Are the polygons similar? If they are, write a similarity statement and give the scale factor. The figure is not drawn to scale

Answers

Answer 1

Corresponding angles of these polygons are not congruent, they are not similar. Therefore, we cannot write the similarity statement and the scale factor of these polygons.

Similarity is the property of figures with the same shape but different sizes. Two polygons are considered similar if their corresponding angles acongruent, and the ratio of their corresponding sides are proportional. Therefore, to check whether two polygons are similar, we compare their corresponding angles and their corresponding side lengths.In this problem, we are not provided with the length of the sides of the polygons. So, we can only check the similarity of these polygons based on their angles.

ABC and XYZ are two polygons given in the figure below. Let us check if they are similar.ABC has three interior angles with measure 45°, 60°, and 75°.XYZ has three interior angles with measure 70°, 45°, and 65°.The angles 45° of ABC and XYZ are corresponding angles. So, ∠ABC ≅ ∠XYZ. The angles 60° of ABC and 65° of XYZ are not corresponding angles. Similarly, the angles 75° of ABC and 70° of XYZ are not corresponding angles.Since corresponding angles of these polygons are not congruent, they are not similar. Therefore, we cannot write the similarity statement and the scale factor of these polygons.

Learn more about Corresponding here,Which angles are corresponding angles?

https://brainly.com/question/28769265

#SPJ11


Related Questions

A line has a slope of 22 and includes the points \left( 4 , \mathrm{g} \right)(4,g) and \left( - 9 , - 9 \right)(−9,−9). ​​What is the value of \mathrm{g}g ?

Answers

To find the value of g in the given problem, we can use the slope-intercept form of a linear equation and the coordinates of the two points on the line.

The slope-intercept form of a linear equation is given by y = mx + b, where m represents the slope and b represents the y-intercept. In this case, we are given the slope of the line, which is 22.

We also have two points on the line: (4, g) and (-9, -9). We can use these points to find the value of g.

Using the coordinates (4, g), we can substitute the x-coordinate (4) and the y-coordinate (g) into the slope-intercept form. The equation becomes g = 22(4) + b.

Using the coordinates (-9, -9), we can substitute the x-coordinate (-9) and the y-coordinate (-9) into the slope-intercept form. The equation becomes -9 = 22(-9) + b.

By solving these two equations simultaneously, we can find the value of g. The value of g is the solution to the equation g = 22(4) + b.

Without further information or additional equations, it is not possible to determine the value of g uniquely. More context or equations are needed to solve for g accurately.

Learn more about  slope-intercept form here :

https://brainly.com/question/29146348

#SPJ11

find the length of parametrized curve given by x(t)=12t2−24t,y(t)=−4t3 12t2 x(t)=12t2−24t,y(t)=−4t3 12t2 where tt goes from 00 to 11.

Answers

The length of parameterized curve given by x(t)=12 t²− 24 t, y(t)=−4 t³  + 12 t² is 4/3

Area of arc = [tex]\int\limits^a_b {\sqrt{\frac{dx}{dt} ^{2} +\frac{dy}{dt}^{2} } } \, dt[/tex]

x(t)=12 t²− 24 t

dx / dt = 24 t - 24

(dx/dt)² = 576 t² + 576 - 1152 t

y(t)=−4 t³  +12 t²

dy/dt = -12 t² +24 t

(dy/dt)² = 144 t⁴ + 576 t² - 576 t³

(dx/dt)² + (dy/dt)² = 144 t⁴ - 576 t³ + 1152 t² - 1152 t + 576

(dx/dt)² + (dy/dt)² = (12(t² -2t +2))²

Area = [tex]\int\limits^1_0 {x^{2} -2x+2} \, dx[/tex]

Area = [ t³/3 - t² + 2t][tex]\left \{ {{1} \atop {0}} \right.[/tex]

Area =[1/3 - 1 + 2 -0]

Area = 4/3

To know more about parameterized curve click here :

https://brainly.com/question/12982907

#SPJ4

An insurance company has determined that each week an average of nine claims are filed in their atlanta branch and follows a poisson distribution. what is the probability that during the next week

Answers

The probability of a specific number of claims being filed in the next week can be calculated using the Poisson distribution.

In this case, with an average of nine claims filed per week in the Atlanta branch, we can determine the probability of various claim numbers using the Poisson probability formula.

The Poisson distribution is commonly used to model the number of events occurring within a fixed interval of time or space. It is characterized by a single parameter, λ (lambda), which represents the average rate of occurrence for the event of interest.

In this case, the average number of claims filed per week in the Atlanta branch is given as nine.

To find the probability of a specific number of claims, we can use the Poisson probability formula:

P(x; λ) = (e^(-λ) * λ^x) / x!

Where:

P(x; λ) is the probability of x claims occurring in a given interval

e is the base of the natural logarithm (approximately 2.71828)

λ is the average number of claims filed per week

x is the number of claims for which we want to find the probability

x! denotes the factorial of x

To find the probability of specific claim numbers, substitute the given values into the formula and calculate the respective probabilities.

For example, to find the probability of exactly ten claims being filed in the next week, plug in λ = 9 and x = 10 into the formula.

Repeat this process for different claim numbers to obtain the probabilities for each case.

To learn more about Poisson distribution visit:

brainly.com/question/30388228

#SPJ11

(a) The probability of exactly 8 claims being filed during the next week is P(8; 10) ≈ 0.000028249

(b) The probability of no claims being filed during the next week is: P(0; 10) ≈ 4.5399929762484854e-05

(c) The probability of at least three claims being filed during the next week, P(at least 3) ≈ 0.9999546

(d) The probability of receiving less than 3 claims during the next 2 weeks, P(less than 3 in 2 weeks) ≈ 0.002478752

For a Poisson distribution with an average rate of λ events per time interval, the probability of observing k events during that interval is given by the Poisson probability function:

P(k; λ) = (e^(-λ) * λ^k) / k!

In this case, the average rate of claims filed per week is 10.

a. To find the probability of exactly 8 claims being filed during the next week:

P(8; 10) = (e^(-10) * 10^8) / 8!

b. To find the probability of no claims being filed during the next week:

P(0; 10) = (e^(-10) * 10^0) / 0!

