Answer:
A) q = -8.488 cm , B) m = 0.29
Explanation:
A) For this exercise in geometric optics, we will use the equation of the constructor
[tex]\frac{1}{f} = \frac{1}{p} + \frac{1}{q}[/tex]
where p and q are the distance to the object and image, respectively and f is the focal length
in our case the distance the object is p = 29 cm the focal length of a diverging lens is negative and indicates that it is f = - 12 cm
[tex]\frac{1}{q} = \frac{1}{f} - \frac{1}{p}[/tex]
we calculate
[tex]\frac{1}{q} = - \frac{1}{12} - \frac{1}{29}[/tex]
[tex]\frac{1}{q}[/tex] = - 0.1178
q = -8.488 cm
the negative sign indicates that the image is virtual
B) the magnification is given
[tex]m = \frac{h'}{h} = - \frac{q}{p}[/tex]
we substitute
m = [tex]- \frac{-8.488}{29}[/tex]
m = 0.29
the positive sign indicates that the image is right
A three-phase line, which has an impedance of (2 + j4) ohm per phase, feeds two balanced three-phase loads that are connected in parallel. One of the loads is Y-connected with an impedance of (30 + j40) ohm per phase, and the other is connected with an impedance of (60 - j45) ohm per phase. The line is energized at the sending end from a 60-Hz, three-phase, balanced voltage source of 120 √3V (rms, line-to-line).
Determine:
a. the current, real power and reactive power delivered by the sending-end source
b. the line-to-line voltage at the load
c. the current per phase in each load
d. the total three-phase real and reactive powers absorbed by each load and by the
Answer:
hello your question has a missing information
The other is Δ-connected with an impedance of (60 - j45) ohm per phase.
answer : A) 5A ∠0° ,
p( real power ) = 1800 and Q ( reactive power ) = 0 VAR
B) 193.64 v
C) current at load 1 = 2.236 A , current at load 2 = 4.472 A
D) Load 1 : 450 watts(real power ) , 600 VAR ( reactive power )
Load 2 : 1200 watts ( real power ), -900 VAR ( reactive power )
Explanation:
First convert the Δ-connection to Y- connection attached below is the conversion and pre-solution
A) determine the current, real power and reactive power delivered by the sending-end source
current power delivered (Is) = 5A ∠0°
complex power delivered ( s ) = 3vs Is
= 3 * 120∠0° * 5∠0° = 1800 + j0 ---- ( 1 )
also s = p + jQ ------ ( 2 )
comparing equation 1 and 2
p( real power ) = 1800 and Q ( reactive power ) = 0 VAR
B) determine Line-to-line voltage at the load
Vload = √3 * 111.8
= 193.64 v
c) Determine current per phase in each load
[tex]I_{l1} = Vl1 / Zl1[/tex]
= [tex]\frac{111.8<-10.3}{50<53.13}[/tex] = 2.236∠ 63.43° A hence current at load 1 = 2.236 A
[tex]I_{l2} = V_{l2}/Z_{l2}[/tex]
= [tex]\frac{111.8<-10.3}{25<-36.87}[/tex] = 4.472 ∠ 26.57° A hence current at load 2 = 4.472 A
D) Determine the Total three-phase real and reactive powers absorbed by each load
For load 1
3-phase real power = [tex]3I_{l1} ^{2} R_{l1}[/tex] = 3 * 2.236^2 * 30 = 450 watts
3-phase reactive power = [tex]3I_{l1} ^{2} X_{l1}[/tex] = 3 * 2.236^2 * 40 = 600 VAR
for load 2
3-phase real power = [tex]3I_{l1} ^{2} R_{l2}[/tex] = 1200 watts
3-phase reactive power = [tex]3I_{l1} ^{2} X_{l2}[/tex] = -900 VAR
The sum of load powers and line losses, 1800 W+ j0 VAR and The line voltage magnitude at the load terminal is 193.64 V.
