___are generally small and just show simple trends rather than all the details regarding the horizontal and vertical axes that you would expect on a normal graph.

Answers

Answer 1

Bar charts or bar graphs are generally small and show simple trends rather than all the details regarding the horizontal and vertical axes that you would expect on a normal graph.

Bar charts are a type of data visualization that represent categorical data using rectangular bars. Each bar represents a specific category, and the length or height of the bar corresponds to the value or frequency of that category.
Here's how you can create a bar chart:
1. Identify the categories or variables you want to compare. For example, if you want to compare the sales of different products, the categories would be the product names.
2. Determine the scale for the horizontal and vertical axes. The horizontal axis typically represents the categories, while the vertical axis represents the values or frequencies. The scale should be appropriate to fit the data without cutting off any bars.
3. Draw a horizontal line for the x-axis and a vertical line for the y-axis.
4. Mark the categories along the x-axis. You can use labels or tick marks to indicate each category.
5. Mark the values or frequencies along the y-axis. Again, you can use labels or tick marks depending on the range of values.
6. Draw bars for each category. The length or height of each bar corresponds to the value or frequency of that category. You can use rectangles or vertical lines to represent the bars.
7. Label the bars if necessary to provide additional information or clarity.

Bar charts are often used to compare discrete data or categories, such as sales by product, population by country, or survey responses by option. They are easy to read and interpret, making them a popular choice for visualizing data in a simple and straightforward way. However, bar charts may not provide the same level of detail as other types of graphs, such as line graphs or scatter plots.

Learn more about Bar charts from the given link:

https://brainly.com/question/24741444

#SPJ11


Related Questions

Which of the following increments x by 1 ? a. 1++; b. x+1; c. x=1; d. x+=1; e. x+; 2.Select the three control structures that (along with sequence) will be studied in this course. a. int b. decision c. repetition/looping d. Hinclude e. branch and return/function calling .Name one command that is used to implement the decision statement control structure that will be studied in this course. Name the 3C+ statements used to create a loop. What will the following code display on the screen and where will it display?Write a for loop to display the first 5 multiples of 10 on one line. For example: 1020 304050 .When is the 3rd subexpression in for (⋯;…) statement executed? Write a decision statement to test if a number is even or not. If it is, print "even". If it is not, add 1 to it and print "it was odd, but now it's not". Why is a while loop described as "top-driven" . If a read-loop is written to process an unknown number of values using the while construct, and if there is one read before the while instruction there will also be one a. at the top of the body of the loop b. at the bottom of the body of the loop c. in the middle of the body of the loop d. there are no other reads

Answers

1. The following increments x by 1 is d. x+=1.

2. The three control structures that (along with sequence) will be studied in this course are: b. decision, c. repetition/looping, and e. branch and return/function calling. A command that is used to implement the decision statement control structure that will be studied in this course is if statement.

3. The 3C+ statements used to create a loop are initialization, condition, and change.

4. The code will display the following on the screen: 10 20 30 40 50 and it will display on the screen after the code has been run.

5. The third subexpression in for (⋯;…) statement is executed every time the loop iterates before executing the statement(s) in the body of the loop.

6. The decision statement to test if a number is even or not and print the respective statements is as follows:

if (num % 2 == 0) {printf ("even");} else {num++; printf ("it was odd, but now it's not");}

7. A while loop is described as "top-driven" because the condition of the loop is evaluated at the top of the loop before executing the body of the loop.

8. If a read-loop is written to process an unknown number of values using the while construct, and if there is one read before the while instruction there will also be one at the top of the body of the loop.

To know more about increments refer here:

https://brainly.com/question/32580528

#SPJ11


How many ways to form a queue from 15 people exist?

Answers

There are 15! (read as "15 factorial") ways to form a queue from 15 people.

To determine the number of ways to form a queue from 15 people, we need to consider the concept of permutations.

Since the order of the people in the queue matters, we need to calculate the number of permutations of 15 people. This can be done using the factorial function.

The number of ways to arrange 15 people in a queue is given by:

15!

which represents the factorial of 15.

To calculate this value, we multiply all the positive integers from 1 to 15 together:

15! = 15 × 14 × 13 × ... × 2 × 1

Using a calculator or computer, we can evaluate this expression to find the exact number of ways to form a queue from 15 people.

Learn more about factorial here :-

https://brainly.com/question/18270920

#SPJ11

(a) =5 point. Suppose a particle has acceleration {a}(t)=(3, e^{t}, cos t) , initial velocity v(0)=(1,0,1) and initial position r(0)=(0,-1,0) . Find the positi

Answers

The position function is r(t) = (3/2 t^2 + t, e^t - t - 1, - cos t + 1) for the particle.

Given that a particle has an acceleration {a}(t)=(3, e^{t}, cos t),

initial velocity v(0)=(1,0,1) and

initial position r(0)=(0,-1,0).

To find the position function, we need to follow the following steps:

Step 1: Integrate the acceleration to find the velocity function v(t).

Step 2: Integrate the velocity to find the position function r(t).

Step 1: Integration of acceleration{a}(t)=(3, e^{t}, cos t)

Integrating a(t) with respect to t, we get:

v(t) = (3t + C1, e^t + C2, sin t + C3)

Applying initial condition,

v(0)=(1,0,1)

1=3*0+C1C

1=1v(t)

= (3t + 1, e^t + C2, sin t + C3)

Step 2: Integration of velocity v (t) = (3t + 1, e^t + C2, sin t + C3)

Integrating v(t) with respect to t, we get:

r(t) = (3/2 t^2 + t + C1, e^t + C2t + C3, - cos t + C4)

Applying initial conditions, we get

r (0) = (3/2(0)^2 + 0 + C1, e^0 + C2(0) + C3, - cos 0 + C4)

= (0,-1,0)0 + C1

= 0C1

= 0e^0 + C2(0) + C3

= -1C2 = -1C3 - 1cos 0 + C4

= 0C4

= 1r(t)

= (3/2 t^2 + t, e^t - t - 1, - cos t + 1)

To know more about velocity visit :

brainly.com/question/31586042

#SPJ11

Solve the differential equation. y ′ +2y=15y= 515​ +ce 2x y= 21 +ce −2xy= 215 +e 2 +ce −2 y=15+ce 2x

Answers

It seems there are some errors in the provided equations. Let's go through them one by one and correct them:

Equation 1: y' + 2y = 15

The correct form of this equation is:

y' + 2y = 15

Equation 2: y = 515 + ce^(2x)

It seems there is an extra "=" sign. The correct form is:

y = 515e^(2x) + ce^(2x)

Equation 3: y = 21 + ce^(-2x)

Similarly, there is an extra "=" sign. The correct form is:

y = 21e^(-2x) + ce^(-2x)

Equation 4: y = 215 + e^(2) + ce^(-2)

It seems there is an incorrect placement of "+" sign. The correct form is:

y = 215 + e^(2x) + ce^(-2x) Equation 5: y = 15 + ce^(2x)

There is an extra "=" sign. The correct form is:

y = 15e^(2x) + ce^(2x)

If you would like to solve any particular equation, please let me know.

