Aqueous sulfuric acid will react with solid sodium hydroxide to produce aqueous sodium sulfate and liquid water . Suppose 8.8 g of sulfuric acid is mixed with 9.72 g of sodium hydroxide. Calculate the maximum mass of water that could be produced by the chemical reaction. Round your answer to significant digits.

Answers

Answer 1

To calculate the maximum mass of water produced in the reaction between sulfuric acid and sodium hydroxide, we need to determine the limiting reactant and use stoichiometry to find the corresponding amount of water formed.

To find the limiting reactant, we compare the moles of each reactant to their stoichiometric ratio in the balanced chemical equation. The balanced equation for the reaction is:

H2SO4 + 2NaOH -> Na2SO4 + 2H2O

Given the masses of sulfuric acid (8.8 g) and sodium hydroxide (9.72 g), we can convert them to moles using their respective molar masses. Then, we compare the moles of the reactants to determine which one is the limiting reactant.

Once the limiting reactant is identified, we use its moles to determine the moles of water produced based on the stoichiometric ratio in the balanced equation. Finally, we convert the moles of water to grams using the molar mass of water (18.015 g/mol) to find the maximum mass of water produced.

Learn more about stoichiometry here;

brainly.com/question/28780091

#SPJ11


Related Questions

a weighed amount of sodium chloride is completely dissolved in a measured volume of 4.00 m ammonia solution at ice temperature, and carbon dioxide is bubbled in. assume that sodium bicarbonate is formed until the limiting reagent is entirely used up. the solubility of sodium bicarbonate in water at ice temperature is 0.75 mol per liter. also assume that all the sodium bicarbonate precipitated is collected and converted quantitatively to sodium carbonate the mass of sodium chloride in (g) is 17.84 the volume of ammonia solution in (ml) is 35.73

Answers

Based on the given information, we know that the mass of sodium chloride (NaCl) is 17.84g and the volume of ammonia solution is 35.73mL. Therefore, the mass of sodium carbonate formed is 32.30 grams.

To find the limiting reagent, we need to calculate the moles of sodium chloride and ammonia solution.
First, convert the volume of ammonia solution from mL to L:
35.73 mL = 0.03573 L

Next, calculate the moles of sodium chloride using its molar mass:
moles of NaCl = mass / molar mass
moles of NaCl = 17.84g / 58.44 g/mol (molar mass of NaCl)
moles of NaCl = 0.305 mol

To find the moles of ammonia solution, we can use the molarity (4.00 M) and volume (0.03573 L):
moles of NH3 = molarity × volume
moles of NH3 = 4.00 mol/L × 0.03573 L
moles of NH3 = 0.1429 mol

Since the balanced equation shows a 1:1 stoichiometric ratio between NaCl and NaHCO3, the limiting reagent is the one with fewer moles. In this case, sodium chloride is the limiting reagent because it has fewer moles.

Assuming all the sodium bicarbonate (NaHCO3) precipitated is collected and converted to sodium carbonate (Na2CO3) quantitatively, we can calculate the moles of sodium bicarbonate formed.

Using the solubility of sodium bicarbonate in water at ice temperature (0.75 mol/L), we can determine the moles of NaHCO3:
moles of NaHCO3 = solubility × volume
moles of NaHCO3 = 0.75 mol/L × 0.03573 L
moles of NaHCO3 = 0.0268 mol

Since the limiting reagent is sodium chloride, all of its moles will be consumed in the reaction. Therefore, the moles of sodium bicarbonate formed will also be 0.305 mol.

Since the balanced equation shows a 1:1 stoichiometric ratio between NaHCO3 and Na2CO3, the moles of sodium bicarbonate formed will be equal to the moles of sodium carbonate formed.

Finally, to find the mass of sodium carbonate (Na2CO3), we can use its molar mass:
mass of Na2CO3 = moles of Na2CO3 × molar mass
mass of Na2CO3 = 0.305 mol × 105.99 g/mol (molar mass of Na2CO3)
mass of Na2CO3 = 32.30 g

to know more about limiting reagent visit:

https://brainly.com/question/11848702

#SPJ11

Which weak acid would be best to use when preparing a buffer solution with a ph of 9.70 ?

Answers

Bicarbonate (HCO3-) would be the best weak acid to use when preparing a buffer solution with a pH of 9.70.

To prepare a buffer solution with a pH of 9.70, it is important to select a weak acid that has a pKa value close to the desired pH. The pKa value represents the acidity of the weak acid and indicates the pH at which it is halfway dissociated.

In this case, a suitable weak acid would be one with a pKa value around 9.70. Bicarbonate (HCO3-) is one such weak acid that could be used to create the desired buffer solution. Bicarbonate has a pKa value of 10.33, which is relatively close to the target pH of 9.70.

By mixing the weak acid bicarbonate with its conjugate base (carbonate), it is possible to establish a buffer system that can resist changes in pH when small amounts of acid or base are added. This bicarbonate buffer system would provide a suitable option for preparing a buffer solution with a pH of 9.70.

Learn more about weak acid from the given link:

https://brainly.com/question/24018697

#SPJ11

If 1. 70g of aniline reacts with 2. 10g of bromine, what is the theoretical yield of 4-bromoaniline (in grams)?

Answers

If 1. 70g of aniline reacts with 2. 10g of bromine, the theoretical yield of 4-bromoaniline (in grams) is approximately 10.76 grams.

The theoretical yield of 4-bromoaniline can be calculated based on the stoichiometry of the reaction between aniline and bromine. Aniline (C6H5NH2) reacts with bromine (Br2) to form 4-bromoaniline (C6H5NH2Br). The balanced equation for this reaction is:

C6H5NH2 + Br2 → C6H5NH2Br + HBr

From the balanced equation, we can determine the molar ratio between aniline and 4-bromoaniline. One mole of aniline reacts with one mole of 4-bromoaniline.

To calculate the moles of aniline and bromine in the given amounts, we use their respective molar masses. The molar mass of aniline (C6H5NH2) is approximately 93.13 g/mol, and the molar mass of bromine (Br2) is approximately 159.81 g/mol.

First, we calculate the moles of aniline:

moles of aniline = mass of aniline / molar mass of aniline

= 70 g / 93.13 g/mol

≈ 0.751 mol

Next, we determine the limiting reagent, which is the reactant that is completely consumed and determines the maximum amount of product that can be formed. The reactant that produces the lesser number of moles of product is the limiting reagent.