However, note that 0! is defined as 1, so the probability simplifies to:

P(0; 10) = e^(-10)

c. To find the probability of at least three claims being filed during the next week, we need to sum the probabilities of having 3, 4, 5, 6, 7, 8, 9, or 10 claims:

P(at least 3) = 1 - (P(0; 10) + P(1; 10) + P(2; 10))

d. To find the probability of receiving less than 3 claims during the next 2 weeks, we can use the fact that the sum of independent Poisson random variables with the same average rate is also a Poisson random variable with the sum of the rates.

The average rate for 2 weeks is 20.

P(less than 3 in 2 weeks) = P(0; 20) + P(1; 20) + P(2; 20)

Let's calculate the resulting probabilities:

a. P(8; 10) = (e^(-10) * 10^8) / 8!

P(8; 10) = (e^(-10) * 10^8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1)

P(8; 10) ≈ 0.000028249

b. P(0; 10) = e^(-10)

P(0; 10) ≈ 4.5399929762484854e^(-05)

c. P(at least 3) = 1 - (P(0; 10) + P(1; 10) + P(2; 10))

P(at least 3) = 1 - (e^(-10) + (e^(-10) * 10) / (1!) + (e^(-10) * 10^2) / (2!))

P(at least 3) ≈ 0.9999546

d. P(less than 3 in 2 weeks) = P(0; 20) + P(1; 20) + P(2; 20)

P(less than 3 in 2 weeks) = e^(-20) + (e^(-20) * 20) / (1!) + (e^(-20) * 20^2) / (2!)

P(less than 3 in 2 weeks) ≈ 0.002478752

To learn more about Poisson distribution visit:

brainly.com/question/30388228

#SPJ11

An insurance company has determined that each week an average of 10 claims are filed in their Atlanta branch. Assume the probability of receiving a claim is the same and independent for any time intervals (Poisson arrival).

Write down both theoretical probability functions and resulting probabilities.

What is the probability that during the next week,

a. exactly 8 claims will be filed?

b. no claims will be filed?

c. at least three claims will be filed?

d. What is the probability that during the next 2 weeks the company will receive less than 3 claims?

evaluate the double integralImage for double integral ye^x dA, where D is triangular region with vertices (0, 0), (2, 4), and (0, 4)?ye^x dA, where D is triangular region with vertices (0, 0), (2, 4), and (0, 4)?

Answers

The double integral of [tex]ye^x[/tex] over a triangular region with vertices (0, 0), (2, 4), and (0, 4) is evaluated. The result is approximately 31.41.

To evaluate the double integral of [tex]ye^x[/tex] over the given triangular region, we can use the iterated integral approach. Since the region is a triangle, we can integrate with respect to x from 0 to y/2 (the equation of the line connecting (0,4) and (2,4) is y=4, and the equation of the line connecting (0,0) and (2,4) is y=2x, so the upper bound of x is y/2), and then integrate with respect to y from 0 to 4 (the lower and upper bounds of y are the y-coordinates of the bottom and top vertices of the triangle, respectively). Thus, the double integral is:

∫∫D ye^xdA = ∫0^4 ∫0^(y/2) [tex]ye^x[/tex] dxdy

Evaluating this iterated integral gives the result of approximately 31.41.

Alternatively, we could have used a change of variables to transform the triangular region to the unit triangle, which would simplify the integral. However, the iterated integral approach is straightforward for this problem.

Learn more about triangular here:

https://brainly.com/question/30950670

#SPJ11

Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function. g(x) = ∫0x the square root of (t2+t4) dt

Answers

We can use the first part of the Fundamental Theorem of Calculus to find the derivative of g(x). The derivative of the function g(x) = [tex]\int\limits^x_0\sqrt{(t^2 + t^4)} dt[/tex] is [tex]\sqrt{(x^2 + x^4).}[/tex]

We can use the first part of the Fundamental Theorem of Calculus to find the derivative of g(x). According to this theorem, if we have a function F(x) that is continuous on the interval [a, b], and define another function G(x) as the definite integral of F(t) with respect to t from a to x, then G(x) is differentiable on the interval (a, b) and its derivative is given by G'(x) = F(x).

In our case, we have g(x) = [tex]\int\limits^x_0\sqrt{(t^2 + t^4)} dt[/tex], and we can define F(t) = sqrt(t^2 + t^4). F(t) is continuous on the interval [0, x], so we can use the first part of the Fundamental Theorem of Calculus to find the derivative of g(x). We have:

g'(x) = F(x) = [tex]\sqrt{(x^2 + x^4).}[/tex]

Therefore, the derivative of the function g(x) is [tex]\sqrt{(x^2 + x^4).}[/tex]

Learn more about Fundamental Theorem of Calculus here:

https://brainly.com/question/30761130

#SPJ11

12. the number of errors in a textbook follows a poisson distribution with a mean of 0.04 errors per page. what is the expected number of errors in a textbook that has 204 pages? circle one answer.

Answers

The number of errors in a textbook follows a Poisson distribution with a mean of 0.04 errors per page. To find the expected number of errors in a textbook with 204 pages, we need to multiply the mean by the number of pages.

Expected number of errors = mean * number of pages = 0.04 * 204 = 8.16

Therefore, we can expect to find approximately 8 errors in a textbook that has 204 pages, based on the given Poisson distribution with a mean of 0.04 errors per page. It is important to note that this is only an expected value and the actual number of errors could vary.

Additionally, Poisson distribution assumes that the errors occur independently and at a constant rate, which may not always be the case in reality. Nonetheless, the Poisson distribution provides a useful approximation for the expected number of rare events occurring in a given interval.

Learn more about distribution  here:

https://brainly.com/question/31197941

#SPJ11

6.43 A beam consists of three planks connected as shown by bolts of X-in. diameter spaced every 12 in. along the longitudinal axis of the beam_ Knowing that the beam is subjected t0 & 2500-Ib vertical shear; deter- mine the average shearing stress in the bolts: 2 in; 6 in; 2 in. Fig: P6.43'

Answers

The average shearing stress in the bolts is approximately 796 psi for the leftmost and rightmost bolts, and 177 psi for the middle bolt.

To determine the average shearing stress in the bolts, we need to first find the force acting on each bolt.

For the leftmost bolt, the force acting on it is the sum of the vertical shear forces on the left plank (which is 2500 lb) and the right plank (which is 0 lb since there is no load to the right of the right plank). So the force acting on the leftmost bolt is 2500 lb.

For the second bolt from the left, the force acting on it is the sum of the vertical shear forces on the left plank (which is 2500 lb) and the middle plank (which is also 2500 lb since the vertical shear force is constant along the beam). So the force acting on the second bolt from the left is 5000 lb.