Learn more about equations here

https://brainly.com/question/14686792

#SPJ11

3 Let M(t)=100t+50 denote the savings account balance, in dollars, t months since it was opened. In dollars, how much is in her account after 2 years?

Answers

Let M(t)=100t+50 denote the savings account balance, in dollars, t months since it was opened. After 2 years, the savings account will have a balance of $2450.

The function M(t)=100t+50 denotes the savings account balance in dollars, t months since it was opened. So, after 2 years (which is 24 months), the balance of the account will be M(24) = 100 * 24 + 50 = 2450.

The function M(t) is a linear function, which means that the balance of the account increases by $100 each month. So, after 24 months, the balance of the account will be $100 * 24 = $2400.

In addition, the function M(t) also includes a $50 starting balance. So, the total balance of the account after 24 months will be $2400 + $50 = $2450.

Visit here to learn more about savings account:

brainly.com/question/30101466

#SPJ11

. The time required to drive 100 miles depends on the average speed, x. Let f(x) be this time in hours as a function of the average speed in miles per hour. For example, f(50) = 2 because it would take 2 hours to travel 100 miles at an average speed of 50 miles per hour. Find a formula for f(x). Test out your formula with several sample points.

Answers

The formula for f(x), the time required to drive 100 miles as a function of the average speed x in miles per hour, is f(x) = 100 / x, and when tested with sample points, it accurately calculates the time it takes to travel 100 miles at different average speeds.

To find a formula for f(x), the time required to drive 100 miles as a function of the average speed x in miles per hour, we can use the formula for time:

time = distance / speed

In this case, the distance is fixed at 100 miles, so the formula becomes:

f(x) = 100 / x

This formula represents the relationship between the average speed x and the time it takes to drive 100 miles.

Let's test this formula with some sample points:

f(50) = 100 / 50 = 2 hours (as given in the example)

At an average speed of 50 miles per hour, it would take 2 hours to travel 100 miles.

f(60) = 100 / 60 ≈ 1.67 hours

At an average speed of 60 miles per hour, it would take approximately 1.67 hours to travel 100 miles.

f(70) = 100 / 70 ≈ 1.43 hours

At an average speed of 70 miles per hour, it would take approximately 1.43 hours to travel 100 miles.

f(80) = 100 / 80 = 1.25 hours

At an average speed of 80 miles per hour, it would take 1.25 hours to travel 100 miles.

By plugging in different values of x into the formula f(x) = 100 / x, we can calculate the corresponding time it takes to drive 100 miles at each average speed x.

For similar question on function.

https://brainly.com/question/30127596  

#SPJ8

Construction 3.17 which was EAV-Secure Prove the opposite - i.e. if G is not a PRG, then 3.17 cannot be EAV-secure. Let G be a pseudorandom generator with expansion factor ℓ. Define a private-key encryption scheme for messages of length ℓ as follows: - Gen: on input 1 n
, choose uniform k∈{0,1} n
and output it as the key. - Enc: on input a key k∈{0,1} n
and a message m∈{0,1} ℓ(n)
, output the ciphertext c:=G(k)⊕m. - Dec: on input a key k∈{0,1} n
and a ciphertext c∈{0,1} ℓ(n)
, output the message m:=G(k)⊕c. A private-key encryption scheme based on any pseudorandom generator. THEOREM 3.18 If G is a pseudorandom generator, then Construction 3.17 is a fixed-length private-key encryption scheme that has indistinguishable encryptions in the presence of an eavesdropper. PROOF Let Π denote Construction 3.17. We show that Π satisfies Definition 3.8. Namely, we show that for any probabilistic polynomial-time adversary A there is a negligible function negl such that Pr[PrivK A,Π
eav

(n)=1]≤ 2
1

+neg∣(n)

Answers

If G is not a PRG, then Construction 3.17 cannot be EAV-secure. This shows the contrapositive of Theorem 3.18.

To prove the opposite, we need to show that if G is not a pseudorandom generator (PRG), then Construction 3.17 cannot be EAV-secure (indistinguishable encryptions in the presence of an eavesdropper).

Let's assume that G is not a PRG. This means that there exists some efficient algorithm D that can distinguish the output of G from random strings with non-negligible advantage. We will use this assumption to construct an adversary A that can break the EAV-security of Construction 3.17.

The adversary A works as follows:

1. A receives a security parameter n.

2. A runs the key generation algorithm Gen and obtains the key k.

3. A chooses two distinct messages m0 and m1 of length ℓ(n).

4. A computes the ciphertexts c0 = G(k) ⊕ m0 and c1 = G(k) ⊕ m1.

5. A chooses a random bit b and sends cb to the challenger.

6. The challenger encrypts cb using the encryption algorithm Enc with key k and obtains the ciphertext c*.

7. A receives c* and outputs b' = D(G(k) ⊕ c*).

8. If b = b', A outputs 1; otherwise, it outputs 0.

We analyze the probability that A can distinguish between encryptions of messages m0 and m1. Since G is not a PRG, D has a non-negligible advantage in distinguishing G's output from random strings. Therefore, there exists a non-negligible function negl such that:

|Pr[D(G(k)) = 1] - Pr[D(U) = 1]| ≥ negl(n),

where U denotes a truly random string of length ℓ(n).

Now, consider the probability of A winning the PrivK game:

Pr[PrivK_A,Π

eav

(n) = 1] = Pr[b = b']

           = Pr[D(G(k) ⊕ c*) = D(G(k))]

           = Pr[D(G(k)) = 1]

           ≥ Pr[D(U) = 1] - negl(n).

Since negl(n) is non-negligible, we have:

Pr[PrivK_A,Π

eav

(n) = 1] ≥ 2^(-1) + negl(n).

Thus, if G is not a PRG, then Construction 3.17 cannot be EAV-secure. This shows the contrapositive of Theorem 3.18.

Learn more about Construction here

https://brainly.com/question/27665779

#SPJ11

chapter 7 presented a ci for the variance s2 of a normal population distribution. the key result there was that the rv x2 5 (n 2 1)s2ys2 has a chi-squared distribution with n 2 1 df. consider the null hypothesis h0: s2 5 s20 (equivalently, s 5 s0). then when h0 is true, the test statistic x2 5 (n 2 1)s2ys20 has a chi-squared distribution with n 2 1 df. if the relevant alternative is ha: s2 . s20

Answers

When the null hypothesis H0: [tex]s^2 = {(s_0)}^2[/tex]  is true, the test statistic[tex]X^2 = (n - 1)s^2 / (s_0)^2[/tex]  follows a chi-squared distribution with n - 1 degrees of freedom.