(a) The impedance per phase of the equivalent Y,
[tex]\bar{Z}_{2}=\frac{60-j 45}{3}=(20-j 15) \Omega[/tex]
The phase voltage,
[tex]\bold { V_{1}=\frac{120 \sqrt{3}}{\sqrt{3}}=120 VV }[/tex]
Total impedance from the input terminals,
[tex]\bold {\begin{aligned}&\bar{Z}=2+j 4+\frac{(30+j 40)(20-j 15)}{(30+j 40)+(20-j 15)}=2+j 4+22-j 4=24 \Omega \\&\bar{I}=\frac{\bar{V}_{1}}{\bar{Z}}=\frac{120 \angle 0^{\circ}}{24}=5 \angle 0^{\circ} A\end{aligned} }[/tex]
The three-phase complex power supplied [tex]\bold {=\bar{S}=3 \bar{V}_{1} \bar{I}^{*}=1800 W}[/tex]
P =1800 W and Q = 0 VAR delivered by the sending-end source.
(b) Phase voltage at load terminals will be,
[tex]\bold {\begin{aligned}\bar{V}_{2} &=120 \angle 0^{\circ}-(2+j 4)\left(5 \angle 0^{\circ}\right) \\&=110-j 20=111.8 \angle-10.3^{\circ} V\end{aligned} }[/tex]
The line voltage magnitude at the load terminal,
[tex]\bold{\left(V_{ LOAD }\right)_{L-L}=\sqrt{3} 111.8=193.64 V(V }[/tex]
(c) The current per phase in the Y-connected load,
[tex]\bold {\begin{aligned}&\bar{I}_{1}=\frac{\bar{V}_{2}}{\bar{Z}_{1}}=1-j 2=2.236 \angle-63.4^{\circ} A \\&\bar{I}_{2}=\frac{\bar{V}_{2}}{\bar{Z}_{2}}=4+j 2=4.472 \angle 26.56^{\circ} A\end{aligned} }[/tex]
The phase current magnitude,
[tex]\bold {\left(I_{p h}\right)_{\Delta}=\frac{I_{2}}{\sqrt{3}}=\frac{4.472}{\sqrt{3}}=2.582 }[/tex]
(d) The three-phase complex power absorbed by each load,
[tex]\bold {\begin{aligned}&\bar{S}_{1}=3 \bar{V}_{2} \bar{I}_{1}^{*}=430 W +j 600 VAR \\&\bar{S}_{2}=3 \bar{V}_{2} \bar{I}_{2}^{*}=1200 W -j 900 VAR\end{aligned}}[/tex]
The three-phase complex power absorbed by the line is
[tex]\bold{\bar{S}_{L}=3\left(R_{L}+j X_{L}\right) I^{2}=3(2+j 4)(5)^{2}=150 W +j 300 VAR }[/tex]
Since, the sum of load powers and line losses,
[tex]\bold {\begin{aligned}\bar{S}_{1}+\bar{S}_{2}+\bar{S}_{L} &=(450+j 600)+(1200-j 900)+(150+j 300) \\&=1800 W +j 0 VAR\end{aligned} }[/tex]
To know more about voltage,
https://brainly.com/question/2364325
Statement A: 2.567 km, to two significant figures. Statement B: 2.567 km, to three significant figures. Determine the correct relationship between the statements. View Available Hint(s) Determine the correct relationship between the statements. Statement A is greater than Statement B. Statement A is less than Statement B. Statement A is equal to Statement B.
Answer:
Statement A is greater than Statement B.
Explanation:
Statement A: 2.567 km, to two significant figures..
To 2 sig figures means only 2 whole numbers should be left after approximation. Thus, 2.567 to 2 significant figures is 2.6 km
Statement B: 2.567 km, to three significant figures. To 3 sig figures means only 3 whole numbers should be left after approximation. Thus, 2.567 to 3 significant figures is 2.57 km
Comparing both values, statement A is obviously greater than Statement B
Determine the magnitude of the electric field at the point P. Express your answer in terms of Q, x, a, and k. Express your answer in terms of the variables Q, x, a, k, and appropriate constants.