For the third bolt from the left, the force acting on it is the sum of the vertical shear forces on the middle plank (which is 2500 lb) and the right plank (which is 0 lb). So the force acting on the third bolt from the left is 2500 lb.

We can now find the average shearing stress in each bolt by dividing the force acting on the bolt by the cross-sectional area of the bolt.

For the leftmost bolt:

Area = (π/4)(2 in)^2 = 3.14 in^2

Average shearing stress = 2500 lb / 3.14 in^2 = 795.87 psi

For the second bolt from the left:

Area = (π/4)(6 in)^2 = 28.27 in^2

Average shearing stress = 5000 lb / 28.27 in^2 = 176.99 psi

For the third bolt from the left:

Area = (π/4)(2 in)^2 = 3.14 in^2

Average shearing stress = 2500 lb / 3.14 in^2 = 795.87 psi

Therefore, the average shearing stress in the bolts is approximately 796 psi for the leftmost and rightmost bolts, and 177 psi for the middle bolt.

Learn more about stress here

https://brainly.com/question/11819849

#SPJ11

Describe an experiment that will enable you to determine the empirical formula of magnesium oxide.
Include the measurements you need to take. ​

Answers

An experiment to determine the empirical formula of magnesium oxide involves the measurement of the masses of magnesium and oxygen before and after their reaction.

The experiment would begin by measuring the mass of a clean and dry crucible. Then, a known mass of magnesium ribbon would be added to the crucible, and the mass of the crucible with the magnesium would be recorded.

Next, the crucible would be heated strongly over a Bunsen burner to allow the magnesium to react with oxygen from the air, forming magnesium oxide. After heating, the crucible would be allowed to cool and then its mass would be measured again, including the magnesium oxide.

The difference in mass between the crucible with the magnesium and the crucible with the magnesium oxide represents the mass of the oxygen that reacted with the magnesium. By comparing the ratio of magnesium to oxygen in the reaction, the empirical formula of magnesium oxide can be determined. For example, if the mass of magnesium is 0.2 grams and the mass of oxygen is 0.16 grams, the ratio would be 1:1. Therefore, the empirical formula of magnesium oxide would be MgO, indicating one atom of magnesium for every atom of oxygen.

Learn more about experiment here:

https://brainly.com/question/30247105

#SPJ11

evaluate the integral. (use c for the constant of integration.) 2x2 7x 2 (x2 1)2 dx Evaluate the integral. (Remember to use absolute values where appropriate. Use for the constant of integration.) x² - 144 - 5 ax Need Help? Read it Talk to a Tutor 6. [-70.83 Points] DETAILS SCALC8 7.4.036. Evaluate the integral. (Remember to use absolute values where appropriate. Use for the constant of integration.) x + 21x² + 3 dx x + 35x3 + 15x Need Help? Read It Talk to a Tutor

Answers

The integral can be expressed as the sum of two terms involving natural logarithms and arctangents. The final answer of ln|x+1| + 2ln|x+2| + C.

For the first integral, ∫2x^2/(x^2+1)^2 dx, we can use u-substitution with u = x^2+1. This gives us du/dx = 2x, or dx = du/(2x). Substituting this into the integral gives us ∫u^-2 du/2, which simplifies to -1/(2u) + C. Substituting back in for u and simplifying, we get the final answer of -x/(x^2+1) + C. For the second integral, ∫x^2 - 144 - 5a^x dx, we can integrate each term separately. The integral of x^2 is x^3/3 + C, the integral of -144 is -144x + C, and the integral of 5a^x is 5a^x/ln(a) + C. Putting these together and using the constant of integration, we get the final answer of x^3/3 - 144x + 5a^x/ln(a) + C. For the third integral, ∫(x+2)/(x^2+3x+2) dx, we can use partial fraction decomposition to separate the fraction into simpler terms. We can factor the denominator as (x+1)(x+2), so we can write the fraction as A/(x+1) + B/(x+2), where A and B are constants to be determined. Multiplying both sides by the denominator and solving for A and B, we get A = -1 and B = 2. Substituting these values back into the original integral and using u-substitution with u = x+1, we get the final answer of ln|x+1| + 2ln|x+2| + C.

Learn more about integral here

https://brainly.com/question/28157330

#SPJ11

consider the vector field f(x,y,z)=⟨−6y,−6x,4z⟩. show that f is a gradient vector field f=∇v by determining the function v which satisfies v(0,0,0)=0. v(x,y,z)=

Answers

f is a gradient vector field with the potential function v(x,y,z) = -6xy. We can check that v(0,0,0) = 0, as required.

How to find the gradient vector?

To determine the function v such that f=∇v, we need to find a scalar function whose gradient is f. We can find the potential function v by integrating the components of f.

For the x-component, we have:

∂v/∂x = -6y

Integrating with respect to x, we get:

v(x,y,z) = -6xy + g(y,z)

where g(y,z) is an arbitrary function of y and z.

For the y-component, we have:

∂v/∂y = -6x

Integrating with respect to y, we get:

v(x,y,z) = -6xy + h(x,z)

where h(x,z) is an arbitrary function of x and z.

For these two expressions for v to be consistent, we must have g(y,z) = h(x,z) = 0 (i.e., they are both constant functions). Thus, we have:

v(x,y,z) = -6xy

So, the gradient of v is:

∇v = ⟨∂v/∂x, ∂v/∂y, ∂v/∂z⟩ = ⟨-6y, -6x, 0⟩

which is the same as the given vector field f. Therefore, f is a gradient vector field with the potential function v(x,y,z) = -6xy. We can check that v(0,0,0) = 0, as required.

Learn more about gradient

brainly.com/question/13050811

#SPJ11

What is the consequence of violating the assumption of Sphericity?a. It increases statistical power, effects the distribution of the F-statistic and raises the rate of Type I errors in post hocs.b. It reduces statistical power, effects the distribution of the F-statistic and reduces the rate of Type I errors in post hocs.c. It reduces statistical power, effects the distribution of the F-statistic and raises the rate of Type I errors in post hocs.d. It reduces statistical power, improves the distribution of the F-statistic and ra

Answers

The consequence of violating the assumption of Sphericity can be significant. It reduces statistical power, effects the distribution of the F-statistic, and raises the rate of Type I errors in post hocs.