To perform the test, we follow these steps:

Step 1: State the hypotheses:

H0: [tex]s^2 = (s_0)^2[/tex] (or equivalently, s = s0) [Null hypothesis]

Ha: [tex]s^2 \neq (s_0)^2[/tex] [Alternative hypothesis]

Step 2: Collect a random sample and calculate the sample variance:

Obtain a sample of size n from the population of interest and calculate the sample variance, denoted as [tex]s^2[/tex].

Step 3: Calculate the test statistic:

Compute the test statistic  [tex]X^2[/tex] using the formula

[tex]X^2 = (n - 1)s^2 / (s_0)^2.[/tex]

Step 4: Determine the critical region:

Identify the critical region or rejection region based on the significance level α and the degrees of freedom (n - 1) of the chi-squared distribution. This critical region will help us decide whether to reject the null hypothesis.

Step 5: Compare the test statistic with the critical value(s):

Compare the calculated value of [tex]X^2[/tex] to the critical value(s) obtained from the chi-squared distribution table. If the calculated [tex]X^2[/tex] value falls within the critical region, we reject the null hypothesis. Otherwise, if it falls outside the critical region, we fail to reject the null hypothesis.

Step 6: Draw a conclusion:

Based on the comparison in Step 5, draw a conclusion about the null hypothesis. If the null hypothesis is rejected, we have evidence to support the alternative hypothesis. On the other hand, if the null hypothesis is not rejected, we do not have sufficient evidence to conclude that the population variance differs from [tex](s_0)^2[/tex].

In summary, when the null hypothesis H0:

[tex]s^2 = {(s_0)}^2[/tex]

is true, the test statistic

[tex]X^2 = (n - 1)s^2 / (s_0)^2[/tex]

follows a chi-squared distribution with n - 1 degrees of freedom.

Learn more about hypothesis testing here:

https://brainly.com/question/33445215

#SPJ4

Solve the following linear programming models graphically, AND anwer the following questions foe each modet: - Shade the feasible rogion. - What are the estrene poists? Give their (x 1

,x 2

)-coordinates. - Phos the oljective fuoction on the graph to demoestrate whicre it is optimuzad. - What is the crtimal whation? - What is the dejective function valoe at the optimal solution? Problem 2 min8x 1

+6x 2

s.t. 4x 1

+2x 2

≥20
−6x 1

+4x 2

≤12
x 1

+x 2

≥6
x 1

,x 2

≥0

Previous

Answers

The minimum value of the objective function is 32 at the point (2, 4). The optimal solution is x1 = 2 and x2 = 4 with the minimum value of the objective function = 32.

The given linear programming model is:

min 8x1+6x2 s.t.4x1+2x2≥20-6x1+4x2≤12x1+x2≥6x1,x2≥0

Solution: To solve the given problem graphically, we will plot all three constraint inequalities and then find out the feasible region.

Feasible Region: The feasible region for the given problem is represented by the shaded area shown below:

Extreme points:

From the graph, the corner points of the feasible region are:(4, 2), (6, 0), and (2, 4)

Critical Ratio: At each corner point, we calculate the objective function value.

Critical Ratio for each corner point: Corner point

Objective function value (z) Ratio z/corner point

(4, 2)8(4) + 6(2) = 44 44/6 = 7.33(6, 0)8(6) + 6(0) = 48 48/8 = 6(2, 4)8(2) + 6(4) = 32 32/4 = 8

Objective Function value at Optimal

Solution: The minimum value of the objective function is 32 at the point (2, 4).Thus, the optimal solution is x1 = 2 and x2 = 4 with the minimum value of the objective function = 32.

Learn more about linear programming visit:

brainly.com/question/30763902

#SPJ11

(a) X, Y are two independent N(0,1) random variables, and we have random variables P,Q defined as P = 3X + XY 2
Q=X then calculate the variance V ar(P + Q)
(b) Suppose that X and Y have joint pdf given by
fX,Y (x, y) = { 2e^(−2y), 0≤x≤1, y≥0, 0 otherwise}
What are the marginal probability density functions for X and Y ?
(c) A person decides to toss a biased coin with P(heads) = 0.2 repeatedly until he gets a head. He will make at most 5 tosses. Let the random variable Y denote the number of heads. Find the variance of Y.P=3X+XY 2
Q=X

then calculate the variance Var(P+Q)[5pts] (b) Suppose that X and Y have joint pdf given by f X,Y

(x,y)={ 2e −2y
,
0,

0≤x≤1,y≥0
otherwise ​
What are the marginal probability density functions for X and Y ? [5 pts] (c) A person decides to toss a biased coin with P( heads )=0.2 repeatedly until he gets a head. He will make at most 5 tosses. Let the random variable Y denote the number of heads. Find the variance of Y

Answers

The Variance of P + Q: To find the Variance of P + Q, we need to calculate both their expected values first. Since both P and Q are independent and have a mean of zero, then the expected value of their sum is also zero.

Using the fact that

Var(P + Q) = E[(P + Q)²],

and after expanding it out, we get

Var(P + Q) = Var(P) + Var(Q) + 2Cov(P,Q).

Using the formula of P and Q, we can calculate the variances as follows:

Var(P) = Var(3X + XY²) = 9Var(X) + 6Cov(X,Y) + Var(XY²)Var(Q) = Var(X)

So, we need to calculate the Covariance of X and XY². Since X and Y are independent, their covariance is zero. Hence, Cov(P,Q) = Cov(3X + XY², X) = 3Cov(X,X) + Cov(XY²,X) = 4Var(X).

Plugging in the values, we get

Var(P + Q) = 10Var(X) = 10.

Marginal Probability Density Functions for X and Y:To find the marginal probability density functions for X and Y, we need to integrate out the other variable. Using the given joint pdf fX,

Y (x, y) = { 2e^(−2y), 0≤x≤1, y≥0, 0 },

we get:

fX(x) = ∫₂^₀ fX,Y (x, y) dy= ∫₂^₀ 2e^(−2y) dy= 1 − e^(−4x) for 0 ≤ x ≤ 1fY(y) = ∫₁^₀ fX,Y (x, y) dx= 0 for y < 0 and y > 1fY(y) = ∫₁^₀ 2e^(−2y) dx= 2e^(−2y) for 0 ≤ y ≤ 1

Variance of Y: The number of trials is a geometric random variable with parameter p = 0.2, and the variance of a geometric distribution with parameter p is Var(Y) = (1 - p) / p². Thus, the variance of Y is Var(Y) = (1 - 0.2) / 0.2² = 20. Therefore, the variance of Y is 20.

In conclusion, we have calculated the variance of P + Q, found the marginal probability density functions for X and Y and also determined the variance of Y.

To learn more about Marginal Probability Density Functions visit:

brainly.com/question/32669346

#SPJ11

Given the following information: sample variance of X:5x2=9, the sample variance of Y:5y2=16 and the covariance of X and Y:cov(X,Y)=−10 Which of the following is true? A. There is a weak negative linear relationship between Y and X, and there is significant scatter in the data points around a line. B. There is a strong negative linear relationship between Y and X, and there is little scatter in the data points around the line: C. There is a strong positive linear relationship between Y and X, and there is little scatter in the data points around a line D. There is a weak negative linear relationship between Y and X, and there is very little scatter in the data points around a line.