In this case, we compare the moles of aniline and bromine to determine the limiting reagent.

moles of bromine = mass of bromine / molar mass of bromine

= 10 g / 159.81 g/mol

≈ 0.0626 mol

The molar ratio between aniline and bromine is 1:1. Since the moles of bromine are lesser than the moles of aniline, bromine is the limiting reagent.

Now, we calculate the moles of 4-bromoaniline that can be formed, using the molar ratio from the balanced equation:

moles of 4-bromoaniline = moles of bromine (limiting reagent) = 0.0626 mol

Finally, we calculate the theoretical yield of 4-bromoaniline:

theoretical yield of 4-bromoaniline = moles of 4-bromoaniline × molar mass of 4-bromoaniline

≈ 0.0626 mol × (93.13 g/mol + 79.92 g/mol) (molar mass of 4-bromoaniline)

≈ 0.0626 mol × 173.05 g/mol

≈ 10.76 g

Therefore, the theoretical yield of 4-bromoaniline is approximately 10.76 grams.

Learn more about bromoaniline:

brainly.com/question/30978866

#SPJ11

Hcn is a weak acid (a=6. 20×10−10) , so the salt, kcn , acts as a weak base. what is the ph of a solution that is 0. 0630 m in kcn at 25 °c?

Answers

At a temperature of 25 °C, the solution with a concentration of 0.0630 M KCN has a pH value of 12.80. By utilizing the formula pH = 14 - pOH and substituting the calculated value of pOH (1.20), we determine that the pH of the solution containing 0.0630 M KCN at 25 °C is 12.80.

The pH of the solution, which is 0.0630 M in KCN at 25 °C, can be determined by considering the dissociation of KCN. Since KCN is the salt of a weak acid, HCN, it behaves as a weak base in the solution.
Step 1: Write the dissociation equation for KCN:
KCN ↔ K+ + CN-
Step 2: Identify the concentration of CN- ions in the solution.
Due to the strong electrolyte nature of KCN, it fully dissociates in water. Consequently, the concentration of CN- ions is equivalent to the concentration of KCN in the solution, which is 0.0630 M.
Step 3: Calculate the pOH of the solution.
To calculate the pOH, we use the formula pOH = -log[OH-]. In this scenario, we need to determine the concentration of OH- ions.
As KCN acts as a weak base, it undergoes a reaction with water, leading to the generation of OH- ions. The reaction is as follows:

CN- + H2O ↔ HCN + OH-

From the given reaction equation, it is evident that the concentration of OH- ions is equivalent to the concentration of CN- ions, which is 0.0630 M.
Therefore, pOH = -log(0.0630) = 1.20.

Step 4: Calculate the pH of the solution.
By utilizing the formula pH = 14 - pOH, we can calculate the pH value. Substituting the previously calculated pOH value, we obtain:
pH = 14 - 1.20 = 12.80.
So, the pH of the solution that is 0.0630 M in KCN at 25 °C is 12.80.

To know more about pH:

https://brainly.com/question/12609985

#SPJ11

At a pressure of 5.0 atmospheres, a sample of gas occupies 40 liters. What volume will the same sample hold at 1.0 atmosphere

Answers

The volume that the sample holds at 1.0 atmosphere can be calculated by applying the combined gas law equation. The combined gas law equation relates the pressure, temperature, and volume of an enclosed gas.

It is a combination of Boyle's Law, Charles' Law, and Gay-Lussac's Law.

The general formula of the combined gas law is given as follows:`P₁V₁/T₁ = P₂V₂/T₂`

Here,`P₁ = 5.0 atm`,

`V₁ = 40 L`, and

`P₂ = 1.0 atm`

Let's determine the volume of the sample at 1.0 atm.`P₁V₁/T₁ = P₂V₂/T₂`

Rearrange the formula to solve for `V₂`:`V₂ = (P₁V₁T₂)/(T₁P₂)`

Plug in the values:`V₂ = (5.0 atm × 40 L × T₂)/(T₁ × 1.0 atm)

`Simplify:`V₂ = 200 L × T₂/T₁`

Therefore, the volume that the sample holds at 1.0 atmosphere is `200 L  T2/T1. The volume depends on the temperature.

To know more about the gas law equation, visit:

https://brainly.com/question/30935329

#SPJ11

What is the expected calcium carbonate content in modern surface sediments at a latitude of 0 degrees and a longitude 60 degrees east?

Answers

The expected calcium carbonate content in modern surface sediments at a latitude of 0 degrees and a longitude of 60 degrees east is variable and influenced by several factors such as water depth, temperature, and productivity.

The calcium carbonate content in modern surface sediments can vary significantly based on environmental conditions. Factors such as water depth, temperature, and productivity play crucial roles in the deposition of calcium carbonate. In general, areas with higher water temperatures and greater productivity tend to have higher calcium carbonate content. However, at a latitude of 0 degrees and a longitude of 60 degrees east, it is challenging to provide a specific expected calcium carbonate value without more detailed information about the local environment and sedimentary processes. It is necessary to consider factors like oceanographic currents, upwelling patterns, and the presence of carbonate-producing organisms to estimate the calcium carbonate content accurately. Field studies and sediment sampling in the specific location of interest would be needed to determine the expected calcium carbonate content more precisely.

Learn more about calcium carbonate content here;

brainly.com/question/11601708

#SPJ11

Give the reason that antifreeze is added to a car radiator.

A. The freezing point and the boiling point are lowered.

B. The freezing point is elevated and the boiling point is lowered.

C. The freezing point is lowered and the boiling point is elevated.

D. The freezing point and the boiling point are elevated.

E. None of the above

Answers

The reason why antifreeze is added to a car radiator is that the freezing point is lowered and the boiling point is elevated, option C.

What is antifreeze?

Antifreeze is a chemical that is added to the cooling system of an automobile to decrease the freezing point of the cooling liquid. It also elevates the boiling point and reduces the risk of engine overheating. Antifreeze is mixed with water in a 50:50 or 70:30 ratio and is generally green or orange in color.

How does it work?

The freezing point of water is lowered by adding antifreeze to it. By lowering the freezing point of the cooling liquid, the liquid will remain a liquid in low-temperature environments. It is not ideal to have the coolant in your vehicle turn to ice, as this can cause damage to the engine.

Antifreeze also elevates the boiling point of the coolant. In hot climates, this helps keep the coolant from boiling and causing engine overheating.

So, the correct answer is option C.

To know more about antifreeze click on below link :

https://brainly.com/question/32216256#

#SPJ11

Alkylating ammonia directly results in a mixture of products. show the products and indicate which is the major product.?