Sphericity refers to the homogeneity of variances between all possible pairs of groups in a repeated-measures design. When this assumption is violated, it can result in a distorted F-statistic, which in turn affects the results of post hoc tests.
The correct answer to the question is c. It reduces statistical power, effects the distribution of the F-statistic, and raises the rate of Type I errors in post hocs. This means that violating the assumption of Sphericity leads to a decreased ability to detect true effects, an inaccurate representation of the true distribution of the F-statistic, and an increased likelihood of falsely identifying significant results.
According to statistics, the consequence of violating the assumption of Sphericity is not a rare occurrence. Therefore, it is essential to ensure that the assumptions of your statistical analysis are met before interpreting your results to avoid false conclusions.
In conclusion, violating the assumption of Sphericity can have severe consequences that affect the validity of your research results. Therefore, it is crucial to understand this assumption and check for its violation to ensure the accuracy and reliability of your statistical analysis.

To know more about statistic visit :

https://brainly.com/question/18851162

#SPJ11

A sample of 6 head widths of seals (in cm) and the corresponding weights of the seals (in kg) were recorded. Given a linear correlation coefficient of 0.948, find the corresponding critical values, assuming a 0.01 significance level. Is there sufficient evidence to conclude that there is a linear correlation?
A. Critical values = ±0.917; there is sufficient evidence to conclude that there is a linear correlation.
B. Critical values = ±0.917; there is not sufficient evidence to conclude that there is a linear correlation.
C. Critical values = ±0.959; there is sufficient evidence to conclude that there is a linear correlation.
D. Critical values = ±0.959; there is not sufficient evidence to conclude that there is a linear correlation.

Answers

To determine if there is sufficient evidence to conclude that there is a linear correlation between the head widths of seals (in cm) and their corresponding weights (in kg), we need to compare the linear correlation coefficient to the critical values at the 0.01 significance level.

Given a linear correlation coefficient of 0.948 and a sample size of 6, we can use a table of critical values or a statistical calculator to find the corresponding critical values for a 0.01 significance level. In this case, the critical values are ±0.917.

Since the linear correlation coefficient (0.948) is greater than the positive critical value (0.917), there is sufficient evidence to conclude that there is a linear correlation between the head widths and weights of the seals.

So, the correct answer is:
A. Critical values = ±0.917; there is sufficient evidence to conclude that there is a linear correlation.

To Know more about linear correlation refer here

brainly.com/question/13576407#

#SPJ11

Calculate S3, S, and Ss and then find the sum for the telescoping series 3C0 n + 1 n+2 where Sk is the partial sum using the first k values of n. S31/6 S4

Answers

The sum for the telescoping series is given by the limit of Sn as n approaches infinity:

S = lim(n→∞) Sn = lim(n→∞) 2 + 5/2 - 1/(n+1) = 9/2.

First, let's find Sn:

Sn = 3C0/(n+1)(n+2) + 3C1/(n)(n+1) + ... + 3Cn/(1)(2)

Notice that each term has a denominator in the form (k)(k+1), which suggests we can use partial fractions to simplify:

3Ck/(k)(k+1) = A/(k) + B/(k+1)

Multiplying both sides by (k)(k+1), we get:

3Ck = A(k+1) + B(k)

Setting k=0, we get:

3C0 = A(1) + B(0)

A = 3

Setting k=1, we get:

3C1 = A(2) + B(1)

B = -1

Therefore,

3Ck/(k)(k+1) = 3/k - 1/(k+1)

So, we can write the sum as:

Sn = 3/1 - 1/2 + 3/2 - 1/3 + ... + 3/n - 1/(n+1)

Simplifying,

Sn = 2 + 5/2 - 1/(n+1)

Now, we can find the different partial sums:

S1 = 2 + 5/2 - 1/2 = 4

S2 = 2 + 5/2 - 1/2 + 3/6 = 17/6

S3 = 2 + 5/2 - 1/2 + 3/6 - 1/12 = 7/4

S4 = 2 + 5/2 - 1/2 + 3/6 - 1/12 + 3/20 = 47/20

Finally, the sum for the telescoping series is given by the limit of Sn as n approaches infinity:

S = lim(n→∞) Sn = lim(n→∞) 2 + 5/2 - 1/(n+1) = 9/2.

Learn more about telescoping series here:

https://brainly.com/question/14523424

#SPJ11

Classify each singular point (real or complex) of the given equation as regular or irregular. (2 - 3x – 18) ?y" +(9x +27)y' - 3x²y = 0 Identify all the regular singular points. Select the correct choice below and fill in any answers boxes within your choice. X = A. (Use a comma to separate answers as needed.) OB. There are no regular singular points.

Answers

The only singular point of the differential equation is x = -6, which is a regular singular point.

We have the differential equation:

(2 - 3x - 18)y" + (9x + 27)y' - 3x²y = 0

To classify singular points, we need to consider the coefficients of y", y', and y in the given equation.

Let's start with the coefficient of y". The singular points of the differential equation occur where this coefficient is zero or infinite.

In this case, the coefficient of y" is 2 - 3x - 18 = -3(x + 6). This is zero at x = -6, which is a regular singular point.

Next, we check the coefficient of y'. If this coefficient is also zero or infinite at the singular point, we need to perform additional checks to determine if the singular point is regular or irregular.

However, in this case, the coefficient of y' is 9x + 27 = 9(x + 3), which is never zero or infinite at x = -6.

Therefore, the only singular point of the differential equation is x = -6, which is a regular singular point.

To know more about regular singular point refer here:

https://brainly.com/question/16930361

#SPJ11

The domain of the function is {-3, -1, 2, 4, 5}. What is the function's range?

The range for the given domain of the function is

Answers

The function's range is { -3, 1, 2, 14, 23 } for the given domain of the function { -3, -1, 2, 4, 5 }.

Given the domain of the function as {-3, -1, 2, 4, 5}, we are to find the function's range. In mathematics, the range of a function is the set of output values produced by the function for each input value.

The range of a function is denoted by the letter Y.The range of a function is given by finding the set of all possible output values. The range of a function is dependent on the domain of the function. It can be obtained by replacing the domain of the function in the function's rule and finding the output values.

Let's determine the range of the given function by considering each element of the domain of the function.i. When x = -3,-5 + 2 = -3ii. When x = -1,-1 + 2 = 1iii.