Complete Question
The question image is in the first uploaded image
Answer:
[tex]E=\frac{KQ*4xa}{(x^2-a^2)^2}[/tex]
Explanation:
From the question we are told that
Distance b/w Q mid point and P is given as x
Generally the equation for magnitude of the electric field at the point P is given as
[tex]E=\frac{kQ}{d^2}[/tex]
where
[tex]k=\frac{1}{4\pi e_0}[/tex]
[tex]d=x^2-a^2[/tex]
Therefore
[tex]E= \frac{1}{4\pi e_0} \frac{Q}{(x^2-a^2)^2}- \frac{1}{4\pi e_0} \frac{Q}{(x^2+a^2)^2}[/tex]
[tex]E= \frac{Q}{4\pi e_0} (\frac{1}{(x^2-a^2)^2}- \frac{1}{(x^2+a^2)^2})[/tex]
Therefore equation for magnitude of the electric field at the point P is
[tex]E=\frac{KQ*4xa}{(x^2-a^2)^2}[/tex]
A particle with charge Q and mass M has instantaneous speed uy when it is at a position where the electric potential is V. At a later time, the particle has moved a distance R away to a position where the electric potential is V2 ) Which of the following equations can be used to find the speed uz of the particle at the new position?
a. 1/2M(μ2^2-μ1^2)=Q (v1-v2)
b. 1/2M(μ2^2-μ1^2)^2=Q(v1-v2)
c. 1/2Mμ2^2=Qv1
d. 1/2Mμ2^2=1/4πx0 (Q^2/R)
Answer:
A
Explanation:
Ke = 1/2 MV^2
F=9 N, a=3 m/s², m=?
Answer:
3kg
Explanation:
Given parameters:
Force = 9N
Acceleration = 3m/s²
Unknown:
Mass = ?
Solution:
From Newton's second law of motion:
Force = mass x acceleration
So;
9 = mass x 3
mass = 3kg
If the speed of an object does NOT change, the object is traveling at a
constant speed
increasing speed
decreasing speed
Answer:
If the speed does not change at all, the object would be moving at a constant speed.
The radius of the Sun is 6.96 x 108 m and the distance between the Sun and the Earth is roughtly 1.50 x 1011 m. You may assume that the Sun is a perfect sphere and that the irradiance arriving on the Earth is the value for AMO, 1,350 W/m2. Calculate the temperature at the surface of the Sun.
Answer:
5766.7 K
Explanation:
We are given that
Radius of Sun , R=[tex]6.96\times 10^{8} m[/tex]
Distance between the Sun and the Earth, D=[tex]1.50\times 10^{11}m[/tex]
Irradiance arriving on the Earth is the value for AMO=[tex]1350W/m^2[/tex]
We have to find the temperature at the surface of the Sun.
We know that
Temperature ,T=[tex](\frac{K_{sc}D^2}{\sigma R^2})^{\frac{1}{4}}[/tex]
Where [tex]K_{sc}=1350 W/m^2[/tex]
[tex]\sigma=5.67\times 10^{-8}watt/m^2k^4[/tex]
Using the formula
[tex]T=(\frac{1350\times (1.5\times 10^{11})^2}{5.67\times 10^{-8}\times (6.96\times 10^{8})^2})^{\frac{1}{4}}[/tex]
T=5766.7 K
Hence, the temperature at the surface of the sun=5766.7 K
When an object with an electric charge of is from an object with an electric charge of , the force between them has a strength of . Calculate the strength of the force between the two objects if they are apart. Round your answer to significant digits.
The question is incomplete, the complete question is;
When an object with an electric charge of −7.0μC is 5.0cm from an object with an electric charge of 4.0μC, the force between them has a strength of 100.7N. Calculate the strength of the force between the two objects if they are 1.7cm apart. Round your answer to 2 significant digits
Answer:
865.1 N
Explanation:
F1 = Kq1q2/r1^2 ---------1
F2 = Kq1q2/r2^2 -------2
We have that;
r1 = 5cm
r2 =1.7 cm
F1 = 100.7 N
Comparing equations 1 and 2
F2 = F1r1^2/r2^2
F2 = 100.7N[(5cm)^2/(1.7cm)^2]
F2= 865.1 N
How much kinetic energy does a 0.104 kg hamster have if it is moving at 24.0 m/s?