Answers

Ammonia alkylation can result in a mixture of products due to the possibility of multiple alkylations occurring at different positions in the ammonia molecule.

Overall, the exact mixture of products and the major product in ammonia alkylation can vary depending on the specific reaction conditions and reactants used.

When ammonia (NH₃) is directly alkylated, it can result in a mixture of products. The specific products and their relative proportions depend on the reaction conditions, the alkylating agent used, and the specific reactants involved.

In the case of ammonia alkylation, the alkylating agent is typically an alkyl halide (such as methyl chloride, ethyl bromide, etc.). The alkyl halide reacts with ammonia, resulting in the substitution of one or more hydrogen atoms in ammonia with alkyl groups.

Possible products of ammonia alkylation include:

Primary alkylamines: In this case, one alkyl group substitutes a hydrogen atom in ammonia. For example, when methyl chloride (CH₃Cl) reacts with ammonia, methylamine (CH₃NH₂) is formed.

Secondary alkylamines: In this case, two alkyl groups substitute two hydrogen atoms in ammonia. For example, when dimethyl sulfate (CH₃)₂SO₄ reacts with ammonia, dimethylamine (CH₃NHCH₃) is formed.

Tertiary alkylamines: In this case, three alkyl groups substitute three hydrogen atoms in ammonia. For example, when trimethylamine (CH₃)₃N is formed, it can be obtained by reacting ammonia with methyl chloride or by reacting dimethylamine with methyl chloride.

The specific major product will depend on various factors such as the reactivity of the alkylating agent, reaction conditions, and steric hindrance. Generally, the major product tends to be the one that is most stable or has the least steric hindrance.

It's important to note that ammonia alkylation can result in a mixture of products due to the possibility of multiple alkylations occurring at different positions in the ammonia molecule.

Overall, the exact mixture of products and the major product in ammonia alkylation can vary depending on the specific reaction conditions and reactants used.

To know more about  product :

https://brainly.com/question/33373465

#SPJ4

which one of the following sets of units is appropriate for a second-order rate constant? group of answer choices s–1 mol l–1s–1 l mol–1s–1 mol2 l–2s–1 l2 mol–2s–1

Answers

The appropriate set of units for a second-order rate constant is mol–1 l–1s–1. This set of units represents the rate of reaction with respect to the concentrations of the reactants.

The exponent on the concentration terms (mol–1) indicates that the reaction is second order with respect to those reactants. The unit of time (s) represents the rate at which the reaction occurs. The unit of volume (l) represents the amount of solution or mixture involved in the reaction.

Overall, this set of units accurately reflects the second-order rate constant, which describes the rate of a reaction when the rate is proportional to the square of the concentration of a reactant.

To know more about concentrations visit:-

https://brainly.com/question/30862855

#SPJ11

balo, a. r.; caruso, a.; tao, l.; tantillo, d. j.; seyedsayamdost, m. r.; britt, r. d. trapping a cross-linked lysine-tryptophan radical in the catalytic cycle of the radical sam enzyme suib. proc natl acad sci u s a 2021, 118

Answers

The given information is a citation for a scientific article published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS) in 2021. The article discusses trapping a cross-linked lysine-tryptophan radical in the catalytic cycle of the radical SAM enzyme SuIB.

The given information appears to be a citation for a scientific article. It includes the names of the authors, the title of the article, and the journal in which it was published.

To provide a clear and concise answer, it would be helpful to know what specific information or context you are looking for. Without additional details, it is difficult to provide a precise response. However, I can help you understand the components of the citation and the general purpose of such citations in scientific literature.

The citation format you provided follows the APA (American Psychological Association) style. In this format, the names of the authors are listed last name first, followed by the initials of their first and middle names. The title of the article is followed by the name of the journal and the year of publication.

Citations are used in academic and scientific writing to acknowledge the sources of information used in a study or article. They allow readers to locate and verify the original source. In this case, the citation refers to an article published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS) in 2021. The article is related to the catalytic cycle of a radical SAM enzyme called SuIB.

If you have a specific question about the content of the article or need assistance with a particular aspect of it, please provide more information so that I can help you in a more targeted manner.

To learn more about scientific article visit:

https://brainly.com/question/26177190

#SPJ11

Complete Question:

balo, a. r.; caruso, a.; tao, l.; tantillo, d. j.; seyedsayamdost, m. r.; britt, r. d. trapping a cross-linked lysine-tryptophan radical in the catalytic cycle of the radical sam enzyme suib. proc natl acad sci u s a 2021, 118

The following reaction occurs in an electrochemical cell. what type of electrochemical cell is it, and which metal reacts at the cathode? edginuity

Answers

An electrochemical cell is a type of cell in which there is transfer of e and a variety kinds of redox reactions occur within the cell.

There is a kind of cell which is used in the field of electrochemistry and these kinds of cells are known as electro-chemical cell. This kind of cell type is used in various types of reactions that are generally said to be the redox reaction.

In this type there is the transfer of only electrons(e), which are generally transferred from one type of species to the other specific type of species. In consideration with the electro-chemical cell(EC) it is generally considered to be sub-divided into its two types. Firstly is said to be the voltaic cell and secondly is said to be electrolytic cell.

In both the cell there are few things in common such as the electron transfer, redox-reaction and the reaction is considered to be non-feasible.

Read more about electron

https://brainly.com/question/860094

#SPJ4

The complete question is

What is an electrochemical cell. What type of reactions occur in an electrochemical cell?

Copper solid is a face-centered cubic unit cell lattice. if the length of the unit cell is 360 pm, calculate the value of the atomic radius (in pm) and the density (in g/cm3) of copper.

Answers

For a face-centered cubic (FCC) unit cell lattice of copper with a unit cell length of 360 pm, the atomic radius is approximately 254.5 pm. The density of copper in this FCC structure is approximately 8.96 g/cm³.

In a face-centered cubic (FCC) unit cell lattice, there are four atoms located at the corners of the unit cell and one atom at the center of each face.

Given:

Length of the unit cell (a) = 360 pm

To calculate the atomic radius (r), we need to consider the relationship between the length of the unit cell and the atomic radius in an FCC structure.

In an FCC structure, the diagonal of the unit cell (d) is related to the length of the unit cell (a) by the equation:

d = a * √2

For a face diagonal, the diagonal passes through two atoms, which is equivalent to two times the atomic radius (2r). Thus, we have:

d = 2r

By substituting these relationships, we can solve for the atomic radius:

a * √2 = 2r

r = (a * √2) / 2

r = (360 pm * √2) / 2

r ≈ 254.5 pm

Therefore, the atomic radius of copper is approximately 254.5 pm.