When x = 2,2² - 2 = 2iv. When x = 4,4² - 2 = 14v. When x = 5,5² - 2 = 23

Therefore, the function's range is { -3, 1, 2, 14, 23 } for the given domain of the function { -3, -1, 2, 4, 5 }.

Know more about range here,

https://brainly.com/question/29204101

#SPJ11

We desire the residuals in our model to have which probability distribution? a. Normal b. Uniform c. Poisson d. Binomial

Answers

The correct answer is Normal distribution.

In statistical modeling, residuals refer to the differences between the observed values and the predicted values of a model. They are important to examine as they help us determine the goodness of fit of a model and identify any potential issues with the model.
When it comes to the probability distribution of residuals, we generally prefer them to have a normal distribution. This means that the majority of the residuals are centered around zero, with fewer and fewer residuals as we move further away from zero. A normal distribution of residuals suggests that the model is well-fitted and the errors are random and unbiased.
On the other hand, if the residuals have a non-normal distribution, it could indicate that there are systematic errors in the model, or that the model is not capturing all of the relevant factors that influence the outcome. For example, if the residuals follow a Poisson distribution, it suggests that the model is overdispersed and that there may be more variation in the data than the model can account for.
In summary, a normal distribution of residuals is preferred in statistical modeling, as it indicates that the model is well-fitted and the errors are random and unbiased. Other types of probability distributions may suggest issues with the model or data.

To know more about normal distribution visit:

https://brainly.com/question/31197941

#SPJ11

A 5-year treasury bond with a coupon rate of 8% has a face value of $1000. What is the semi-annual interest payment? Annual interest payment = 1000(0.08) = $80; Semi-annual payment = 80/2 = $40

Answers

The semi-annual interest payment for this 5-year treasury bond with a coupon rate of 8% and a face value of $1000 is $40.

The annual interest payment is calculated by multiplying the face value of the bond ($1000) by the coupon rate (8%) which gives $80.

Since this is a semi-annual bond, the interest payments are made twice a year, so to find the semi-annual interest payment, you divide the annual payment by 2, which gives $40.

The semi-annual interest payment for a 5-year treasury bond with a coupon rate of 8% and a face value of $1000 would be $40.

This is because the annual interest payment is calculated by multiplying the face value ($1000) by the coupon rate (0.08), which equals $80.

To get the semi-annual payment, we simply divide the annual payment by 2, which equals $40.

Therefore, every six months the bondholder would receive an interest payment of $40.

For similar question on semi-annual interest:

https://brainly.com/question/30573341

#SPJ11

The semi-annual interest payment for this treasury bond is $40 (80/2). In summary, the bond pays $40 in interest twice a year, resulting in a total annual interest payment of $80.

The semi-annual interest payment for a 5-year treasury bond with a coupon rate of 8% and a face value of $1000 is $40. This is because the annual interest payment is calculated by multiplying the face value of the bond by the coupon rate, which in this case is $1000 multiplied by 0.08, resulting in an annual payment of $80. To determine the semi-annual interest payment, we simply divide the annual payment by 2, resulting in $40. This means that the bondholder will receive $40 every six months for the duration of the bond's term.


A 5-year treasury bond with a face value of $1000 and a coupon rate of 8% will have an annual interest payment of $80, which is calculated by multiplying the face value by the coupon rate (1000 x 0.08). To find the semi-annual interest payment, simply divide the annual interest payment by 2. Therefore, the semi-annual interest payment for this treasury bond is $40 (80/2). In summary, the bond pays $40 in interest twice a year, resulting in a total annual interest payment of $80.

Learn more about interest at: brainly.com/question/17521900

#SPJ11

what minimum speed does a 100 g puck need to make it to the top of a frictionless ramp that is 3.0 m long and inclined at 20°?

Answers

The minimum speed needed for a 100 g puck to make it to the top of a frictionless ramp that is 3.0 m long and inclined at 20° can be calculated using the conservation of energy principle. The potential energy gained by the puck as it reaches the top of the ramp is equal to the initial kinetic energy of the puck. Therefore, the minimum speed can be calculated by equating the potential energy gained to the initial kinetic energy. Using the formula v = √(2gh), where v is the velocity, g is the acceleration due to gravity, and h is the height, we can calculate that the minimum speed needed is approximately 2.9 m/s.

The conservation of energy principle states that energy cannot be created or destroyed, only transferred or transformed from one form to another. In this case, the initial kinetic energy of the puck is transformed into potential energy as it gains height on the ramp. The formula v = √(2gh) is derived from the conservation of energy principle, where the potential energy gained is equal to mgh and the kinetic energy is equal to 1/2mv^2. By equating the two, we get mgh = 1/2mv^2, which simplifies to v = √(2gh).

The minimum speed needed for a 100 g puck to make it to the top of a frictionless ramp that is 3.0 m long and inclined at 20° is approximately 2.9 m/s. This can be calculated using the conservation of energy principle and the formula v = √(2gh), where g is the acceleration due to gravity and h is the height gained by the puck on the ramp.

To know.more about conservation of energy visit:

https://brainly.com/question/13949051

#SPJ11

Consider a PDF of a continuous random variable X, f(x) = 1/8 for 0 ≤ x ≤ 8. Q. Find P( x = 7)

Answers

P(6.5 ≤ x ≤ 7.5) is 1/8 since the PDF is uniform. Continuous random variables are probability distribution functions that take real values on an infinite number of intervals. For a continuous random variable, the probability of getting a single value is zero.