Answers

A. There is a weak negative linear relationship between Y and X, and there is significant scatter in the data points around a line.

Based on the given information, the sample variance of X is 9, the sample variance of Y is 16, and the covariance of X and Y is -10.

To determine the nature of the relationship between X and Y, we need to consider the covariance and the variances.

Since the covariance is negative (-10), it suggests a negative relationship between X and Y.

This means that as X increases, Y tends to decrease, and vice versa.

Now, let's consider the variances.

The sample variance of X is 9, and the sample variance of Y is 16. Comparing these variances, we can conclude that the scatter in the data points around the line is significant.

Therefore, based on the given information, the correct statement is:

A. There is a weak negative linear relationship between Y and X, and there is significant scatter in the data points around a line.

This option captures the negative relationship between Y and X indicated by the negative covariance, and it acknowledges the significant scatter in the data points around a line, which is reflected by the difference in variances.

For similar question on negative linear relationship.

https://brainly.com/question/10474709

#SPJ8

Regression calculations reveal the following: sum left parenthesis Y minus top enclose Y right parenthesis squared space equals space 32 comma space sum left parenthesis Y minus Y with hat on top right parenthesis squared space equals space 8 comma Therefore, SSR would be 40
true
false

Answers

The value of SSR in the scenario given is 40. Hence, the statement is True

Recall :

SSR = SSE + SST

SSE (Sum of Squared Errors) = sum of squared differences between the actual values of Y and the predicted values of Y (Y hat)

SST (Total Sum of Squares) = sum of squared differences between the actual values of Y and the mean of Y

Here ,

SSE = 8 ; SST = 32

SSR = 8 + 32 = 40

Therefore, the statement is True

Learn more on regression : https://brainly.com/question/25987747

#SPJ4

We are rolling two standard fair dice (6 sided).
Event A. Sum of the dice is > 7
Event B. Both of the numbers on the dice are odd.
Draw a Venn diagram of the two events?
Are A and B mutually exclusive? Explain........... No because they share several outcomes
Determine: p(A); p(B);......................... p(A)= 15/36 p(B)= 1/4
Determine p(A│B); and p(B│A) ............. ?
Are A and B statistically independent? Explain. .......?

Answers

Event A refers to the probability of getting a sum greater than 7 when rolling two standard fair dice. On the other hand, Event B refers to the probability of getting two odd numbers when rolling two standard fair dice.

Drawing a Venn diagram for the two events indicates that they share several outcomes.Hence A and B are not mutually exclusive. When rolling two standard fair dice, it is essential to determine the probability of obtaining different events. In this case, we are interested in finding out the probability of obtaining a sum greater than 7 and getting two odd numbers.The first step is to draw a Venn diagram to indicate the relationship between the two events. When rolling two dice, there are 6 × 6 = 36 possible outcomes. When finding the probability of each event, it is crucial to consider the number of favorable outcomes.Event A involves obtaining a sum greater than 7 when rolling two dice. There are a total of 15 outcomes where the sum of the two dice is greater than 7, which includes:

(2, 6), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6), (5, 3), (5, 4), (5, 5), (5, 6), (6, 2), (6, 3), (6, 4), (6, 5), and (6, 6).

Hence, p(A) = 15/36.Event B involves obtaining two odd numbers when rolling two dice. There are a total of 9 outcomes where both dice show an odd number, including:

(1, 3), (1, 5), (1, 5), (3, 1), (3, 3), (3, 5), (5, 1), (5, 3), and (5, 5).

Therefore, p(B) = 9/36 = 1/4.To determine the probability of A given B, the formula is:

p(A│B) = p(A and B)/p(B).

Both events can occur when both dice show a number 5. Thus, p(A and B) = 1/36. Therefore,

p(A│B) = (1/36)/(1/4) = 1/9.

To determine the probability of B given A, the formula is:

p(B│A) = p(A and B)/p(A).

Both events can occur when both dice show an odd number greater than 1. Thus, p(A and B) = 4/36 = 1/9. Therefore, p(B│A) = (1/36)/(15/36) = 1/15.

A and B are not statistically independent because p(A and B) ≠ p(A)p(B).

In conclusion, when rolling two standard fair dice, it is essential to determine the probability of different events. In this case, we considered the probability of obtaining a sum greater than 7 and getting two odd numbers. When the Venn diagram was drawn, we found that A and B are not mutually exclusive. We also determined the probability of A and B, p(A│B), p(B│A), and the independence of A and B.

To learn more about mutually exclusive visit:

brainly.com/question/12947901

#SPJ11

What is this shape and how many faces does it have?
(include bases also)

Answers

This is a triangular prism. It has 5 faces. 2 triangular faces and 3 rectangular faces connected at the triangles vertexes and at the rectangular width.

Answer:

it has 5 faces

Step-by-step explanation:

which includes the 3 rectangular and 2 triangular faces

found to be defective.
(a) What is an estimate of the proportion defective when the process is in control?
.065
(b) What is the standard error of the proportion if samples of size 100 will be used for statistical process control? (Round your answer to four decimal places.)
0244
(c) Compute the upper and lower control limits for the control chart. (Round your answers to four decimal places.)
UCL = .1382
LCL = 0082

Answers

To calculate the control limits for a control chart, we need to know the sample size and the estimated proportion defective. Based on the information provided:

(a) The estimate of the proportion defective when the process is in control is 0.065.

(b) The standard error of the proportion can be calculated using the formula:

Standard Error = sqrt((p_hat * (1 - p_hat)) / n)

where p_hat is the estimated proportion defective and n is the sample size. In this case, the sample size is 100. Plugging in the values:

Standard Error = sqrt((0.065 * (1 - 0.065)) / 100) ≈ 0.0244 (rounded to four decimal places).

(c) To compute the upper and lower control limits, we can use the formula:

UCL = p_hat + 3 * SE

LCL = p_hat - 3 * SE

where SE is the standard error of the proportion. Plugging in the values:

UCL = 0.065 + 3 * 0.0244 ≈ 0.1382 (rounded to four decimal places)

LCL = 0.065 - 3 * 0.0244 ≈ 0.0082 (rounded to four decimal places)

So, the upper control limit (UCL) is approximately 0.1382 and the lower control limit (LCL) is approximately 0.0082.

Learn more about standard error here:

https://brainly.com/question/32854773

#SPJ11

find the equation of a circle that has a center of (3,2) and passes through the point (4,-2)

Answers

The geometric shape of a circle in a coordinate plane is described mathematically by the equation of a circle. The equation of the circle is(x - 3)^2 + (y - 2)^2 = 17

To find the equation of the circle that has a center of (3, 2) and passes through the point (4, -2), we can use the following formula:

(x - h)^2 + (y - k)^2 = r^2,

where (h, k) is the center of the circle, and r is the radius.