To calculate the density of copper (ρ), we need to know the molar mass of copper and the volume of the unit cell.

Given:

Molar mass of copper (Cu) ≈ 63.546 g/mol

Length of the unit cell (a) = 360 pm = 360 × 10^(-10) m

The volume of the FCC unit cell (V) is given by the equation:

V = a³

V = (360 × 10^(-10) m)³

V = 4.914 × 10^(-26) m³

To calculate the density, we divide the molar mass by the volume:

ρ = (molar mass) / (volume)

ρ = 63.546 g/mol / (4.914 × 10^(-26) m³)

Converting the units of the density:

ρ = (63.546 g/mol) / (4.914 × 10^(-26) m³) * (1 kg/1000 g) * (100 cm/m)³

ρ ≈ 8.96 g/cm³

Therefore, the density of copper is approximately 8.96 g/cm³.

Learn more about density from the link given below.

https://brainly.com/question/29775886

#SPJ4

1.000 g of caffeine was initially dissolved in 120 ml of water and then extracted with a single 80 ml portion of dichloromethane. what mass of caffeine would be extracted?

Answers

The mass of caffeine extracted would be 1.000 g.

To determine the mass of caffeine that would be extracted, we need to calculate the amount of caffeine in the initial solution and then determine how much is transferred to the dichloromethane layer.

Given:

Initial mass of caffeine = 1.000 g

Volume of water = 120 ml

Volume of dichloromethane = 80 ml

First, we need to calculate the concentration of caffeine in the initial solution:

Concentration of caffeine = mass of caffeine / volume of solution

Concentration of caffeine = 1.000 g / 120 ml

Next, we can determine the amount of caffeine in the initial solution:

Amount of caffeine in initial solution = concentration of caffeine * volume of solution

Amount of caffeine in initial solution = (1.000 g / 120 ml) * 120 ml

Now, we need to consider the extraction with dichloromethane. Assuming caffeine is more soluble in dichloromethane than in water, it will preferentially partition into the dichloromethane layer. Since only a single extraction is performed, we can assume that all the caffeine is transferred to the dichloromethane layer.

Therefore, the mass of caffeine extracted would be equal to the amount of caffeine in the initial solution:

Mass of caffeine extracted = Amount of caffeine in initial solution

Mass of caffeine extracted = (1.000 g / 120 ml) * 120 ml

Mass of caffeine extracted = 1.000 g

Therefore, the mass of caffeine extracted would be 1.000 g.

Learn more about caffeine solubility visit:

https://brainly.com/question/12773946

#SPJ11

The mass of caffeine extracted would be 1.000 g.To determine the mass of caffeine that would be extracted, we need to calculate the amount of caffeine in the initial solution and then determine how much is transferred to the dichloromethane layer.

Initial mass of caffeine = 1.000 g

Volume of water = 120 ml

Volume of dichloromethane = 80 ml

First, we need to calculate the concentration of caffeine in the initial solution:

Concentration of caffeine = mass of caffeine / volume of solution

Concentration of caffeine = 1.000 g / 120 ml

Next, we can determine the amount of caffeine in the initial solution:

Amount of caffeine in initial solution = concentration of caffeine * volume of solution

Amount of caffeine in initial solution = (1.000 g / 120 ml) * 120 ml

Now, we need to consider the extraction with dichloromethane. Assuming caffeine is more soluble in dichloromethane than in water, it will preferentially partition into the dichloromethane layer. Since only a single extraction is performed, we can assume that all the caffeine is transferred to the dichloromethane layer.

Therefore, the mass of caffeine extracted would be equal to the amount of caffeine in the initial solution:

Mass of caffeine extracted = Amount of caffeine in initial solution

Mass of caffeine extracted = (1.000 g / 120 ml) * 120 ml

Mass of caffeine extracted = 1.000 g

Therefore, the mass of caffeine extracted would be 1.000 g.

Learn more about caffeine:

brainly.com/question/12773946

#SPJ11

The sodium (na) does not have the same amount of atoms on each side of the reaction. what coefficient would be placed in front of the naoh, on the reactant side, to balance the sodium (na) atoms?

Answers

The coefficient 2 would be placed in front of the naoh, on the reactant side, to balance the sodium (na) atoms.

To balance the sodium (Na) atoms in the reaction, we need to adjust the coefficient in front of NaOH on the reactant side. The balanced chemical equation for the reaction is:

Na + H₂O → NaOH + H₂

Currently, there is only one Na atom on the left-hand side (reactant side) and one Na atom on the right-hand side (product side). To balance the sodium atoms, we need to ensure that there is an equal number on both sides.

To achieve this, we place a coefficient of "2" in front of NaOH on the reactant side:

2 Na + 2 H₂O → 2 NaOH + H₂

By doing so, we now have two Na atoms on both sides of the equation, thus balancing the sodium atoms. It is important to adjust the coefficients in a way that maintains the conservation of mass and atoms in a chemical equation.

To know more about sodium ion,

https://brainly.com/question/1820662

#SPJ4

what is the ph of a buffer prepared by adding 0.607 mol of the weak acid ha to 0.305 mol of naa in 2.00 l of solution? the dissociation constant ka of ha is 5.66×10−7.

Answers

According to given information ph of a buffer prepared by adding 0.607 mol of the weak acid ha to 0.305 mol of naa in 2.00 l of solution approximately 5.95.

To find the pH of the buffer solution, we need to use the Henderson-Hasselbalch equation, which is given by pH = pKa + log([A-]/[HA]).

Here, [A-] represents the concentration of the conjugate base (in this case, NaA), and [HA] represents the concentration of the weak acid (in this case, HA).
Given that the dissociation constant Ka of HA is 5.66×10−7, we can calculate the pKa using the formula

pKa = -log10(Ka).

Thus, pKa = -log10(5.66×10−7) = 6.25.

Now, let's calculate the concentration of [A-] and [HA] in the buffer solution.