It is calculated by integrating the PDF of the variable over the corresponding interval. The probability of getting a single value for a continuous random variable is zero because there are infinite values that the variable can take. Therefore, P(x = 7) cannot be calculated. Instead, we can find P(6.5 ≤ x ≤ 7.5), the probability of getting a value between 6.5 and 7.5.
Given that the PDF of a continuous random variable X is f(x) = 1/8 for 0 ≤ x ≤ 8. To find P(x = 7), we need to calculate the probability of getting a single value for the continuous random variable X, which is impossible. Hence, we cannot calculate P(x = 7).
Instead, we can find P(6.5 ≤ x ≤ 7.5), the probability of getting a value between 6.5 and 7.5.
P(6.5 ≤ x ≤ 7.5) = ∫f(x) dx from 6.5 to 7.5
P(6.5 ≤ x ≤ 7.5) = ∫(1/8) dx from 6.5 to 7.5
P(6.5 ≤ x ≤ 7.5) = (1/8) ∫dx from 6.5 to 7.5
P(6.5 ≤ x ≤ 7.5) = (1/8) [7.5 - 6.5]
P(6.5 ≤ x ≤ 7.5) = (1/8) [1]
P(6.5 ≤ x ≤ 7.5) = 1/8
Therefore, P(6.5 ≤ x ≤ 7.5) = 1/8.
The PDF is uniform, so f(x) is constant over the interval [0, 8]. The PDF equals 0 outside the interval [0, 8]. Since the PDF integrates to 1 over its support, f(x) = 1/8 for 0 ≤ x ≤ 8. The cumulative distribution function (CDF) is given by:
F(x) = ∫f(x) dx from 0 to x
= (1/8) ∫dx from 0 to x
= (1/8) (x - 0)
= x/8
Using this CDF, we can calculate the probability that X lies between any two values a and b as:
P(a ≤ X ≤ b) = F(b) - F(a)
Therefore, we can find P(6.5 ≤ x ≤ 7.5) as:
P(6.5 ≤ x ≤ 7.5) = F(7.5) - F(6.5)
= (7.5/8) - (6.5/8)
= 1/8
We cannot calculate P(x = 7) since it represents the probability of getting a single value for the continuous random variable X. Instead, we can find P(6.5 ≤ x ≤ 7.5), the probability of getting a value between 6.5 and 7.5. Using the CDF, we can calculate P(6.5 ≤ x ≤ 7.5) as 1/8 since the PDF is uniform.

To know more about the probability distribution functions, visit:

brainly.com/question/32099581

#SPJ11

Find the Maclaurin series for f(x)=x41−7x3f(x)=x41−7x3.
x41−7x3=∑n=0[infinity]x41−7x3=∑n=0[infinity]
On what interval is the expansion valid? Give your answer using interval notation. If you need to use [infinity][infinity], type INF. If there is only one point in the interval of convergence, the interval notation is [a]. For example, if 0 is the only point in the interval of convergence, you would answer with [0][0].
The expansion is valid on

Answers

The Maclaurin series for given function is f(x) = (-7/2)x³ + (x⁴/4) - .... Thus, the interval of convergence is (-1, 1].

To find the Maclaurin series for f(x) = x⁴ - 7x³, we first need to find its derivatives:

f'(x) = 4x³ - 21x²

f''(x) = 12x² - 42x

f'''(x) = 24x - 42

f''''(x) = 24

Next, we evaluate these derivatives at x = 0, and use them to construct the Maclaurin series:

f(0) = 0

f'(0) = 0

f''(0) = 0

f'''(0) = -42

f''''(0) = 24

So the Maclaurin series for f(x) is:

f(x) = 0 - 0x + 0x² - (42/3!)x³ + (24/4!)x⁴ - ...

Simplifying, we get:

f(x) = (-7/2)x³ + (x⁴/4) - ....

Therefore, the interval of convergence for this series is (-1, 1], since the radius of convergence is 1 and the series converges at x = -1 and x = 1 (by the alternating series test), but diverges at x = -1 and x = 1 (by the divergence test).

To know more about Maclaurin series,

https://brainly.com/question/31745715

#SPJ11

you are given the parametric equations x=te^t,\;\;y=te^{-t}. (a) use calculus to find the cartesian coordinates of the highest point on the parametric curve.

Answers

The cartesian coordinates of the highest point on the parametric curve are (e, e^(-1)).

To find the highest point on the parametric curve, we need to find the maximum value of y. To do this, we first need to find an expression for y in terms of x.

From the given parametric equations, we have:

y = te^(-t)

Multiplying both sides by e^t, we get:

ye^t = t

Substituting for t using the equation for x, we get:

ye^t = x/e

Solving for y, we get:

y = (x/e)e^(-t)

Now, we can find the maximum value of y by taking the derivative and setting it equal to zero:

dy/dt = (-x/e)e^(-t) + (x/e)e^(-t)(-1)

Setting this equal to zero and solving for t, we get:

t = 1

Substituting t = 1 back into the equations for x and y, we get:

x = e

y = e^(-1)

Therefore, the cartesian coordinates of the highest point on the parametric curve are (e, e^(-1)).

To learn more Parametric equations

https://brainly.com/question/10043917

#SPJ11

PLEASE RESPOND ASAP



Dr. Silas studies a culture of bacteria under a microscope. The function b1 (t) = 1200 (1. 8)^t represents the number of bacteria t hours after Dr. Silas begins her study.




(a) What does the value 1. 8 represent in this situation?


(b) The number of bacteria in a second study is modeled by the function b2 (t) = 1000 (1. 8)^t.


What does the value of 1000 represent in this situation?


What does the difference of 1200 and 1000 mean between the two studies?

Answers

The difference of 1200 and 1000 between the two studies means that the second study had 200 more bacteria than the first one.

In the first study, the number of bacteria is modeled by the function b1(t) = 1200(1.5)^t, while in the second study, the number of bacteria is modeled by the function b2(t) = 1000(1.8)^t. The difference of 1200 and 1000 is the initial number of bacteria in the first study, which is 200 more than the second study.

Both studies model the growth of bacteria over time. In the first study, the growth rate is 1.5, while in the second study, it is 1.8. The difference between the two studies can be explained by the difference in the growth rates. A growth rate of 1.8 means that the bacteria will multiply faster than a growth rate of 1.5, resulting in a higher number of bacteria in the second study. However, the initial number of bacteria in the second study was lower than in the first study, resulting in a lower total number of bacteria despite the higher growth rate.

Know more about growth rate  here:

https://brainly.com/question/5954814

#SPJ11

Trevor made an investment of 4,250. 00 22 years ago. Given that the investment yields 2. 7% simple interest annually, how big is his investment worth now?

Answers

Trevor's investment of $4,250.00, made 22 years ago with a simple interest rate of 2.7% annually, would be worth approximately $7,450.85 today.

To calculate the value of Trevor's investment now, we can use the formula for simple interest: A = P(1 + rt), where A is the final amount, P is the principal (initial investment), r is the interest rate, and t is the time in years.

Given that Trevor's investment was $4,250.00 and the interest rate is 2.7% annually, we can plug these values into the formula:

A = 4,250.00(1 + 0.027 * 22)

Calculating this expression, we find:

A ≈ 4,250.00(1 + 0.594)

A ≈ 4,250.00 * 1.594

A ≈ 6,767.50

Therefore, Trevor's investment would be worth approximately $6,767.50 after 22 years with simple interest.

