temperature
The answer is Hydrogyn bonding. It keeps the water molocules bonded together and in a liquid state, without it it'd be in a gashious state.
Answer:Hydrogen bonds keep them together in room temperature, hope this helps!
Explanation:
<!> Brainliest is appreciated! <!>