Since we are adding 0.305 mol of NaA and 0.607 mol of HA to a 2.00 L solution, we can calculate the concentrations as follows:

[A-] = 0.305 mol / 2.00 L = 0.1525 M
[HA] = 0.607 mol / 2.00 L = 0.3035 M
Substituting these values into the Henderson-Hasselbalch equation, we get:

pH = 6.25 + log(0.1525/0.3035)
pH = 6.25 + log(0.502)
Using a calculator, we find that log(0.502) is approximately -0.299.
Therefore, the pH of the buffer solution is:

pH = 6.25 - 0.299
pH = 5.95

to know more about buffer solution visit:

https://brainly.com/question/32767906

#SPJ11

which is true regarding naoh and mg(oh)2? group of answer choices none of these are true naoh is more basic than mg(oh)2 because it's more soluble in water both naoh and mg(oh)2 are strong bases because both contain oh- mg(oh)2 is more basic than naoh because it dissociates to produce 2 oh- groups per unit dissolved, where naoh dissociates to produce only one oh- group per unit dissolved

Answers

The correct answer is that "mg(oh)2 is more basic than sodium hydroxide because it dissociates to produce 2 oh- groups per unit dissolved, where naoh dissociates to produce only one oh- group per unit dissolved."

This is because the basicity of a compound is determined by the number of hydroxide ions (OH-) it produces when dissolved in water. In this case, mg(oh)2 produces two OH- ions per unit dissolved, while naoh produces only one OH- ion per unit dissolved. Therefore, mg(oh)2 is more basic than naoh.

Sodium hydroxide (NaOH) is a highly caustic and versatile inorganic compound. It is commonly known as caustic soda or lye. Sodium hydroxide is an alkali and is considered a strong base due to its high pH and ability to readily donate hydroxide ions (OH-) when dissolved in water.

To know more about sodium hydroxide visit:

brainly.com/question/31967154

#SPJ11

how many times is/are the tetrahedral intermediate(s) formed during the complete enzymatic cycle of chymotrypsin?

Answers

During the complete enzymatic cycle of chymotrypsin, a serine protease enzyme, a tetrahedral intermediate is formed once. This intermediate plays a crucial role in the catalytic mechanism of chymotrypsin.

Chymotrypsin catalyzes the hydrolysis of peptide bonds in proteins. The enzymatic cycle of chymotrypsin involves multiple steps, including substrate binding, acylation, and deacylation. One of the key steps in this process is the formation of a tetrahedral intermediate.

The tetrahedral intermediate is formed when the peptide substrate interacts with the active site of chymotrypsin. This intermediate is characterized by the formation of a covalent bond between the active site serine residue of the enzyme and the carbonyl group of the peptide substrate.

The formation of the tetrahedral intermediate allows for efficient cleavage of the peptide bond and subsequent hydrolysis. Once the hydrolysis is complete, the tetrahedral intermediate is resolved, and the enzyme is ready for another catalytic cycle.

Therefore, during the complete enzymatic cycle of chymotrypsin, a single tetrahedral intermediate is formed, playing a critical role in the catalytic mechanism of the enzyme.

To know more about chymotrypsin, click here-

brainly.com/question/30655599

#SPJ11

Find the ph of a buffer that consists of 0.12 m ch3nh2 and 0.70 m ch3nh3cl (pkb of ch3nh2 = 3.35)?

Answers

The pH of the buffer solution is approximately 10.35.

A buffer solution is composed of a weak acid and its conjugate base, or a weak base and its conjugate acid. In this case, we have a buffer containing methylamine (CH3NH2) and methylammonium chloride (CH3NH3Cl). Methylamine is a weak base, and its conjugate acid is methylammonium ion (CH3NH3+).

To find the pH of the buffer, we need to consider the equilibrium between the weak base and its conjugate acid:

CH3NH2 (aq) + H2O (l) ⇌ CH3NH3+ (aq) + OH- (aq)

The equilibrium constant expression for this reaction is:

Kb = ([CH3NH3+][OH-]) / [CH3NH2]

Given that the pKb of methylamine is 3.35, we can use the relation pKb = -log10(Kb) to find Kb:

Kb = 10^(-pKb)

Once we have Kb, we can use the Henderson-Hasselbalch equation to calculate the pH of the buffer solution:

pH = pKa + log10([A-]/[HA])

In this case, CH3NH3Cl dissociates completely in water, providing CH3NH3+ as the conjugate acid, and Cl- as the spectator ion. Therefore, [A-] = [CH3NH3+] and [HA] = [CH3NH2].

By substituting the known values into the Henderson-Hasselbalch equation and solving, we find that the pH of the buffer is approximately 10.35.

Learn more about Buffer Solution

brainly.com/question/31367305

#SPJ11

A reaction is found to have the rate law, Rate = 0.258 s-[A]. How long does it take for 40% of the substance to react?

Answers

The given rate law for the reaction is Rate = 0.258 s^(-1) [A].

To determine the time required for 40% of the substance to react, we need to use the integrated rate law for a first-order reaction.

The integrated rate law for a first-order reaction is given by the equation:

ln([A]t/[A]0) = -kt

Where [A]t is the concentration of the substance at time t, [A]0 is the initial concentration, k is the rate constant, and t is the time.

In this case, we are given the rate law as Rate = 0.258 s^(-1) [A]. Since the reaction is first-order, the rate constant (k) will have the same value as the coefficient of [A] in the rate law. Therefore, k = 0.258 s^(-1).

We are interested in finding the time required for 40% of the substance to react, which means [A]t/[A]0 = 0.40. Substituting these values into the integrated rate law equation, we get:

ln(0.40) = -0.258 t

Solving for t, we have:

t = ln(0.40) / -0.258

Using the given rate constant and substituting the values into the equation, we can calculate the time required for 40% of the substance to react.

Please note that the units of time in the rate law equation should be consistent. If the rate constant is given in seconds, then the time t should also be in seconds.

Learn more about rate law equation here: brainly.com/question/13647139

#SPJ11

A balloon is filled with 94.2 grams of an unknown gas. the molar mass of the gas is 44.01 gmol. how many moles of the unknown gas are present in the balloon?

Answers

To determine the number of moles of the unknown gas present in the balloon, we can use the formula:

Number of moles = Mass of the gas / Molar mass of the gas

In this case, the mass of the gas is given as 94.2 grams and the molar mass is given as 44.01 g/mol. Substituting these values into the formula, we can calculate the number of moles:

Number of moles = 94.2 g / 44.01 g/mol

The result will give us the number of moles of the unknown gas present in the balloon.

The formula to calculate the number of moles is derived from the concept of molar mass, which is the mass of one mole of a substance.

By dividing the mass of the gas by its molar mass, we can determine how many moles of the gas are present. In this case, dividing 94.2 grams by 44.01 g/mol gives us the number of moles of the unknown gas in the balloon.