Answer:
30J
Explanation:
Given parameters:
Mass of hamster = 0.104kg
Velocity = 24m/s
Unknown:
Kinetic energy = ?
Solution:
Kinetic energy is the energy due to the motion of a body. It is mathematically derived by;
Kinetic energy = [tex]\frac{1}{2}[/tex] m v²
m is the mass
v is the velocity
Kinetic energy = [tex]\frac{1}{2}[/tex] x 0.104 x 24² = 30J
A 35 kg box initially sliding at 10 m/s on a rough surface is brought to rest by 25 N
of friction. What distance does the box slide?
Answer:
the distance moved by the box is 70.03 m.
Explanation:
Given;
mass of the box, m = 35 kg
initial velocity of the box, u = 10 m/s
frictional force, F = 25 N
Apply Newton's second law of motion to determine the deceleration of the box;
-F = ma
a = -F / m
a = (-25 ) / 35
a = -0.714 m/s²
The distance moved by the box is calculated as follows;
v² = u² + 2ad
where;
v is the final velocity of the box when it comes to rest = 0
0 = 10² + (2 x - 0.714)d
0 = 100 - 1.428d
1.428d = 100
d = 100 / 1.428
d = 70.03 m
Therefore, the distance moved by the box is 70.03 m.
which of the following is used to answer scientific questions?
A. Experiments
B. Intuition
C. Opinion polls
D. Imagination
A flat circular mirror of radius 0.100 m is lying on the floor. Centered directly above the mirror, at a height of 0.920 m, is a small light source. Calculate the diameter of the bright circular spot formed on the 2.70 m high ceiling by the light reflected from the mirror.
Answer:
the diameter of the bright circular spot formed is 0.787 m
Explanation:
Given that;
Radius of the flat circular mirror = 0.100 m
height of small ight source = 0.920 m
high ceiling = 2.70 m
now;
Diameter(mirror) = 2×r = 2 × 0.100 = 0.2 m
D(spot) = [Diameter(mirror) × ( 2.70m + 0.920 m)] / 0.920 m
so
D(spot) = 0.2m × 3.62m / 0.920 m
D(spot) = 0.724 m / 0.920 m
D(spot) = 0.787 m
Therefore, the diameter of the bright circular spot formed is 0.787 m
Un autobús en una autopista lleva una magnitud de la velocidad de 95 km/h, el conductor observa que debido a un derrumbe la carretera está cerrada, en ese instante acciona los frenos, deteniendo el autobús después de recorrer 60 m. a) ¿Cuál es el valor de la aceleración en el autobús?
Answer:
La aceleración del autobús es -5.80 m/s².
Explanation:
Podemos encontrar la aceleración del autobús usando la siguiente ecuación:
[tex] v_{f}^{2} = v_{0}^{2} + 2ad [/tex]
Where:
[tex]v_{f}[/tex]: es la velocidad final = 0 (se detiene al final)
[tex]v_{0}[/tex]: es la velocidad inicial = 95 km/h
d: es la distancia recorrida = 60 m
Por lo tanto, la aceleración es:
[tex] a = \frac{v_{f}^{2} - v_{0}^{2}}{2d} = \frac{0 - (95 \frac{km}{h}*\frac{1000 m}{1 km}*\frac{1 h}{3600 s})^{2}}{2*60 m} = -5.80 m/s^{2} [/tex]
El signo negativo se debe a que el autobús está desacelerando (hasta que se detiene).
Entonces, la aceleración del autobús es -5.80 m/s².
Espero que te sea de utilidad!
How does speed and mass effect kinetic energy ?