It's important to note that the exact value may differ slightly due to rounding and the specific method of interest calculation used.

Learn more about simple interest here:

https://brainly.com/question/30964674

#SPJ11

The distance between the school and the park is 6 km. There are 1. 6 km in a mile. How many miles apart are the school and the park

Answers

To find out how many miles apart the school and the park are, we need to convert the distance from kilometers to miles.

Given that there are 1.6 km in a mile, we can set up a conversion factor:

1 mile = 1.6 km

Now, we can calculate the distance in miles by dividing the distance in kilometers by the conversion factor:

Distance in miles = Distance in kilometers / Conversion factor

Distance in miles = 6 km / 1.6 km/mile

Simplifying the expression:

Distance in miles = 3.75 miles

Therefore, the school and the park are approximately 3.75 miles apart.

To know more about distance visit:

https://brainly.com/question/28828943

#SPJ11

simplify the expression. do not evaluate. cos2(14°) − sin2(14°)

Answers

The expression cos^2(14°) − sin^2(14°) can be simplified using the identity cos^2(x) - sin^2(x) = cos(2x). This identity is derived from the double angle formula for cosine: cos(2x) = cos^2(x) - sin^2(x).

Using this identity, we can rewrite the given expression as cos(2*14°). We cannot simplify this any further without evaluating it, but we have reduced the expression to a simpler form.

The double angle formula for cosine is a useful tool in trigonometry that allows us to simplify expressions involving cosines and sines. It can be used to derive other identities, such as the half-angle formulas for sine and cosine, and it has applications in fields such as physics, engineering, and astronomy.

Overall, understanding trigonometric identities and their applications can help us solve problems more efficiently and accurately in a variety of contexts.

Learn more about expression  here:

https://brainly.com/question/14083225

#SPJ11

What is the proper coefficient for water when the following equation is completed and balanced for the reaction in basic solution?C2O4^2- (aq) + MnO4^- (aq) --> CO3^2- (aq) + MnO2 (s)

Answers

The proper coefficient for water when the equation is completed and balanced for the reaction in basic solution is 2.

A number added to a chemical equation's formula to balance it is known as  coefficient.

The coefficients of a situation let us know the number of moles of every reactant that are involved, as well as the number of moles of every item that get created.

The term for this number is the coefficient. The coefficient addresses the quantity of particles of that compound or molecule required in the response.

The proper coefficient for water when the equation is completed and balanced for the chemical process in basic solution is 2.

Learn more about coefficient, here:

https://brainly.com/question/13018938

#SPJ1

A four-sided; fair die is rolled 30 times. Let X be the random variable that represents the outcome on each roll: The possible results of the die are 1,2, 3,4. The die rolled: one 9 times, two 4 times_ three 7 times,and four 10 times: What is the expected value of this discrete probability distribution? [Select ] What is the variance? [Sclect |

Answers

The expected value of this discrete probability distribution is 2.93, and the variance is 1.21.

To find the expected value of the discrete probability distribution for this four-sided fair die, we use the formula:

E(X) = Σ(xi * Pi)

where xi represents the possible outcomes of the die, and Pi represents the probability of each outcome. In this case, the possible outcomes are 1, 2, 3, and 4, with probabilities of 9/30, 4/30, 7/30, and 10/30 respectively.

Therefore, the expected value of X is:

E(X) = (1 * 9/30) + (2 * 4/30) + (3 * 7/30) + (4 * 10/30) = 2.93

To find the variance, we first need to calculate the squared deviations of each outcome from the expected value, which is given by:

[tex](xi - E(X))^2 * Pi[/tex]

We then sum up these values to get the variance:

[tex]Var(X) = Σ[(xi - E(X))^2 * Pi][/tex]

This calculation gives a variance of approximately 1.21.

Therefore, the expected value of this discrete probability distribution is 2.93, and the variance is 1.21.

To know more about probability refer to-

https://brainly.com/question/30034780

#SPJ11

find the sum of the series. [infinity] (−1)n 2nx8n n! n = 0

Answers

The sum of the series is e⁻²ˣ⁸.

The sum of the series is (-1)⁰ 2⁰ x⁰ 0! + (-1)¹ 2¹ x⁸ 1! + (-1)² 2² x¹⁶ 2! + ... which simplifies to ∑[infinity] (-1)ⁿ (2x⁸)ⁿ/(n!). Using the formula for the Maclaurin series of e⁻ˣ, this can be rewritten as e⁻²ˣ⁸.

The series can be rewritten using sigma notation as ∑[infinity] (-1)ⁿ (2x⁸)ⁿ/(n!). To find the sum, we need to simplify this expression. We can recognize that this expression is similar to the Maclaurin series of e⁻ˣ, which is ∑[infinity] (-1)ⁿ xⁿ/n!.

By comparing the two series, we can see that the given series is simply the Maclaurin series of e⁻²ˣ⁸. Therefore, the sum of the series is e⁻²ˣ⁸. This is a useful result, as it provides a way to find the sum of the given series without having to compute each term separately.

To know more about Maclaurin series click on below link:

https://brainly.com/question/31745715#

#SPJ11

define f: {0,1}2 → {0, 1}3 such that for x ∈ {0,1}2, f(x) = x1. what is the range of f?

Answers

The function f takes a binary string of length 2, and returns the first bit of that string, which is either 0 or 1.

Therefore, the range of f is {0, 1}.

To know more about  binary string refer here:

https://brainly.com/question/15766517

#SPJ11

Use Lagrange multipliers to find any extrema of the function subject to the constraint x2 + y2 ? 1. f(x, y) = e?xy/4

Answers

We can use the method of Lagrange multipliers to find the extrema of f(x, y) subject to the constraint x^2 + y^2 = 1. Let λ be the Lagrange multiplier.

We set up the following system of equations:

∇f(x, y) = λ∇g(x, y)

g(x, y) = x^2 + y^2 - 1

where ∇ is the gradient operator, and g(x, y) is the constraint function.