Substituting the values of (h, k) from the problem statement into the formula gives us the following equation:

(x - 3)^2 + (y - 2)^2 = r^2

To find the value of r, we can use the fact that the circle passes through the point (4, -2).

Substituting the values of (x, y) from the point into the equation gives us:

(4 - 3)^2 + (-2 - 2)^2 = r^2

Simplifying, we get:

(1)^2 + (-4)^2 = r^2

17 = r^2

Therefore, the equation of the circle is(x - 3)^2 + (y - 2)^2 = 17

To know more about Equation Of Circle visit:

https://brainly.com/question/29288238

#SPJ11

a) Let A={a,b,c}, B={x,y,z}, and C={1,2}. Use the sets A, B, and C as the domain and codomain to construct afunctionthat meets each of the following conditions:-Injective but not surjective-Surjective but not injectiveBijective-Neither injective nor surjective
b) Show that the set of odd integers, O, is countable by establishing a bijection between the set O and the set of natural numbers N.

Answers

In summary, we have constructed functions with specific properties for the given sets A, B, and C. We have shown examples of functions that are injective but not surjective, surjective but not injective, bijective, and neither injective nor surjective. Additionally, we have proven that the set of odd integers is countable by establishing a bijection between the set of odd integers and the set of natural numbers.

a) Let's consider the given sets A, B, and C and construct functions based on the conditions:

- Injective but not surjective:

Define the function f: A → B as follows:

f(a) = x

f(b) = y

f(c) = x

This function is injective because each element in A maps to a distinct element in B. However, it is not surjective because there is no element in B that maps to z.

- Surjective but not injective:

Define the function g: B → C as follows:

g(x) = 1

g(y) = 2

g(z) = 1

This function is surjective because every element in C has a pre-image in B. However, it is not injective because both x and z in B map to the same element 1 in C.

- Bijective:

Define the function h: A → B as follows:

h(a) = x

h(b) = y

h(c) = z

This function is both injective and surjective, making it bijective. Each element in A maps to a distinct element in B, and every element in B has a pre-image in A.

- Neither injective nor surjective:

Define the function k: A → C as follows:

k(a) = 1

k(b) = 2

k(c) = 1

This function is neither injective nor surjective. It is not injective because both a and c in A map to the same element 1 in C. It is not surjective because there is no element in C that maps to 2.

b) To show that the set of odd integers O is countable, we can establish a bijection between O and the set of natural numbers N.

Let's define the function f: O → N as follows:

f(n) = (n+1)/2 for every odd integer n in O.

This function maps each odd integer to a unique natural number by taking half of the odd integer and adding 1. It is one-to-one because each odd integer has a distinct mapping to a natural number, and onto because every natural number has a pre-image in O. Therefore, f establishes a bijection between O and N, proving that O is countable.

Learn more about functions here:

https://brainly.com/question/30721594

#SPJ11

A ski shop sells skis with lengths ranging from 150 cm to 220 cm. The shop says the length of the ski should be about 1.16 times a skier's height (in centimeters ). Write and solve a compound inequality that represents the heights of the skiers the shop does NOT provide for.

Answers

The compound inequality that represents the heights of the skiers the shop does NOT provide for is:

h < 129.31 or h > 189.66.

The length of the ski should be about 1.16 times a skier's height (in centimeters).

A ski shop sells skis with lengths ranging from 150 cm to 220 cm.

To write and solve a compound inequality that represents the heights of the skiers the shop does NOT provide for, we need to use the given information.

Using the formula, the length of the ski = 1.16 × height of the skier (in cm).

The minimum length of a ski = 150 cm.

Hence,1.16h ≥ 150 (Since the length of the ski should be greater than or equal to 150 cm)h ≥ 150 ÷ 1.16 ≈ 129.31 (rounded to 2 decimal places)

Hence, the minimum height of the skier should be 129.31 cm (rounded to 2 decimal places).

The maximum length of a ski = 220 cm.

Hence,1.16h ≤ 220 (Since the length of the ski should be less than or equal to 220 cm)h ≤ 220 ÷ 1.16 ≈ 189.66 (rounded to 2 decimal places)

Hence, the maximum height of the skier should be 189.66 cm (rounded to 2 decimal places).

Therefore, the compound inequality that represents the heights of the skiers the shop does NOT provide for is:

h < 129.31 or h > 189.66.


To know more about compound inequality click here:

https://brainly.com/question/20296065


#SPJ11

In the class, we analyzed the differential equation y′′ y=0. We have shown that y=c 1​ e x +c 2​ e −x is the general solution on (−[infinity],[infinity]). Use this result to solve the following initial value problem: y ′′ −y=0,y(0)=1,y ′ (0)=3

Answers

The specific solution to the initial value problem is:

y = 2e^x - e^(-x).

This is the solution to the differential equation y'' - y = 0 with the initial conditions y(0) = 1 and y'(0) = 3.

To solve the initial value problem y′′ − y = 0 with the initial conditions y(0) = 1 and y′(0) = 3, we can use the general solution y = c₁e^x + c₂e^(-x).

First, we differentiate y with respect to x to find y':

y' = c₁e^x - c₂e^(-x).

Next, we differentiate y' with respect to x to find y'':

y'' = c₁e^x + c₂e^(-x).

Now we substitute these expressions for y'' and y into the differential equation:

y'' - y = (c₁e^x + c₂e^(-x)) - (c₁e^x + c₂e^(-x)) = 0.

Since this equation holds for any values of c₁ and c₂, we know that the general solution y = c₁e^x + c₂e^(-x) satisfies the differential equation.

To find the specific values of c₁ and c₂ that satisfy the initial conditions y(0) = 1 and y′(0) = 3, we substitute x = 0 into the general solution and its derivative:

y(0) = c₁e^0 + c₂e^(-0) = c₁ + c₂ = 1,

y'(0) = c₁e^0 - c₂e^(-0) = c₁ - c₂ = 3.

We now have a system of two equations:

c₁ + c₂ = 1,

c₁ - c₂ = 3.

By solving this system, we can find the values of c₁ and c₂. Adding the two equations, we get:

2c₁ = 4,

c₁ = 2.

Substituting c₁ = 2 into one of the equations, we find:

2 + c₂ = 1,

c₂ = -1.

Therefore, the specific solution to the initial value problem is:

y = 2e^x - e^(-x).

This is the solution to the differential equation y'' - y = 0 with the initial conditions y(0) = 1 and y'(0) = 3.

Learn more about equation  from

https://brainly.com/question/29174899

#SPJ11

Construct a PRG G from a (length preserving) PRF F, and show it is a PRG.

Answers

The constructed PRG G from a length-preserving PRF F is itself a PRG.

To construct a pseudorandom generator (PRG) G from a length-preserving pseudorandom function (PRF) F, we can define G as follows:

G receives a seed s of length n as input.