Answer:
in fact, kinetic energy is directly proportional to mass: if you double the mass, then you double the kinetic energy. Second, the faster something is moving, the greater the force it is capable of exerting and the greater energy it possesses. ... Thus a modest increase in speed can cause a large increase in kinetic energy.
Explanation:
Answer: The more mass of an object has, the more Kinetic energy it has.
Explanation:
Kinetic energy is comparable to mass. If you double the mass then you double the kinetic energy. The faster the object is moving the greater the energy possesses. A large increase in speed can have a large increase in kinetic energy.
Anyone can help me out with this question ? Just number 2,
Answer:
- 21⁰C .
Explanation:
Speed of jet = 2.05 x 10³ km /h
= 2050 x 1000 / (60 x 60 ) m /s
= 569.44 m / s
Mach no represents times of speed of sound , the speed of jet
1.79 x speed of sound = 569.44
speed of sound = 318.12 m /s
speed of sound at 20⁰C = 343 m /s
Difference = 343 - 318.12 = 24.88⁰C
We know that 1 ⁰C change in temperature changes speed of sound
by .61 m /s
So a change in speed of 24.88 will be produced by a change in temperature of
24.88 / .61
= 41⁰C
temperature = 20 - 41 = - 21⁰C .
Cathode ray tubes (CRTs) used in old-style televisions have been replaced by modern LCD and LED screens. Part of the CRT included a set of accelerating plates separated by a distance of about 1.54 cm. If the potential difference across the plates was 26.5 kV, find the magnitude of the electric field (in V/m) in the region between the plates.
Answer:
E = 1,720,779.221 or 1.720779221 * 10^ 6V/m
Explanation:
The electric field between the parallel conducting plates is given by
E =V / d
where V is the potential difference and d is the distance between the plates.
E = 26.5 kV/ 1.54 cm
Now we have to convert into proper units
26.5 kv= 26.5 * 1000 v= 26500 volts
1 kv= 1000 volts
1.54 cm = 1.54/ 100 m= 0.0154m
1m = 100cm
Now putting the values
E= 26500/0.0154 = 1,720,779.221 V/m
The Electric field is equal to E= 1,720,799.221 or 1.7220799221 * 10 ^6 Volts per meter.
In scientific notation this can be written as 1.7220799221 *10^6 V/m
what is momentum of a train that is 60,000 kg that is moving at velocity of 17m/s?
explain your answer
Which of the following is a mixture?
a air
biron
Chydrogen
d nickel
Answer:
it will option option A hope it helps
A 2028 kg Oldsmobile traveling south on Abbott Road at 14.5 m/s is unable to stop on the ice covered intersection for a red light at Saginaw Street. The car collides with a 4146 kg truck hauling animal feed east on Saginaw at 9.7 m/s. The two vehicles remain locked together after the impact. Calculate the velocity of the wreckage immediately after the impact. Give the speed for your first answer and the compass heading for your second answer. (remember, the CAPA abbreviation for degrees is deg) -1.75
Answer:
v = 8.1 m/s
θ = -36.4º (36.4º South of East).