To know more about Number of moles :

brainly.com/question/20370047

#SPJ11

How would you prepare 275 ml of 0.350 m nacl solution using an available stock solution with a concentration of 2.00 m nacl?

Answers

0.350 M NaCl solution using a stock solution with a concentration of 2.00 M NaCl, you can use the formula:

C1V1 = C2V2

Where:

C1 = Concentration of the stock solution

V1 = Volume of the stock solution

C2 = Desired concentration of the final solution

V2 = Desired volume of the final solution

In this case, we know the following values:

C1 = 2.00 M

C2 = 0.350 M

V2 = 275 ml

Now we can calculate V1, the volume of the stock solution needed:

C1V1 = C2V2

(2.00 M) V1 = (0.350 M) (275 ml)

V1 = (0.350 M) (275 ml) / (2.00 M)

V1 ≈ 48 ml

To prepare a 0.350 M NaCl solution with a volume of 275 ml, you would need to measure 48 ml of the 2.00 M NaCl stock solution and then dilute it with sufficient solvent (such as water) to reach a final volume of 275 ml.

learn more about volume click here;

brainly.com/question/28058531

#SPJ11

we found the hydrogen atom is quantized by quantum numbers n, l, and m. n represents how the wavefunction is quantized in space r, and l and m represent how the wavefunction is quantized by angles phi and theta.

Answers

The hydrogen atom is indeed quantized by quantum numbers n, l, and m. These quantum numbers play a crucial role in describing the electron's behavior within the atom.


The quantum number n represents the principal quantum number, which quantizes the wavefunction in terms of space (r). It determines the energy level of the electron, with larger values of n corresponding to higher energy levels or orbitals.On the other hand, the quantum numbers l and m represent the angular momentum of the electron and how the wavefunction is quantized by angles phi and theta, respectively. The quantum number l is called the azimuthal quantum number and determines the shape of the orbital.

It takes integer values ranging from 0 to (n-1). The quantum number m is called the magnetic quantum number and specifies the orientation of the orbital in space. It takes integer values ranging from -l to l.In summary, the quantum numbers n, l, and m provide a mathematical framework for quantizing the wavefunction of the hydrogen atom, allowing us to understand the electron's behavior in terms of energy levels, orbital shapes, and orientations.

To know more about  quantum numbers visit:-

https://brainly.com/question/14288557

#SPJ11

An electron jumps to a more distant orbit when an atom: Group of answer choices emits light absorbs light

Answers

An electron jumps to a more distant orbit when an atom absorbs light. An atom is composed of a nucleus and electrons. The electrons in the atom revolve around the nucleus in orbits. When the electrons gain energy, they jump from one orbit to another distant orbit. This is known as the excitation of an electron. When the electron is excited, it gains potential energy that is equal to the energy difference between the higher and lower levels.

The excitation energy can be supplied by light, heat, or chemical reactions. However, we will discuss the excitation of an electron due to light in this answer. When an atom absorbs light, its electrons absorb the energy of the light wave. The energy of the wave corresponds to the difference in the potential energy of the electron between the initial and final orbits. If the absorbed energy is equal to or greater than the excitation energy required for the electron to jump to a higher energy level, then the electron jumps to the more distant orbit.

The atom then becomes unstable, and the electron returns to the lower energy state by releasing the extra energy in the form of light photons. This process is known as emission. The frequency of the emitted light corresponds to the difference in energy between the two energy levels. The larger the energy difference, the higher the frequency and the shorter the wavelength of the emitted light. The opposite process of absorption is emission, where an electron jumps down from a higher energy level to a lower energy level and emits light in the process.

To know more about potential energy visit

https://brainly.com/question/24284560

#SPJ11

1. construct step by step an ols estimator for beta 1 and explain/show whether or not it is unbiased.

Answers

This estimator aims to estimate the coefficient beta 1 in a linear regression model. To determine whether it is unbiased, we need to assess its properties, such as the expected value and the conditions under which it is unbiased.

1. Start with a linear regression model: Y = beta 0 + beta 1 * X + error, where Y represents the dependent variable, X represents the independent variable, beta 0 and beta 1 are the coefficients to be estimated, and error is the random error term.

2. Apply the OLS method to estimate beta 1. This involves minimizing the sum of squared residuals between the observed Y values and the predicted values from the regression model.

3. The OLS estimator for beta 1 is given by beta_hat 1 = Cov(X, Y) / Var(X), where Cov(X, Y) is the covariance between X and Y, and Var(X) is the variance of X.

4. To determine whether the OLS estimator is unbiased, we need to assess its expected value. If the expected value of the estimator is equal to the true parameter value, it is unbiased.

5. Under certain assumptions, such as the absence of omitted variables and no endogeneity, the OLS estimator for beta 1 is unbiased. However, if these assumptions are violated, the estimator may be biased.

6. To ensure the OLS estimator is unbiased, it is important to satisfy assumptions such as the error term having a mean of zero, the absence of perfect multicollinearity, and the absence of heteroscedasticity.

In summary, the OLS estimator for beta 1 can be constructed by minimizing the sum of squared residuals in a linear regression model. Its unbiasedness depends on satisfying certain assumptions and conditions, such as a zero-mean error term and the absence of omitted variables or endogeneity.

Checking these assumptions is crucial in assessing the unbiasedness of the OLS estimator.

To know more about endogeneity, click here-

brainly.com/question/14669387

#SPJ11

what current must be produced by a 12.0–v battery–operated bottle warmer in order to heat 70.0 g of glass, 220 g of baby formula, and 220 g of aluminum from 20.0°c to 90.0°c in 5.00 min?

Answers

To calculate the current produced by the battery-operated bottle warmer, we can use the equation Q = mcΔT, where Q is the heat energy, m is the mass, c is the specific heat capacity, and ΔT is the change in temperature. First, we need to calculate the total heat energy required to heat the glass, formula, and aluminum.

For the glass:
Q_glass = (70.0 g) * (0.84 J/g°C) * (90.0°C - 20.0°C)
For the formula:
Q_formula = (220 g) * (4.18 J/g°C) * (90.0°C - 20.0°C)
For the aluminum:
Q_aluminum = (220 g) * (0.903 J/g°C) * (90.0°C - 20.0°C)
Total heat energy: Q_total = Q_glass + Q_formula + Q_aluminum

Next, we can calculate the current using the equation P = IV, where P is the power and V is the voltage. Rearranging the equation to solve for I, we get I = P/V.
Since power is given by P = Q/t, where t is time, we can substitute the values into the equation to find the power.
Power = Q_total / (5.00 min * 60 s/min)
Finally, we can calculate the current by dividing the power by the voltage.
Current = Power / 12.0 V

To know more about aluminum visit:-

https://brainly.com/question/28989771

#SPJ11

Formic acid, hcooh, is a weak acid with a ka equal to 1. 8×10^–4. What is the ph of a 0. 0115 m aqueous formic acid solution?