For each i in {1, 2, ..., n}, G applies F to the seed s and the index i to generate a pseudorandom output bit Gi.

G concatenates the generated bits Gi to form the output of length n.

Now, let's prove that G is a PRG by showing that it satisfies the two properties of a PRG:

Expansion: G expands the seed from length n to length n, preserving the output length.

Since G generates an output of length n by concatenating the n pseudorandom bits Gi, the output length remains the same as the seed length. Therefore, G preserves the output length.

Pseudorandomness: G produces output that is indistinguishable from a truly random string of the same length.

We can prove the pseudorandomness of G by contradiction. Assume there exists a computationally bounded adversary A that can distinguish the output of G from a truly random string with a non-negligible advantage.

Using this adversary A, we can construct an algorithm B that can break the security of the underlying PRF F. Algorithm B takes as input a challenge (x, y), where x is a random value and y is the output of F(x). B simulates G by invoking A with the seed x and the output y as the pseudorandom bits generated by G. If A can successfully distinguish the output as non-random, then B outputs 1; otherwise, it outputs 0.

Since A has a non-negligible advantage in distinguishing the output of G from a random string, algorithm B would also have a non-negligible advantage in distinguishing the output of F from a random string, contradicting the assumption that F is a PRF.

Hence, by contradiction, we can conclude that G is a PRG constructed from a length-preserving PRF F.

To know more about pseudorandom generator refer to-

https://brainly.com/question/33563626

#SPJ11

A bueket that weighs 4lb and a rope of negligible weight are used to draw water from a well that is the bucket at a rate of 0.2lb/s. Find the work done in pulling the bucket to the top of the well

Answers

Therefore, the work done in pulling the bucket to the top of the well is 4h lb.

To find the work done in pulling the bucket to the top of the well, we need to consider the weight of the bucket and the work done against gravity. The work done against gravity can be calculated by multiplying the weight of the bucket by the height it is lifted.

Given:

Weight of the bucket = 4 lb

Rate of pulling the bucket = 0.2 lb/s

Let's assume the height of the well is h.

Since the bucket is lifted at a rate of 0.2 lb/s, the time taken to pull the bucket to the top is given by:

t = Weight of the bucket / Rate of pulling the bucket

t = 4 lb / 0.2 lb/s

t = 20 seconds

The work done against gravity is given by:

Work = Weight * Height

The weight of the bucket remains constant at 4 lb, and the height it is lifted is the height of the well, h. Therefore, the work done against gravity is:

Work = 4 lb * h

Since the weight of the bucket is constant, the work done against gravity is independent of time.

To know more about work done,

https://brainly.com/question/15423131

#SPJ11

Find the linearization of the function k(x) = (x² + 2)-² at x = -2.

Answers

The linearization of the function k(x) = (x² + 2)-² at x = -2 is as follows. First, find the first derivative of the given function.

First derivative of the given function, k(x) = (x² + 2)-²dy/dx

= -2(x² + 2)-³ . 2xdy/dx

= -4x(x² + 2)-³

Now substitute the value of x, which is -2, in dy/dx.

Hence, dy/dx = -2[(-2)² + 2]-³

= -2/16 = -1/8

Find k(-2), k(-2) = [(-2)² + 2]-² = 1/36

The linearization formula is given by f(x) ≈ f(a) + f'(a)(x - a), where a = -2 and f(x) = k(x).

Substituting the given values into the formula, we get f(x) ≈ k(-2) + dy/dx * (x - (-2))

f(x) ≈ 1/36 - (1/8)(x + 2)

Thus, the linearization of the function k(x) = (x² + 2)-² at x = -2 is given by

f(x) ≈ 1/36 - (1/8)(x + 2).

To know more about function visit:

https://brainly.com/question/30721594

#SPJ11

Monika is considering going into business delivering the newspaper. She spends $1800 to purchase a top of the line electric bicycle to use when delivering the newspapers. Each newspaper costs Monika $0.30 and she decides to sell them for $1.25 each. The q denote the number of newspapers Monika is able to sell (we will assume she only buys as many as she can sell).
(a) Find an expression for the linear cost function in this example. Note: This means you should write C(q)= mq + b (where m is the marginal cost and b is the fixed cost)

Answers

The expression for the linear cost function in this example can be written as C(q) = 0.30q + 1800. Here, q represents the number of newspapers Monika is able to sell, 0.30 is the marginal cost per newspaper, and 1800 is the fixed cost representing the purchase of the electric bicycle.

The linear cost function represents the relationship between the cost and the quantity of newspapers sold. In this case, the cost consists of two components: the fixed cost (the initial investment of $1800 for the electric bicycle) and the variable cost (the cost per newspaper). The variable cost is calculated by multiplying the number of newspapers sold (q) by the cost per newspaper, which is $0.30 in this example.

To find the total cost, the fixed cost and the variable cost are added together. Therefore, the expression for the linear cost function is C(q) = 0.30q + 1800, where C(q) represents the total cost and q represents the number of newspapers sold.

This linear cost function allows Monika to determine her total cost based on the number of newspapers she plans to sell. It helps her analyze the profitability of her business and make informed decisions regarding pricing and sales strategies.

Learn more about cost function here:
brainly.com/question/29583181

#SPJ11

12(Multiple Choice Worth 5 points)
(H2.03 MC)
Which of the following is NOT a key feature of the function h(x)?
(x - 5)²
-log₁ x +6
O The domain of h(x) is [0.).
O The x-intercept of h(x) is (5, 0)
h(x) =
0≤x≤4
X>4
O The y-intercept of h(x) is (0, 25).
O The end behavior of h(x) is as x→∞h(x)→∞

Answers

The feature NOT associated with the function h(x) is that the domain of h(x) is [0.).

The function h(x) is defined as (x - 5)² - log₁ x + 6.

Let's analyze each given option to determine which one is NOT a key feature of h(x).

Option 1 states that the domain of h(x) is [0, ∞).

However, the function h(x) contains a logarithm term, which is only defined for positive values of x.

Therefore, the domain of h(x) is actually (0, ∞).

This option is not a key feature of h(x).

Option 2 states that the x-intercept of h(x) is (5, 0).

To find the x-intercept, we set h(x) = 0 and solve for x. In this case, we have (x - 5)² - log₁ x + 6 = 0.

However, since the logarithm term is always positive, it can never equal zero.

Therefore, the function h(x) does not have an x-intercept at (5, 0).

This option is a key feature of h(x).

Option 3 states that the y-intercept of h(x) is (0, 25).

To find the y-intercept, we set x = 0 and evaluate h(x). Plugging in x = 0, we get (0 - 5)² - log₁ 0 + 6.

However, the logarithm of 0 is undefined, so the y-intercept of h(x) is not (0, 25).

This option is not a key feature of h(x).

Option 4 states that the end behavior of h(x) is as x approaches infinity, h(x) approaches infinity.