Explanation:
Assuming no external forces acting during the collision (due to the infinitesimal collision time) total momentum must be conserved.Since momentum is a vector, if we project it along two axes perpendicular each other, like the N-S axis (y-axis, positive aiming to the north) and W-E axis (x-axis, positive aiming to the east), momentum must be conserved for these components also.Since the collision is inelastic, we can write these two equations for the momentum conservation, for the x- and the y-axes:We can go with the x-axis first:[tex]p_{ox} = p_{fx} (1)[/tex]
⇒ [tex]m_{tr} * v_{tr}= (m_{olds} + m_{tr}) * v_{fx} (2)[/tex]
Replacing by the givens, we can find vfx as follows:[tex]v_{fx} = \frac{m_{tr}*v_{tr} }{(m_{tr} + m_{olds)} } = \frac{4146kg*9.7m/s}{2028kg+4146 kg} = 6.5 m/s (3)[/tex]
We can repeat the process for the y-axis:[tex]p_{oy} = p_{fy} (4)[/tex]
⇒[tex]m_{olds} * v_{olds}= (m_{olds} + m_{tr}) * v_{fy} (5)[/tex]
Replacing by the givens, we can find vfy as follows:[tex]v_{fy} = \frac{m_{olds}*v_{olds} }{(m_{tr} + m_{olds)} } = \frac{2028kg*(-14.5)m/s}{2028kg+4146 kg} = -4.8 m/s (6)[/tex]
The magnitude of the velocity vector of the wreckage immediately after the impact, can be found applying the Pythagorean Theorem to vfx and vfy, as follows:[tex]v_{f} = \sqrt{v_{fx} ^{2} +v_{fy} ^{2} }} = \sqrt{(6.5m/s)^{2} +(-4.8m/s)^{2}} = 8.1 m/s (7)[/tex]
In order to get the compass heading, we can apply the definition of tangent, as follows:[tex]\frac{v_{fy} }{v_{fx} } = tg \theta (8)[/tex]
⇒ tg θ = vfy/vfx = (-4.8m/s) / (6.5m/s) = -0.738 (9)
⇒ θ = tg⁻¹ (-0.738) = -36.4º
Since it's negative, it's counted clockwise from the positive x-axis, so this means that it's 36.4º South of East.Energy from the Sun is transferred from the Earth’s surface to the atmosphere, resulting in
atmospheric convection currents that produce winds. How do physical properties of the air
contribute to convection currents?
a -The warmer air sinks because it is more dense than cooler air.
b -The warmer air rises because it is more dense than cooler air.
c- The warmer air sinks because it is less dense than cooler air.
d -The warmer air rises because it is less dense than cooler air.
6 A test of a driver's perception/reaction time is being conducted on a special testing track with level, wet pavement and a driving speed of 50 mi/h. When the driver is sober, a stop can be made just in time to avoid hitting an object that is first visible 385 ft ahead. After a few drinks under exactly the same conditions, the driver fails to stop in time and strikes the object at a speed of 30 mi/h. Determine the driver's perception/reaction time before and after drinking. (Assume practical stopping distance.)
Answer:
a. 10.5 s b. 6.6 s
Explanation:
a. The driver's perception/reaction time before drinking.
To find the driver's perception time before drinking, we first find his deceleration from
v² = u² + 2as where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 0 m/s (since he stops), a = deceleration of driver and s = distance moved by driver = 385 ft = 385 × 0.3048 m = 117.35 m
So, a = v² - u²/2s
substituting the values of the variables into the equation, we have
a = v² - u²/2s
a = (0 m/s)² - (22.35 m/s)²/2(117.35 m)
a = - 499.52 m²/s²/234.7 m
a = -2.13 m/s²
Using a = (v - u)/t where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 0 m/s (since he stops), a = deceleration of driver = -2.13 m/s² and t = reaction time
So, t = (v - u)/a
Substituting the values of the variables into the equation, we have
t = (0 m/s - 22.35 m/s)/-2.13 m/s²
t = - 22.35 m/s/-2.13 m/s²
t = 10.5 s
b. The driver's perception/reaction time after drinking.
To find the driver's perception time after drinking, we first find his deceleration from
v² = u² + 2as where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 30 mi/h = 30 × 1609 m/3600 s = 13.41 m/s, a = deceleration of driver and s = distance moved by driver = 385 ft = 385 × 0.3048 m = 117.35 m
So, a = v² - u²/2s
substituting the values of the variables into the equation, we have
a = v² - u²/2s
a = (13.41 m/s)² - (22.35 m/s)²/2(117.35 m)
a = 179.83 m²/s² - 499.52 m²/s²/234.7 m
a = -319.69 m²/s² ÷ 234.7 m
a = -1.36 m/s²
Using a = (v - u)/t where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 30 mi/h = 30 × 1609 m/3600 s = 13.41 m/s, a = deceleration of driver = -1.36 m/s² and t = reaction time
So, t = (v - u)/a
Substituting the values of the variables into the equation, we have
t = (13.41 m/s - 22.35 m/s)/-1.36 m/s²
t = - 8.94 m/s/-1.36 m/s²
t = 6.6 s
A group of 25 particles have the following speeds: two have speed 11 m/s, seven have 16 m/s , four have 19 m/s, three have 26 m/s, six have 31 m/s, one has 37 m/s, and two have 45 m/s.