Answers

To determine the pH of a formic acid (HCOOH) solution, we need to consider the ionization of formic acid and the concentration of H+ ions in the solution. Formic acid, being a weak acid, partially ionizes in water according to the following equation:

HCOOH ⇌ H+ + HCOO-

The Ka value of formic acid, given as 1.8×10^–4, can be used to calculate the concentration of H+ ions in the solution. The equation for Ka is:

Ka = [H+][HCOO-] / [HCOOH]

Since the initial concentration of formic acid is 0.0115 M and it is a monoprotic acid (only one H+ ion is released), the concentration of H+ ions can be assumed to be x.

Using the Ka expression and the given value of Ka, we can set up the equation:

1.8×10^–4 = x^2 / (0.0115 - x)

By solving this quadratic equation, we find that x ≈ 0.0114 M, which represents the concentration of H+ ions. The pH of a solution is defined as the negative logarithm (base 10) of the concentration of H+ ions. Therefore, the pH of the formic acid solution is approximately 2.94.

In summary, the pH of a 0.0115 M aqueous formic acid solution is approximately 2.94.

Learn more about solution here;

brainly.com/question/1616939

#SPJ11

encompass a wide array of solid, liquid, and gaseous substances that are composed exclusively of hydrogen and carbon.

Answers

Hydrocarbons encompass a diverse range of substances that consist solely of hydrogen and carbon atoms. They can exist in solid, liquid, or gaseous states and are characterized by their various chemical properties.

Hydrocarbons play a crucial role in many aspects of daily life, serving as fuels, raw materials for industries, and components of important chemical compounds.

The description provided encompasses a wide array of organic compounds. Organic compounds are a class of chemical compounds that contain carbon atoms bonded to hydrogen atoms. These compounds can exist as solids, liquids, or gases and form the basis of many substances found in nature and synthetic materials.

Organic compounds include a diverse range of substances such as hydrocarbons, carbohydrates, proteins, lipids, and nucleic acids. Hydrocarbons, for example, consist solely of hydrogen and carbon atoms and can be further classified into different groups such as alkanes, alkenes, and alkynes. These compounds can be found in various forms such as methane, ethane, propane, and so on.

Carbohydrates are another group of organic compounds that include sugars, starches, and cellulose. These compounds play a crucial role in providing energy for living organisms and are important components of food.

Proteins, lipids, and nucleic acids are complex organic compounds that have vital functions in biological systems. Proteins are involved in various biological processes and serve as structural components, enzymes, and antibodies. Lipids include fats, oils, and phospholipids, and are essential for energy storage, insulation, and cell membrane structure. Nucleic acids, such as DNA and RNA, are responsible for carrying genetic information and protein synthesis.

Overall, the description of substances composed exclusively of hydrogen and carbon encompasses a wide range of organic compounds, which are fundamental to the study of organic chemistry and have significant importance in various fields such as biology, medicine, and industry.

To learn more about, hydrocarbons:-

brainly.com/question/27220658

#SPJ11

Hydrocarbons encompass a diverse range of substances that consist solely of hydrogen and carbon atoms. They can exist in solid, liquid, or gaseous states and are characterized by their various chemical properties.

Hydrocarbons play a crucial role in many aspects of daily life, serving as fuels, raw materials for industries, and components of important chemical compounds.

The description provided encompasses a wide array of organic compounds. Organic compounds are a class of chemical compounds that contain carbon atoms bonded to hydrogen atoms. These compounds can exist as solids, liquids, or gases and form the basis of many substances found in nature and synthetic materials.

Organic compounds include a diverse range of substances such as hydrocarbons, carbohydrates, proteins, lipids, and nucleic acids. Hydrocarbons, for example, consist solely of hydrogen and carbon atoms and can be further classified into different groups such as alkanes, alkenes, and alkynes. These compounds can be found in various forms such as methane, ethane, propane, and so on.

Carbohydrates are another group of organic compounds that include sugars, starches, and cellulose. These compounds play a crucial role in providing energy for living organisms and are important components of food.

Proteins, lipids, and nucleic acids are complex organic compounds that have vital functions in biological systems. Proteins are involved in various biological processes and serve as structural components, enzymes, and antibodies. Lipids include fats, oils, and phospholipids, and are essential for energy storage, insulation, and cell membrane structure. Nucleic acids, such as DNA and RNA, are responsible for carrying genetic information and protein synthesis.

Overall, the description of substances composed exclusively of hydrogen and carbon encompasses a wide range of organic compounds, which are fundamental to the study of organic chemistry and have significant importance in various fields such as biology, medicine, and industry.

To learn more about, hydrocarbons:-

brainly.com/question/27220658

#SPJ11

A buffer contains 0. 50 m CH3COOH (acetic acid) and 0. 50 m CH3COONa (sodium acetate). The Ph of the buffer is 4.74. What is the ph after 0. 10 mol of HCl is added to 1. 00 liter of this buffer?

Answers

The pH of the buffer will decrease after adding 0.10 mol of HCl to 1.00 liter of the buffer.

To determine the pH after adding 0.10 mol of HCl, we need to understand the chemistry of the buffer system. The buffer consists of a weak acid (CH3COOH) and its conjugate base (CH3COONa), which can resist changes in pH by undergoing the following equilibrium reaction:

CH3COOH ⇌ CH3COO- + H+

The acetic acid (CH3COOH) donates protons (H+) while the acetate ion (CH3COO-) accepts protons, maintaining the buffer's pH. The pH of the buffer is given as 4.74, indicating that the concentration of H+ ions is 10^(-4.74) M.

When 0.10 mol of HCl is added, it reacts with the acetate ion (CH3COO-) in the buffer. The reaction can be represented as:

CH3COO- + HCl → CH3COOH + Cl-

Since the HCl is a strong acid, it completely dissociates in water, providing a high concentration of H+ ions. As a result, some of the acetate ions will be converted into acetic acid, reducing the concentration of acetate ions and increasing the concentration of H+ ions in the buffer.

To calculate the new pH, we need to determine the new concentrations of CH3COOH and CH3COO-. Initially, both concentrations are 0.50 M. After adding 0.10 mol of HCl, the concentration of CH3COOH will increase by 0.10 M, while the concentration of CH3COO- will decrease by the same amount.