This is true because as x becomes larger, the square term (x - 5)² dominates, causing h(x) to approach positive infinity.

This option is a key feature of h(x).

In conclusion, the key feature of h(x) that is NOT mentioned in the given options is that the domain of h(x) is (0, ∞).

Therefore, the correct answer is:

O The domain of h(x) is (0, ∞).

For similar question on domain.

https://brainly.com/question/2264373  

#SPJ8

Identifying and Understanding Binomial Experiments In Exercises 15–18, determine whether the experiment is a binomial experiment. If it is, identify a success; specify the values of n, p, and q; and list the possible values of the random variable x. If it is not a binomial experiment, explain why.
15. Video Games A survey found that 29% of gamers own a virtual reality (VR) device. Ten gamers are randomly selected. The random variable represents the number who own a VR device. (Source: Entertainment Software Association)

Answers

The given scenario is a binomial experiment.

The explanation is provided below:

Given scenario: A survey found that 29% of gamers own a virtual reality (VR) device. Ten gamers are randomly selected. The random variable represents the number who own a VR device.

Determine whether the experiment is a binomial experiment, identify a success; specify the values of n, p, and q; and list the possible values of the random variable x.

Explanation: The experiment is a binomial experiment with the following outcomes:

Success: A gamer owns a VR device.

The probability of success is 0.29. Therefore, p = 0.29.

The probability of failure is 1 - 0.29 = 0.71.

Therefore, q = 0.71.

The experiment involves ten gamers. Therefore, n = 10.

The possible values of x are {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Where, x = the number of gamers who own a VR device.

n = the total number of gamers.

p = the probability of success.

q = the probability of failure.

Thus, the given scenario is a binomial experiment.

To know more about binomial visit

https://brainly.com/question/2809481

#SPJ11

If the events A and B are disjoint with P(A) = 0.65 and P(B) = 0.30, what is the probability of A or B. Construct the complete Venn diagram for this situation

Answers

The probability of A or B is 0.95, calculated as P(A) + P(B) = 0.65. The Venn diagram shows all possible regions for two events A and B, with their intersection being the empty set. The probability is 0.95.

If the events A and B are disjoint with P(A) = 0.65 and P(B) = 0.30, the probability of A or B can be found as follows:

Probability of A or B= P(A) + P(B) [Since A and B are disjoint events]

∴ Probability of A or B = 0.65 + 0.30 = 0.95

So, the probability of A or B is 0.95.

Now, let's construct the complete Venn diagram for this situation. The complete Venn diagram shows all the possible regions for two events A and B and how they are related.

Since A and B are disjoint events, their intersection is the empty set. Here is the complete Venn diagram for this situation:Please see the attached image for the Venn Diagram.

To know more about Venn diagram Visit:

https://brainly.com/question/20795347

#SPJ11

Find the derivative of the following function.
h(x)= (4x²+5) (2x+2) /7x-9

Answers

The given function is h(x) = (4x² + 5)(2x + 2)/(7x - 9). We are to find its derivative.To find the derivative of h(x), we will use the quotient rule of differentiation.

Which states that the derivative of the quotient of two functions f(x) and g(x) is given by `(f'(x)g(x) - f(x)g'(x))/[g(x)]²`. Using the quotient rule, the derivative of h(x) is given by

h'(x) = `[(d/dx)(4x² + 5)(2x + 2)(7x - 9)] - [(4x² + 5)(2x + 2)(d/dx)(7x - 9)]/{(7x - 9)}²

= `[8x(4x² + 5) + 2(4x² + 5)(2)](7x - 9) - (4x² + 5)(2x + 2)(7)/{(7x - 9)}²

= `(8x(4x² + 5) + 16x² + 20)(7x - 9) - 14(4x² + 5)(x + 1)/{(7x - 9)}²

= `[(32x³ + 40x + 16x² + 20)(7x - 9) - 14(4x² + 5)(x + 1)]/{(7x - 9)}².

Simplifying the expression, we have h'(x) = `(224x⁴ - 160x³ - 832x² + 280x + 630)/{(7x - 9)}²`.

Therefore, the derivative of the given function h(x) is h'(x) = `(224x⁴ - 160x³ - 832x² + 280x + 630)/{(7x - 9)}²`.

To know more about function visit:

https://brainly.com/question/30721594

#SPJ11

Prove that there exists a linear transformation L: R2→ R3 such that L(1, 1) = (1,0,2) and L(2,3)= (1,-1, 4) and calculate L(7,-2).

Answers

There exists a linear transformation L(7, -2) = (-45, 54, 50).

To prove the existence of a linear transformation L: R2 → R3, we need to find a matrix representation of L that satisfies the given conditions.

Let's denote the matrix representation of L as A:

A = | a11  a12 |

   | a21  a22 |

   | a31  a32 |

We are given two conditions:

L(1, 1) = (1, 0, 2)  =>  A * (1, 1) = (1, 0, 2)

This equation gives us two equations:

a11 + a21 = 1

a12 + a22 = 0

a31 + a32 = 2

L(2, 3) = (1, -1, 4)  =>  A * (2, 3) = (1, -1, 4)

This equation gives us three equations:

2a11 + 3a21 = 1

2a12 + 3a22 = -1

2a31 + 3a32 = 4

Now we have a system of five linear equations in terms of the unknowns a11, a12, a21, a22, a31, and a32. We can solve this system of equations to find the values of these unknowns.

Solving these equations, we get:

a11 = -5

a12 = 5

a21 = 6

a22 = -6

a31 = 6

a32 = -4

Therefore, the matrix representation of L is:

A = |-5   5 |

    | 6  -6 |

    | 6  -4 |

To calculate L(7, -2), we multiply the matrix A by (7, -2):

A * (7, -2) = (-5*7 + 5*(-2), 6*7 + (-6)*(-2), 6*7 + (-4)*(-2))

           = (-35 - 10, 42 + 12, 42 + 8)

           = (-45, 54, 50)

Learn more about linear transformation here :-

https://brainly.com/question/13595405

#SPJ11

Two popular strategy video games, AE and C, are known for their long play times. A popular game review website is interested in finding the mean difference in playtime between these games. The website selects a random sample of 43 gamers to play AE and finds their sample mean play time to be 3.6 hours with a variance of 54 minutes. The website also selected a random sample of 40 gamers to test game C and finds their sample mean play time to be 3.1 hours and a standard deviation of 0.4 hours. Find the 90% confidence interval for the population mean difference m m AE C − .

Answers

The confidence interval indicates that we can be 90% confident that the true population mean difference in playtime between games AE and C falls between 0.24 and 0.76 hours.

The 90% confidence interval for the population mean difference between games AE and C (denoted as μAE-C), we can use the following formula:

Confidence Interval = (x(bar) AE - x(bar) C) ± Z × √(s²AE/nAE + s²C/nC)

Where:

x(bar) AE and x(bar) C are the sample means for games AE and C, respectively.

s²AE and s²C are the sample variances for games AE and C, respectively.

nAE and nC are the sample sizes for games AE and C, respectively.