Requiredd:
a. Determine the average speed.
b. Determine the rms speed.
c. Determine the most probable speed.
Answer:
a) Average speed is 24.04 m/s
b) the rms speed is 25.84 m/s
c) the most probable speed is 16 m/s
Explanation:
Given the data in the question;
a) Determine the average speed.
To determine the average speed, we simply divide total some of speed by number of particles;
Average speed = [(2×11 m/s)+(7×16 m/s)+(4×19 m/s)+(3×26 m/s)+(6×31 m/s)+(1×37 m/s)+(2×45 m/s)] / 25
= 601 / 25
= 24.04 m/s
Therefore, Average speed is 24.04 m/s
b) Determine the rms speed
we know that (rms speed)² = sum of square speed / total number of particles
so
(rms speed)² = [(2×11²)+(7×16²)+(4×19²)+(3×26²)+(6×31²)+(1×37²)+(2×45²)] / 25
(rms speed)² = 16691 / 25
(rms speed)² = 667.64
(rms speed) = √ 667.64
(rms speed) = 25.84 m/s
Therefore, the rms speed is 25.84 m/s
c) Determine the most probable speed.
Most particles (7) have velocity 16 m/s
i.e 7 is the maximum number of particle for a particular speed ,
Therefore, the most probable speed is 16 m/s
What is the period of an objects motion?
According to Newton's law of universal gravitation, which statements are true?
As we move to higher altitudes, the force of gravity on us decreases.
O As we move to higher altitudes, the force of gravity on us increases,
O As we gain mass, the force of gravity on us decreases.
O Aswe gain mass, the force of gravity on us increases.
DAs we move faster, the force of gravity on us increases.
Four cylindrical wires of different sizes are made of the same material. Which of the following combinations of length and cross-sectional area of one of the wires will result in the smallest resistance?
a. Length Area
3L 3a
b. Length Area
3L 6a
c. Length Area
6L 3a
d. Length Area
6L 6a
Answer:
Explanation:
For resistance of a wire , the formula is as follows .
R = ρ L/S
where ρ is specific resistance , L is length and S is cross sectional area of wire .
for first wire resistance
R₁ = ρ 3L/3a = ρ L/a
for second wire , resistance
R₂ = ρ 3L/6a
= .5 ρ L/a
For 3 rd wire resistance
R₃ = ρ 6L/3a
= 2ρ L/a
For fourth wire , resistance
R₄ = ρ 6L/6a
= ρ L/a
So the smallest resistance is of second wire .
Its resistance is .5 ρ L/a
A 5-kg object is moving with a speed of 4 m/s at a height of 2 m. The potential energy of the object is approximately
J.
Answer:
P.E = 98 Joules
Explanation:
Given the following data;
Mass = 5kg
Speed = 4m/s
Height = 2m
We know that acceleration due to gravity is equal to 9.8m/s²
To find the potential energy;
Potential energy can be defined as an energy possessed by an object or body due to its position.
Mathematically, potential energy is given by the formula;
[tex] P.E = mgh[/tex]
Where, P.E represents potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per seconds square.
h represents the height measured in meters.
Substituting into the equation, we have;
[tex] P.E = 5*9.8*2[/tex]
P.E = 98 Joules
A remote controlled airplane moves 7.2 m in 2.5seconds what is the plane’s velocity
Answer:
2.88m/s
Explanation:
Given parameters:
Displacement = 7.2m
Time taken = 2.5s
Unknown:
Velocity of the plane = ?
Solution:
Velocity is the displacement divided by the time taken.