Taking the partial derivatives of f(x, y), we get:

∂f/∂x = (-1/4)e^(-xy/4)y

∂f/∂y = (-1/4)e^(-xy/4)x

Taking the partial derivatives of g(x, y), we get:

∂g/∂x = 2x

∂g/∂y = 2y

Setting up the system of equations, we get:

(-1/4)e^(-xy/4)y = 2λx

(-1/4)e^(-xy/4)x = 2λy

x^2 + y^2 - 1 = 0

We can solve for x and y from the first two equations:

x = (-1/2λ)e^(-xy/4)y

y = (-1/2λ)e^(-xy/4)x

Substituting these into the equation for g(x, y), we get:

(-1/4λ^2)e^(-xy/2)(x^2 + y^2) + 1 = 0

Substituting x^2 + y^2 = 1, we get:

(-1/4λ^2)e^(-xy/2) + 1 = 0

e^(-xy/2) = 4λ^2

Substituting this into the equations for x and y, we get:

x = (-1/2λ)(4λ^2)y = -2λy

y = (-1/2λ)(4λ^2)x = -2λx

Solving for λ, we get:

λ = ±1/2

Substituting λ = 1/2, we get:

x = -y

x^2 + y^2 = 1

Solving for x and y, we get:

x = -1/√2

y = 1/√2

Substituting λ = -1/2, we get:

x = y

x^2 + y^2 = 1

Solving for x and y, we get:

x = 1/√2

y = 1/√2

Therefore, the extrema of f(x, y) subject to the constraint x^2 + y^2 = 1 are:

f(-1/√2, 1/√2) = e^(1/8)

f(1/√2, 1/√2) = e^(1/8)

Both of these are local maxima of f(x, y) subject to the constraint x^2 + y^2 = 1.

Learn more about Lagrange multipliers here:

https://brainly.com/question/31827103

#SPJ11

Other Questions
any debts or damages incurred by a firm organized as a sole proprietorship are The distance between the school and the park is 6 km. There are 1. 6 km in a mile. How many miles apart are the school and the park what will be the main cyclic product of an intramolecular aldol condensation of this molecule? Ch-Sup01 Determine 60.H7/p6a. If this fit specification is shaft based or hole based. b. If this is a clearance, transitional or interference fit. c. Using ASME B4.2, find the hole and shaft sizes with upper and lower limits. Explain at least one example of a way that the Frankenstein narrative has been used as a metaphor. You may use Hitchcock's and/or Young's essays for historical examples, or come up with your own example from more recent popular culture, but do explain how the connection of the metaphor worksthat is, what is Frankenstein's monster being used to symbolize or represent? Too Big to Fail and banks' ability to create money Consider the following dialog between Frances, a student studying a chapter on "Money and the Banking system and Carlos, her teaching assistant. FRANCES: Hi Carlos. Before I begin my homework, I'd like to make sure that I understand how banks create money. FRANCES: I'm glad you asked this question I Frances. When began studying money and banking, I was fascinated by the banks' ability to create money. It does look like a trick when banks use excess reserves to lend money, and thus increase their assets. Borrowers then deposit new loans which increases both bank deposits and excess reserves. This process is called deposit expansion. As a result, the money supply will increase. CARLOS By the same logic when required reserves fall, banks granting new loans, which causes to decrease. This process is called As a result, the money supply will decrease. FRANCES: I also wanted to ask you about the "too big to fail" notion. What does it entail? I had a feeling that during the lecture our professor criticized big banks but I have always thought that big banks are more reliable than small banks. My parents, for example, have always preferred a big bank operating at a national level over a small local bank. Which species will reduce Ag+ but not Fe2+?1. Cr2. H23. V4. Pt5. Au consider the vector field f(x,y,z)=6y,6x,4z. show that f is a gradient vector field f=v by determining the function v which satisfies v(0,0,0)=0. v(x,y,z)= A four-sided; fair die is rolled 30 times. Let X be the random variable that represents the outcome on each roll: The possible results of the die are 1,2, 3,4. The die rolled: one 9 times, two 4 times_ three 7 times,and four 10 times: What is the expected value of this discrete probability distribution? [Select ] What is the variance? [Sclect | define f: {0,1}2 {0, 1}3 such that for x {0,1}2, f(x) = x1. what is the range of f? Question 22 1 points Save Answer A beam of electrons, a beam of protons, a beam of helium atoms, and a beam of nitrogen atoms cach moving at the same speed. Which one has the shortest de-Broglie wavelength? A. The beam of nitrogen atoms. B. The beam of protons, C. All will be the same D. The beam of electrons. E the beam of helium atoms Distinguish between Rayleigh and Raman scattering of photons. Rayleigh Raman elastic inelastic bulk of scattered photons small fraction of scattered photons scattered and incident photons have same energy and wavelength scattered and incident photons have different energy and wavelength high intensity weak intensityHow does the timescale for scattering compare to the timescale for fluorescence? scattering is 10^15 to 10^17 faster there is no difference scattering is 10^7 to 10^11 faster scattering is 10^ 7 to 10^11 slower scattering is 10^15 to 10^17 slower what minimum speed does a 100 g puck need to make it to the top of a frictionless ramp that is 3.0 m long and inclined at 20? The dosage the pharmacy carries in stock (on hand), is different than the prescribers order. Use ratio and proportion to calculate the total quantity of tablets to dispense for each of the prescriptions below: Order: Zocor 40 mg po qd for 60 days On hand: 20 mg tabs How many 20 mg tabs should be given? Give: A line has a slope of 22 and includes the points \left( 4 , \mathrm{g} \right)(4,g) and \left( - 9 , - 9 \right)(9,9). What is the value of \mathrm{g}g ? Evaluation of injector performance by performing a cylinder cut-out test may be evident by viewing ____________ From greatest to least, rank the accelerations of the boxes. Rank from greatest to least. To rank items as equivalent, overlap them. Reset Help 10 N15 N 5 N10 N 15 N10 N 15 N5NGreatest Least who has the regulatory authority to enforce respa and afba? a girl tosses a candy bar across a room with an initial velocity of 8.2 m/s and an angle of 56o. how far away does it land? 6.4 m 4.0 m 13 m 19 m A sample of 6 head widths of seals (in cm) and the corresponding weights of the seals (in kg) were recorded. Given a linear correlation coefficient of 0.948, find the corresponding critical values, assuming a 0.01 significance level. Is there sufficient evidence to conclude that there is a linear correlation?A. Critical values = 0.917; there is sufficient evidence to conclude that there is a linear correlation.B. Critical values = 0.917; there is not sufficient evidence to conclude that there is a linear correlation.C. Critical values = 0.959; there is sufficient evidence to conclude that there is a linear correlation.D. Critical values = 0.959; there is not sufficient evidence to conclude that there is a linear correlation.