Z is the critical value corresponding to the desired confidence level. For a 90% confidence level, Z is approximately 1.645.

Given the following information:

x(bar) AE = 3.6 hours

s²AE = 54 minutes = 0.9 hours (since 1 hour = 60 minutes)

nAE = 43

x(bar) C = 3.1 hours

s²C = (0.4 hours)² = 0.16 hours²

nC = 40

Substituting these values into the formula, we have:

Confidence Interval = (3.6 - 3.1) ± 1.645 × √(0.9/43 + 0.16/40)

Calculating the values inside the square root:

√(0.9/43 + 0.16/40) ≈ √(0.0209 + 0.004) ≈ √0.0249 ≈ 0.158

Substituting the values into the confidence interval formula:

Confidence Interval = 0.5 ± 1.645 × 0.158

Calculating the values inside the confidence interval:

1.645 × 0.158 ≈ 0.26

Therefore, the 90% confidence interval for the population mean difference between games AE and C is:

(0.5 - 0.26, 0.5 + 0.26) = (0.24, 0.76)

To know more about confidence interval click here :

https://brainly.com/question/32583762

#SPJ4

Water samples from a particular site demonstrate a mean coliform level of 10 organisms per liter with standard deviation 2 . Values vary according to a normal distribution. The probability is 0.08 that a randomly chosen water sample will have coliform level less than _-_?
O 16.05
O 5.62
O 7.19
O 12.81

Answers

The coliform level less than 13.82 has a probability of 0.08.

Given that the mean coliform level of a particular site is 10 organisms per liter with a standard deviation of 2. Values vary according to a normal distribution. We are to find the probability that a randomly chosen water sample will have a coliform level less than a certain value.

For a normal distribution with mean `μ` and standard deviation `σ`, the z-score is defined as `z = (x - μ) / σ`where `x` is the value of the variable, `μ` is the mean and `σ` is the standard deviation.

The probability that a random variable `X` is less than a certain value `a` can be represented as `P(X < a)`.

This can be calculated using the z-score and the standard normal distribution table. Using the formula for the z-score, we have

z = (x - μ) / σz = (a - 10) / 2For a probability of 0.08, we can find the corresponding z-score from the standard normal distribution table.

Using the standard normal distribution table, the corresponding z-score for a probability of 0.08 is -1.41.This gives us the equation-1.41 = (a - 10) / 2

Solving for `a`, we geta = 10 - 2 × (-1.41)a = 13.82Therefore, the coliform level less than 13.82 has a probability of 0.08.

Learn more about: probability

https://brainly.com/question/31828911

#SPJ11

Other Questions
Determine the complexity of the following implementations of the algorithms for adding (part a) and multiplying (part b) nn matrices in terms of big oh notation(explain your analysis) (10 points each): a) for (i=0;i How did philip the second develop spain's national identity and strengthen royal power. Provide a description with examples of each form of multimedia (non-interactive, interactive, adaptive, and immersive) that has contributed to managing public awareness. the biopsychosocial perspective of abnormal behavior is also known as the __________ model. what are shortcomings of the linear model of mass communication : Determine reorder quantity if the Sunrise Restaurant uses 3 diced tomatoes cans per day, orders the diced tomatoes every 10 days and maintains the par stock of diced tomatoes at 55 cans in storage. Select one: a. 40 b. 30 c. 45 d. 55 what decade do the number of black legislators in the South approach the level seen during Reconstruction?1990s Which of the following models explains the relationship between socioeconomic status and health by illustrating that health status and social standing are linked to a combination of interrelated social, cultural, psychological, and environmental factors?A. ecologicalB. health beliefC. transtheoreticalD. social influence the actions that a company takes to compete within a single industry are Shawn wants to paint all the surfaces of the table shown below. A. the volume of 3 rectangular prismsB. the surface area of 1 triangle and 4 cylinders C. the volume of 1 rectangular prism and 3 cylinders D. the surface area of 2 triangles and 1 rectangular prism What's the answer? How do I solve for this?! Oxygen Corp. uses process costing for its departments. During the month, Department A had total costs of $550,000. Of this amount, $305,000 related to direct materials and $245,000 to conversion. Department A had 100,000 total equivalent units of direct materials and 200,000 for conversion. What is the cost per equivalent unit for conversion? 1) $1.83 2) $1.53 3) $2.45 4) $1.23 On a CVP graph, the slope of the sales revenue line is equal to: 1) the contribution margin. 2) the sales price. 3) the intersection of the axis. 4) total revenue. True or false: As a share of total economic activity in the localeconomyuniversityan average university's athletic departmentexceeds that of the 5 professional sports franchises in ChicagoTrue Fals A 36-year-old G1 woman presents at 36 weeks gestation. She had early prenatal care and is dated by an eight week ultrasound. Her medical history is significant for hypertension for eight years and class F diabetes for five years (baseline proteinuria = 1 g). She smokes two cigarettes per day. At her 32 week visit, her fundal height was 28 cm. This prompted an ultrasound at 33 weeks gestation, which revealed biometry consistent with 31-3/7, estimated fetal weight 1827 g, 25th percentile. Today, ultrasound reveals limited fetal growth over the past three weeks. Biometry is consistent with 31-5/7, estimated fetal weight 1900 g, 2nd percentile.What is the most likely cause of this growth restriction? A) Congenital anomalyB) Tobacco useC) Uteroplacental insufficiencyD) Perinatal infectionE) Genetic factors the symptoms of schizophrenia involving an absence or reduction of thoughts, emotions, and behaviors compared to baseline functioning are known as __________ symptoms. 5. You are heating a mixture of (flammable) cyclohexane and toluene in a round bottomed flask. What is the best heating source? Circle the right answer. a. Bunsen burner (open flame) b. Heating Mantle (includes circular heating well and voltage control) d. Hot plate with voltage regulation (flat hot surface) 6. Using the graph in Figure 1, identify the boiling point for water in degrees C at the locations indicated below. Use the given atmospheric pressure at each location. ( 1 atm=101,3kPa) a) Houston, Texas (740 torr) b) Denver, Colorado (615 torr) c) Near the top of Mount Everest ( 250 torr). Suppose the economy is currently in long-run equilibrium. Suppose the Covid-19 pandemic suddenly hits the economy and that many companies become pessimistic about the future. In the long run, the short-run aggregate supply curve A. shifts left real GDP B. decreases the overall price level C. shifts right unemployment D. increases E. does not change The following are dimensions of service qualityexcept:a. security and accessb. validityc. relativity and courtesyd. tangibles and competence.e. understanding the customer Discuss three ways to harden a business network. you are called for an ill person. upon your arrival, the patient is complaining of numbness to the perineum and back pain, and has evidence of urinary incontinence. you suspect: Explanation of states rightsRight here by the states, instead of the national federal government. Closely tied to the 10th amendment.