Velocity = [tex]\frac{displacement}{time taken}[/tex]
So;
Velocity = [tex]\frac{7.2}{2.5}[/tex] = 2.88m/s
g Incandescent bulbs generate visible light by heating up a thin metal filament to a very high temperature so that the thermal radiation from the filament becomes visible. One bulb filament has a surface area of 30 mm2 and emits 60 W when operating. If the bulb filament has an emissivity of 0.8, what is the operating temperature of the filament
Answer:
2577 K
Explanation:
Power radiated , P = σεAT⁴ where σ = Stefan-Boltzmann constant = 5.6704 × 10⁻⁸ W/m²K⁴, ε = emissivity of bulb filament = 0.8, A = surface area of bulb = 30 mm² = 30 × 10⁻⁶ m² and T = operating temperature of filament.
So, T = ⁴√(P/σεA)
Since P = 60 W, we substitute the vales of the variables into T. So,
T = ⁴√(P/σεA)
= ⁴√(60 W/(5.6704 × 10⁻⁸ W/m²K⁴ × 0.8 × 30 × 10⁻⁶ m²)
= ⁴√(60 W/(136.0896 × 10⁻¹⁴ W/K⁴)
= ⁴√(60 W/(13608.96 × 10⁻¹⁶ W/K⁴)
= ⁴√(0.00441 × 10¹⁶K⁴)
= 0.2577 × 10⁴ K
= 2577 K
A compact car has a mass of 1310 kg . Assume that the car has one spring on each wheel, that the springs are identical, and that the mass is equally distributed over the four springs.
Required:
a. What is the spring constant of each spring if the empty car bounces up and down 2.0 times each second?
b. What will be the car’s oscillation frequency while carrying four 70 kg passengers?
Answer:
a) k= 3232.30 N / m, b) f = 4,410 Hz
Explanation:
In this exercise, the car + spring system is oscillating in the form of a simple harmonic motion, as the four springs are in parallel, the force is the sum of the 4 Hocke forces.
The expression for the angular velocity is
w = √k/m
the angular velocity is related to the period
w = 2π / T
we substitute
T = 2[tex]\pi[/tex] √m/ k
a) empty car
k = 4π² m / T²
k = 4 π² 1310/2 2
k = 12929.18 N / m
This is the equivalent constant of the short springs
F1 + F2 + F3 + F4 = k_eq x
k x + kx + kx + kx = k_eq x
k_eq = 4 k
k = k_eq / 4
k = 12 929.18 / 4
k= 3232.30 N / m
b) the frequency of oscillation when carrying four passengers.
In this case the plus is the mass of the vehicle plus the masses of the passengers
m_total = 1360 + 4 70
m_total = 1640 kg
angular velocity and frequency are related
w = 2pi f
we substitute
2 pi f = Ra K / m
in this case the spring constant changes us
k_eq = 12929.18 N / m
f = 1 / 2π √ 12929.18 / 1640
f = π / 2 2.80778
f = 4,410 Hz
Consider the low-speed flight of a Space Shuttle as it is nearing a landing. If the air pressure and temperature at the nose of the shuttle are 1.05 atm and 300 K, respectively, calculate the density and specific volume. (Round the final answer to two decimal places.) The density is kg/m3. The specific volume is m3/kg.
Answer:
d = 1.24 kg/m³
v = 0.81 m³/kg
Explanation:
To do this, we need to analyze the given data and know the expressions we need to use here to do calculations.
We have a pressure of 1.05 atm and 300 K of temperature. To determine the density, we need to use a similar expression of an ideal gas. In this case, instead of using moles, we will use density:
P = dRT
d = P/RT (1)
Where:
R: universal constant of gases
d: density.
From here we can determine the specific volume by using the following expression:
v = 1/d (2)
Now, as we are looking for density, we need to convert the units of pressure in atm to Pascal (or N/m) and the conversion is the following:
P = 1.05 atm * 1.013x10⁵ N/m atm = 106,365 N/m
Now, using R as 287 the density would be:
d = 106,365 / (287 * 300)
d = 1.24 kg/m³Finally the specific volume:
v = 1 / 1.41
v = 0.81 m³/kgHope this helps