Considering the volume of the buffer is 1.00 liter, the final concentration of CH3COOH will be 0.50 M + 0.10 M = 0.60 M. The concentration of CH3COO- will be 0.50 M - 0.10 M = 0.40 M.

Next, we need to calculate the new concentration of H+ ions. Since the initial pH is 4.74, the concentration of H+ ions is 10^(-4.74) M = 1.79 x 10^(-5) M.

With the addition of HCl, the concentration of H+ ions will increase by 0.10 M. Thus, the new concentration of H+ ions will be 1.79 x 10^(-5) M + 0.10 M = 0.1000179 M (approximately).

Finally, we can calculate the new pH using the equation:

pH = -log[H+]

pH = -log(0.1000179) ≈ 1.00

Therefore, the pH of the buffer after adding 0.10 mol of HCl is approximately 1.00.

To learn more about weak acid click here:

brainly.com/question/32730049

#SPJ11

The atoms of elements in the same group or family have similar properties because.

Answers

The atoms of elements in the same group or family have similar properties because they have the same number of valence electrons.

Valence electrons are the electrons in the outermost energy level of an atom. They are responsible for the chemical behavior of an element. Elements in the same group or family have the same number of valence electrons, which means they have similar chemical behavior.

For example, elements in Group 1, also known as the alkali metals, all have 1 valence electron. This gives them similar properties such as being highly reactive and having a tendency to lose that electron to form a positive ion.

In contrast, elements in Group 18, also known as the noble gases, all have 8 valence electrons (except for helium, which has 2). This makes them stable and unreactive because their valence shell is already filled.

So, the similar properties of elements in the same group or family can be attributed to their similar number of valence electrons.

Learn more about valence electrons at https://brainly.com/question/31264554

#SPJ11

Calculate the pH of the solution resulting from the addition of 20.0 mL of 0.100 M NaOH to 30.0 mL of 0.100 M HNO3.

Answers

The pH of the solution resulting from the addition of 20.0 mL of 0.100 M NaOH to 30.0 mL of 0.100 M HNO3 is approximately 1.22.

To calculate the pH of the solution resulting from the addition of NaOH and HNO3, we need to determine the concentration of the resulting solution and then calculate the pH using the equation -log[H+].

The addition of NaOH (a strong base) to HNO3 (a strong acid) will result in the formation of water and a neutral salt, NaNO3. Since NaNO3 is a neutral salt, it will not affect the pH of the solution significantly.

Explanation:

First, we need to determine the amount of moles of NaOH and HNO3 that were added to the solution. Given the volumes and concentrations, we can calculate the moles using the equation Moles = Concentration × Volume:

Moles of NaOH = 0.100 M × 0.020 L = 0.002 moles

Moles of HNO3 = 0.100 M × 0.030 L = 0.003 moles

Since NaOH and HNO3 react in a 1:1 ratio, the limiting reagent is NaOH, and all of it will be consumed in the reaction. Therefore, after the reaction, we will have 0.003 moles of HNO3 left in the solution.

Now, we can calculate the concentration of HNO3 in the resulting solution. The total volume of the solution is the sum of the volumes of NaOH and HNO3:

Total volume = 20.0 mL + 30.0 mL = 50.0 mL = 0.050 L

The concentration of HNO3 in the resulting solution is:

Concentration of HNO3 = Moles of HNO3 / Total volume = 0.003 moles / 0.050 L = 0.06 M

Finally, we can calculate the pH of the resulting solution using the equation -log[H+]:

pH = -log[H+] = -log(0.06) ≈ 1.22

Therefore, the pH of the solution resulting from the addition of 20.0 mL of 0.100 M NaOH to 30.0 mL of 0.100 M HNO3 is approximately 1.22.

Learn more about pH here :
brainly.com/question/2288405

#SPJ11

Other Questions
The union tactic used in a labor-management dispute when the workers collectively refuse to go to work is a(n) ______ the represent error conditions that may occur as a result of programmer error or as a result of serious external conditions that are considered unrecoverable. gilmer tp stefancic a ettner sl manning wg tsemberis s effect of full-service partnerships on homelessness, use and costs of mental health services, and quality of life among adults with serious mental illness. arch gen psychiatry. 2010; 67: 645-652 A point source broadcasts sound into a uniform medium. If the distance from the source is tripled, how does the intensity change? (a) It becomes one-ninth as large. (b) It becomes one-third as large. (c) It is unchanged. (d) It becomes three times larger. (e) It becomes nine times larger. Solve each equation.9+s=21 Suppose that in a particular sample, the mean is 50 and the standard deviation is 10. What is the z score associated with a raw score of 68? For the reported losses of an insured group to become more likely to equal the statistical probability of? In what country is the oecd, organization for economic co-operation and development, headquartered in?. Simplify each expression.-4(-2-5)+3(1-4) A monopoly that faces a demand curve given by and has a constant marginal cost of 0. 2. in this situation, the deadweight loss from monopoly is? an angle formed by two chords is FHG ATN CHG ASG The client has a BMI of 36. He has comorbidities of type 2 diabetes and hypertension. He has tried restrictive dieting and has not been able to lose the weight he needs to lose. What would be the best suggestion for this client to lose weight Which ntfs permissions are required to allow a user to open, edit, and save changes to a document? Exercise 1 Place a check on the blank next to each sentence that is correct.Five of the six prizes are given by Swedish organizations for example, the physics, chemistry, and economics prizes are awarded by the Royal Academy of Sciences. The lattice energy of NaI is "686 kJ/mol, and the enthalpy of hydration is "694 kJ/mol. Calculate the enthalpy of solution per mole of solid NaI .Enthalpy of solution = ? kJ/mol how would you express b bb vec using unit vectors? express your answers in terms of the unit vectors x^x^x unit and y^y^y unit . use the button under the menu in the answer box to create unit vect The most liquid type of investment is? The _____ of the fibula extends farther distally, so that the stability created by the bony arrangement at the ankle joint is greater on the lateral aspect of the ankle than on the medial aspect. Given what you know of the acid base chemistry of hf, what is the concentration of hf in an aqueous solution with a ph of 6.11? Figure 10.5Coveragegarage and other structuresloss of usepersonal propertypercent coverage10%20%50%Replacement value: $270,000; Coverage: 80%Problem:a. Amount of insurance on the homeb. Amount of coverage for the garagec. Amount of coverage for the loss of used. Amount of coverage for personal propertyAnswers: