(a) x(t=0) = 10.0 m, x(t=3.00 s) = 5.0 m, x(t=9.00 s) = 0.0 m, x(t=18.0 s) = 5.0 m
(b) Δx(0 → 6.00 s) = -5.0 m, Δx(6.00 s → 12.0 s) = -5.0 m, Δx(12.0 s → 18.0 s) = 5.0 m, Δx(0 → 18.00 s) = -5.0 m
(c) d(0 → 6.00 s) = 5.0 m, d(6.00 s → 12.0 s) = 5.0 m, d(12.0 s → 18.0 s) = 5.0 m, d(0 → 18.0 s) = 15.0 m
(d) vvelocity(0 → 6.00 s) = -0.83 m/s, vvelocity(6.00 s → 12.0 s) = -0.83 m/s, vvelocity(12.0 s → 18.0 s) = 0.83 m/s, vvelocity(0 → 18.0 s) = 0.0 m/s
(e) vspeed(0 → 6.00 s) = 0.83 m/s, vspeed(6.00 s → 12.0 s) = 0.83 m/s, vspeed(12.0 s → 18.0 s) = 0.83 m/s, vspeed(0 → 18.0 s) = 0.83 m/s
(a) The position x(t) of the object at different times can be determined by reading the corresponding values from the given graph. For example, at t = 0.0 s, the position is 10.0 m, at t = 3.00 s, the position is 5.0 m, at t = 9.00 s, the position is 0.0 m, and at t = 18.0 s, the position is 5.0 m.
(b) The displacement Δx of the object for different time intervals can be calculated by finding the difference in positions between the initial and final times. Since displacement is a vector quantity, the sign indicates the direction. For example, Δx(0 → 6.00 s) = -5.0 m means that the object moved 5.0 m to the left during that time interval.
(c) The distance d traveled by the object during different time intervals can be calculated by taking the absolute value of the displacements. Distance is a scalar quantity and represents the total path length traveled. For example, d(0 → 6.00 s) = 5.0 m indicates that the object traveled a total distance of 5.0 m during that time interval.
(d) The average velocity vvelocity of the object during different time intervals can be calculated by dividing the displacement by the time interval. It represents the rate of change of position. The negative sign indicates the direction. For example, vvelocity(0 → 6.00 s) = -0.83 m/s means that, on average, the object is moving to the left at a velocity of 0.83 m/s during that time interval.
(e) The average speed vspeed of the object during different time intervals can be calculated by dividing the distance traveled by the time interval. Speed is
a scalar quantity and represents the magnitude of velocity. For example, vspeed(0 → 6.00 s) = 0.83 m/s means that, on average, the object is traveling at a speed of 0.83 m/s during that time interval.
Learn more about vvelocity
brainly.com/question/14492864
#SPJ11
Without the provided graph it's impossible to give specific answers, but the position can be found on the graph, displacement is the change in position, distance is the total path length, average velocity is displacement over time considering direction, and average speed is distance travelled over time ignoring direction.
Explanation:Unfortunately, without a visually provided graph depicting the movement of the object along the x-axis, it's impossible to specifically determine the position x(t) of the object at the given times, the displacement Δx of the object for the time intervals, the distance d traveled by the object during those time intervals, and the average velocity and speed during those time intervals.
However, please note that:
The position x(t) of the object can be found by examining the x-coordinate at a specific time on the graph.The displacement Δx is the change in position and can be positive, negative, or zero, depending on the movement.The distance d is always a positive quantity as it denotes the total path length covered by the object.The average velocity is calculated by dividing the displacement by the time interval, keeping the direction into account.The average speed is calculated by dividing the distance traveled by the time interval, disregarding the direction.Learn more about Physics of Motion here:https://brainly.com/question/33851452
#SPJ12
1. A ball is kicked horizontally at 8 m/s30 degrees above the horizontal. How far does the ball travel before hitting the ground? (2pts) 2. A shell is fired from a cliff horizontally with initial velocity of 800 m/s at a target on the ground 150 m below. How far away is the target? (2 pts) 3. You are standing 50 feet from a building and throw a ball through a window that is 26 feet above the ground. Your release point is 6 feet off of the ground (hint: you are only concerned with Δy ). You throw the ball at 30ft/sec. At what angle from the horizontal should you throw the ball? (hint: this is your launch angle) ( 2 pts) 4. A golfer drives a golf ball from the tee down the fairway in a high arcing shot. When the ball is at the highest point during the flight: ( 1pt) a. The velocity and acceleration are both zero b. The x-velocity is zero and the y-velocity is zero c. The x-velocity is non-zero but the y-velocity is zero d. The velocity is non-zero but the acceleration is zero
1) Distance = 9.23 m ; 2) Horizontal distance = 24,481.7 m ; 3) θ = 33.2 degrees ; 4) When the ball is at the highest point during the flight, a) the velocity and acceleration are both zero and hence option a) is the correct answer.
1. The horizontal component of the ball's velocity is 8cos30, and the vertical component of its velocity is 8sin30. The ball's flight time can be determined using the vertical component of its velocity.
Using the formula v = u + at and assuming that the initial vertical velocity is 8sin30, the acceleration is 9.81 m/s² (acceleration due to gravity), and the final velocity is zero (because the ball is at its maximum height), the time taken to reach the maximum height can be calculated.
The ball will reach its maximum height after half of its flight time has elapsed, so double the time calculated previously to get the total time. Substitute the time calculated previously into the horizontal velocity formula to get the distance the ball travels horizontally before landing.
Distance = 8cos30 x 2 x [8sin30/9.81] = 9.23 m
Answer: 9.23 m
2. Using the formula v = u + gt, the time taken for the shell to hit the ground can be calculated by assuming that the initial vertical velocity is zero (since the shell is fired horizontally) and that the acceleration is 9.81 m/s². The calculated time can then be substituted into the horizontal distance formula to determine the distance the shell travels horizontally before hitting the ground.
Horizontal distance = 800 x [2 x 150/9.81]
= 24,481.7 m
Answer: 24,481.7 m³.
3) To determine the angle at which the ball should be thrown, the vertical displacement of the ball from the release point to the window can be used along with the initial velocity of the ball and the acceleration due to gravity.
Using the formula v² = u² + 2as and assuming that the initial vertical velocity is 30sinθ, the acceleration due to gravity is -32.2 ft/s² (because the acceleration due to gravity is downwards), the final vertical velocity is zero (because the ball reaches its highest point at the window), and the displacement is 20 feet (26-6), the angle θ can be calculated.
Angle θ = arc sin[g x (20/900 + 1/2)]/2, where g = 32.2 ft/s²
Answer: θ = 33.2 degrees
4. A golfer drives a golf ball from the tee down the fairway in a high arcing shot. When the ball is at the highest point during the flight, the velocity and acceleration are both zero. (1pt)
Answer: a. The velocity and acceleration are both zero. Thus, option a) is correct.
To know more about Horizontal distance, refer
https://brainly.com/question/31169277
#SPJ11
An object is 2m away from a convex mirror in a store, its image
is 1 m behind the mirror. What is the focal length of the
mirror?
The focal length of the convex mirror is -2 m. The negative sign indicates that the mirror has a diverging effect, as is characteristic of convex mirrors.
To determine the focal length of a convex mirror, we can use the mirror equation:
1/f = 1/d_o + 1/d_i
Where f is the focal length, d_o is the object distance (distance of the object from the mirror), and d_i is the image distance (distance of the image from the mirror).
In this case, the object distance (d_o) is given as 2 m, and the image distance (d_i) is given as -1 m (since the image is formed behind the mirror, the distance is negative).
Substituting the values into the mirror equation:
1/f = 1/2 + 1/-1
Simplifying the equation:
1/f = 1/2 - 1/1
1/f = -1/2
To find the value of f, we can take the reciprocal of both sides of the equation:
f = -2/1
f = -2 m
Therefore, the focal length of the convex mirror is -2 m. The negative sign indicates that the mirror has a diverging effect, as is characteristic of convex mirrors.
Learn more about a convex mirror:
https://brainly.com/question/32811695
#SPJ11
Enter only the last answer c) into moodle.
A solid sphere of mass M and radius R rolls without slipping to the right with a linear speed of v
a) Find a simplified algebraic expression using symbols only for the tolal kinetic energy Kior of the ball in terms of M and R
b) IfM = 7.5 kg. R = 10,8 cm and v = 4.5 m/s find the moment of inertia of the bail.
c) Plug in the numbers from part b) into your formula from part a) to get the value of the total kinetic energy
The total kinetic energy of the rolling ball, taking into account both its translational and rotational kinetic energy, is approximately 100.356 Joules. This is calculated by considering the mass, linear speed, radius, moment of inertia, and angular velocity of the ball.
a) The total kinetic energy of the rolling ball can be expressed as the sum of its translational kinetic energy and rotational kinetic energy.
The translational kinetic energy (Kt) is given by the formula: Kt = 0.5 * M * v^2, where M is the mass of the ball and v is its linear speed.
The rotational kinetic energy (Kr) is given by the formula: Kr = 0.5 * I * ω^2, where I is the moment of inertia of the ball and ω is its angular velocity.
Since the ball is rolling without slipping, the linear speed v is related to the angular velocity ω by the equation: v = R * ω, where R is the radius of the ball.
Therefore, the total kinetic energy (Kior) of the ball can be expressed as: Kior = Kt + Kr = 0.5 * M * v^2 + 0.5 * I * (v/R)^2.
b) To find the moment of inertia (I) of the ball, we can rearrange the equation for ω in terms of v and R: ω = v / R.
Substituting the values, we have: ω = 4.5 m/s / 0.108 m = 41.67 rad/s.
The moment of inertia (I) can be calculated using the equation: I = (2/5) * M * R^2.
Substituting the values, we have: I = (2/5) * 7.5 kg * (0.108 m)^2 = 0.08712 kg·m².
c) Plugging in the values from part b) into the formula from part a) for the total kinetic energy (Kior):
Kior = 0.5 * M * v^2 + 0.5 * I * (v/R)^2
= 0.5 * 7.5 kg * (4.5 m/s)^2 + 0.5 * 0.08712 kg·m² * (4.5 m/s / 0.108 m)^2
= 91.125 J + 9.231 J
= 100.356 J.
Therefore, the total kinetic energy of the ball, with the given values, is approximately 100.356 Joules.
learn more about "inertia":- https://brainly.com/question/1140505
#SPJ11
An organ pipe is open on one end and closed on the other. (a) How long must the pipe be if it is to produce a fundamental frequency of 32 Hz when the speed of sound is 339 m/s? L = Number Units (b) What are the first three overtone frequencies for this pipe? List them in order.
The first three overtones of the pipe are 96 Hz, 160 Hz, and 224 Hz.
a) For an organ pipe open on one end and closed on the other, the fundamental frequency of the pipe can be calculated using the following formula:
[tex]$$f_1=\frac{v}{4L}$$$$L=\frac{v}{4f_1}$$[/tex]
where L is the length of the pipe, v is the velocity of sound and f1 is the fundamental frequency.
Therefore, substituting the given values, we obtain:
L = (339/4) / 32
= 2.65 meters
Therefore, the length of the pipe should be 2.65 meters to produce a fundamental frequency of 32 Hz when the velocity of sound is 339 m/s.
b) For an organ pipe open on one end and closed on the other, the frequencies of the first three overtones are:
[tex]$$f_2=3f_1$$$$f_3=5f_1$$$$f_4=7f_1$$[/tex]
Thus, substituting f1=32Hz, we get:
f2 = 3 × 32 = 96 Hz
f3 = 5 × 32 = 160 Hz
f4 = 7 × 32 = 224 Hz
Therefore, the first three overtones of the pipe are 96 Hz, 160 Hz, and 224 Hz.
To learn more about pipe visit;
https://brainly.com/question/31180984
#SPJ11
In the case of a time-varying force (ie. not constant), the
A© is the area under the force vs. time curve.
B© is the average force during the time interval
Co connot be founds
D• is the change in momentur over the time interval.
In the case of a time-varying force (ie. not constant), is the change in momentum over the time interval. The correct option is D.
The assertion that "A is the area under the force vs. time curve" is false. The impulse, not the work, is represented by the area under the force vs. time curve.
The impulse is defined as an object's change in momentum and is equal to the integral of force with respect to time.
The statement "B is the average force during the time interval" is false. The entire impulse divided by the duration of the interval yields the average force throughout a time interval.
The assertion "C cannot be found" is false. Option C may contain the correct answer, but it is not included in the available selections.
Thus, the correct option is D.
For more details regarding force, visit:
https://brainly.com/question/30507236
#SPJ4
A photon of wavelength 1.73pm scatters at an angle of 147 ∘ from an initially stationary, unbound electron. What is the de Broglie wavelength of the electron after the photon has been scattered?
The de Broglie wavelength of the electron after the photon has been scattered is approximately -1.12 picometers (-1.12 pm).
To determine the de Broglie wavelength of the electron after the photon scattering, we can use the conservation of momentum and energy.
Given:
Wavelength of the photon before scattering (λ_initial) = 1.73 pm
Scattering angle (θ) = 147°
The de Broglie wavelength of a particle is given by the formula:
λ = h / p
where λ is the de Broglie wavelength, h is the Planck's constant, and p is the momentum of the particle.
Before scattering, both the photon and the electron have momentum. After scattering, the momentum of the electron changes due to the transfer of momentum from the photon.
We can use the conservation of momentum to relate the initial and final momenta:
p_initial_photon = p_final_photon + p_final_electron
Since the photon is initially stationary, its initial momentum (p_initial_photon) is zero. Therefore:
p_final_photon + p_final_electron = 0
p_final_electron = -p_final_photon
Now, let's calculate the final momentum of the photon:
p_final_photon = h / λ_final_photon
To find the final wavelength of the photon, we can use the scattering angle and the initial and final wavelengths:
λ_final_photon = λ_initial / (2sin(θ/2))
Substituting the given values:
λ_final_photon = 1.73 pm / (2sin(147°/2))
Using the sine function on a calculator:
sin(147°/2) ≈ 0.773
λ_final_photon = 1.73 pm / (2 * 0.773)
Calculating the value:
λ_final_photon ≈ 1.73 pm / 1.546 ≈ 1.120 pm
Now we can calculate the final momentum of the photon:
p_final_photon = h / λ_final_photon
Substituting the value of Planck's constant (h) = 6.626 x 10^-34 J·s and converting the wavelength to meters:
λ_final_photon = 1.120 pm = 1.120 x 10^-12 m
p_final_photon = (6.626 x 10^-34 J·s) / (1.120 x 10^-12 m)
Calculating the value:
p_final_photon ≈ 5.91 x 10^-22 kg·m/s
Finally, we can find the de Broglie wavelength of the electron after scattering using the relation:
λ_final_electron = h / p_final_electron
Since p_final_electron = -p_final_photon, we have:
λ_final_electron = h / (-p_final_photon)
Substituting the values:
λ_final_electron = (6.626 x 10^-34 J·s) / (-5.91 x 10^-22 kg·m/s)
Calculating the value:
λ_final_electron ≈ -1.12 x 10^-12 m
Therefore, the de Broglie wavelength of the electron after the photon has been scattered is approximately -1.12 picometers (-1.12 pm).
Learn more about de Broglie wavelength https://brainly.com/question/30404168
#SPJ11
Two spheres with uniform surface charge density, one with a radius of 7.1 cm and the other with a radius of 4.2 cm, are separated by a center-to-center distance of 38 cm. The spheres have a combined charge of + 55jC and repel one another with a
force of 0.71 N. Assume that the chargo of the first sphote is
eator than the charge o the second sobore
What is tho surface chargo density on the sobero bi radicie 7 12
The surface charge density can be calculated by using the formula:σ=q/A, where σ = surface charge density, q = charge of a spherical object A = surface area of a spherical object. So, the surface charge density of a sphere with radius r and charge q is given by;σ = q/4πr².
The total charge of the spheres, q1 + q2 = 55 μC. The force of repulsion between the two spheres, F = 0.71 N.
To find, The surface charge density on the sphere with radius 7.1 cm,σ1 = q1/4πr1². The force of repulsion between the two spheres is given by; F = (1/4πε₀) * q1 * q2 / d², Where,ε₀ = permittivity of free space = 8.85 x 10^-12 N^-1m^-2C²q1 + q2 = 55 μC => q1 = 55 μC - q2.
We have two equations: F = (1/4πε₀) * q1 * q2 / d²σ1 = q1/4πr1². We can solve these equations simultaneously as follows: F = (1/4πε₀) * q1 * q2 / d²σ1 = (55 μC - q2) / 4πr1². Putting the values in the first equation and solving for q2:0.71 N = (1/4πε₀) * (55 μC - q2) * q2 / (38 cm)²q2² - (55 μC / 0.71 N * 4πε₀ * (38 cm)²) * q2 + [(55 μC)² / 4 * (0.71 N)² * (4πε₀)² * (38 cm)²] = 0q2 = 9.24 μCσ1 = (55 μC - q2) / 4πr1²σ1 = (55 μC - 9.24 μC) / (4π * (7.1 cm)²)σ1 = 23.52 μC/m².
Therefore, the surface charge density on the sphere with radius 7.1 cm is 23.52 μC/m².
Let's learn more about surface charge density :
https://brainly.com/question/14306160
#SPJ11
EM radiation has an average intensity of 1700 W/m2. Which of the following statements about the E or B fields in this radiation is correct? Erms = 800.2 N/C Bmax = 4.42 x 10-6 T Brms = 2.29 x 10-6 T Emax = 1500.0 N/C At a certain place on the surface of the earth, the sunlight has an intensity of about 1.8 x 103 W/m². What is the total electromagnetic energy from this sunlight in 5.5 m³ of space? (Give your answer in joules but don't include the units.) Click Submit to complete this assessment. Question 12 of
The correct statement about the E or B fields in radiation is that Erms = 800.2 N/C.
EM (electromagnetic) radiation has an average intensity of 1700 W/m². As a result, the electrical field (Erms) is related to the average intensity through the equation E = cB, where E is the electric field, B is the magnetic field, and c is the speed of light.
Erms is related to the average intensity I (in W/m²) through the formula Erms = sqrt(2 I / c ε) which is approximately equal to 800.2 N/C.
For a 5.5 m³ space on the earth's surface, the total electromagnetic energy from sunlight with an intensity of 1.8 x 103 W/m² is 9.9 x 106 J.
The formula for calculating the energy is E = I × A × t, where E is the energy, I is the intensity, A is the area, and t is the time.
Here, the area is 5.5 m³ and the time is 1 second, giving an energy of 9.9 x 106 J.
Learn more about electric field here:
https://brainly.com/question/15800304
#SPJ11
candle (h, - 0.24 m) is placed to the left of a diverging lens (f=-0.071 m). The candle is d, = 0.48 m to the left of the lens.
Write an expression for the image distance, d;
The expression for the image distance, d is;d' = 0.00093 m
Given that: Height of candle, h = 0.24 m
Distance of candle from the left of the lens, d= 0.48 m
Focal length of the diverging lens, f = -0.071 m
Image distance, d' is given by the lens formula as;1/f = 1/d - 1/d'
Taking the absolute magnitude of f, we have f = 0.071 m
Substituting the values in the above equation, we have; 1/0.071 = 1/0.48 - 1/d'14.0845
= (0.048 - d')/d'
Simplifying the equation above by cross multiplying, we have;
14.0845d' = 0.048d' - 0.048d' + 0.071 * 0.48d'
= 0.013125d'
= 0.013125/14.0845
= 0.00093 m (correct to 3 significant figures).
Therefore, the expression for the image distance, d is;d' = 0.00093 m
To learn more about image visit;
https://brainly.com/question/30725545
#SPJ11
An object of mass 0.2 kg is hung from a spring whose spring constant is 80 N/m in a resistive medium where damping coefficient P = 10 sec. The object is subjected to a sinusoidal driving force given by F(t) = F, sino't where F, = 2N and w' = 30 sec¹. In the steady state what is the amplitude of the forced oscillation. Also calculate the resonant amplitude.
In the steady state, the amplitude of the forced oscillation for the given system is 0.04 m. The resonant amplitude can be calculated by comparing the driving frequency with the natural frequency of the system.
In the steady state, the amplitude of the forced oscillation can be determined by dividing the magnitude of the driving force (F,) by the square root of the sum of the squares of the natural frequency (w₀) and the driving frequency (w'). In this case, the amplitude is 0.04 m.
The resonant amplitude occurs when the driving frequency matches the natural frequency of the system. At resonance, the amplitude of the forced oscillation is maximized.
In this scenario, the natural frequency can be calculated using the formula w₀ = sqrt(k/m), where k is the spring constant and m is the mass. After calculating the natural frequency, the resonant amplitude can be determined by substituting the natural frequency into the formula for the amplitude of the forced oscillation.
To learn more about oscillation click here: brainly.com/question/30111348
#SPJ11
The actual value of a measured quantity is 210.0 while the experimentally measured value of the quantity is 272.5. Ignoring the sign of the error, what is the percent relative error of this measurement?
The percent relative error of this measurement, ignoring the sign of the error, is approximately 29.76%.
The percent relative error of a measurement can be calculated using the formula:
Percent Relative Error = |(Measured Value - Actual Value) / Actual Value| * 100
Given that the actual value is 210.0 and the measured value is 272.5, we can substitute these values into the formula:
Percent Relative Error = |(272.5 - 210.0) / 210.0| * 100
Calculating the numerator first:
272.5 - 210.0 = 62.5
Now, substituting the values into the formula:
Percent Relative Error = |62.5 / 210.0| * 100
Simplifying:
Percent Relative Error = 0.2976 * 100
Percent Relative Error ≈ 29.76%
Therefore, the percent relative error of this measurement, ignoring the sign of the error, is approximately 29.76%.
Learn more about percent relative error here:
https://brainly.com/question/28771966
#SPJ11
Prob. 7-6 7-7. Determine the resultant internal loadings in the beam at cross sections through points D and E. Point E is just to the right of the 15-kN load. 15 kN 25 kN/m B E 2 m 2 m 1.5 m- -1.5 m Prob. 7-7 D C
At point D, the resultant internal loadings in the beam consist of a shear force of 15 kN and a bending moment of 40 kNm in the clockwise direction. At point E, just to the right of the 15-kN load, the resultant internal loadings in the beam consist of a shear force of 40 kN and a bending moment of 80 kNm in the clockwise direction.
To determine the internal loadings in the beam at points D and E, we need to analyze the forces and moments acting on the beam.
At point D, which is located 2 m from the left end of the beam, there is a concentrated load of 15 kN acting downward. This load creates a shear force of 15 kN at point D. Additionally, there is a distributed load of 25 kN/m acting downward over a 1.5 m length of the beam from point C to D. To calculate the bending moment at D, we can use the equation:
M = -wx²/2
where w is the distributed load and x is the distance from the left end of the beam. Substituting the values, we have:
M = -(25 kN/m)(1.5 m)²/2 = -56.25 kNm
Therefore, at point D, the resultant internal loadings in the beam consist of a shear force of 15 kN (acting downward) and a bending moment of 56.25 kNm (clockwise).
Moving to point E, just to the right of the 15-kN load, we need to consider the additional effects caused by this load. The 15-kN load creates a shear force of 15 kN (acting upward) at point E, which is balanced by the 25 kN/m distributed load acting downward. As a result, the net shear force at point E is 25 kN (acting downward). The distributed load also contributes to the bending moment at point E, calculated using the same equation:
M = -wx²/2
Considering the distributed load over the 2 m length from point B to E, we have:
M = -(25 kN/m)(2 m)²/2 = -100 kNm
Adding the bending moment caused by the 15-kN load at point E (clockwise) gives us a total bending moment of -100 kNm + 15 kN x 2 m = -70 kNm (clockwise).
Therefore, at point E, the resultant internal loadings in the beam consist of a shear force of 25 kN (acting downward) and a bending moment of 70 kNm (clockwise).
To know more about beam refer here:
https://brainly.com/question/31324896#
#SPJ11
if your body temperature is 38°C and you're giving us given off the greatest amount of infrared light at frequency of 4.2x10^13 Hz.
let's look at one water molecule and assumed that the oxygen atom is mostly staying still, and one of the hydrogen atoms is vibrating at the frequency of 4.2x10^13 Hz. we can model this oscillation as a mass on a spring. It hydrogen atom is just a proton and an electron.
1a. how long does it take for the hydrogen atom to go through one full oscillation?
2a. what is the spring constant?
3a. what is the amplitude of the oscillation?
4a. what is the hydrogen atoms maximum speed while it's oscillating?
2.38 × 10−14 s. This time is taken by the hydrogen atom to complete one oscillation.
Given: Body temperature = 38°C
= 311 K;
Frequency = 4.2 × 1013 Hz.
Let's consider a hydrogen atom vibrating at the given frequency.1a. The time period is given by:
T = 1/f
=1/4.2 × 1013
=2.38 × 10−14 s.
This time is taken by the hydrogen atom to complete one oscillation.
2a. The frequency of oscillation is related to the spring constant by the equation,f=1/(2π)×√(k/m),
where k is the spring constant and m is the mass of the hydrogen atom.Since we know the frequency, we can calculate the spring constant by rearranging the above equation:
k=(4π2×m×f2)≈1.43 × 10−2 N/m.
3a. We know that the energy of a vibrating system is proportional to the square of its amplitude.
Mathematically,E ∝ A2.
So, the amplitude of the oscillation can be calculated by considering the energy of the hydrogen atom at this temperature. It is found to be
2.5 × 10−21 J.
4a. The velocity of a vibrating system is given by,
v = A × 2π × f.
Since we know the amplitude and frequency of oscillation, we can calculate the velocity of the hydrogen atom as:
v = A × 2π × f = 1.68 × 10−6 m/s.
This is the maximum velocity of the hydrogen atom while it is oscillating.
To know more about temperature visit;
brainly.com/question/7510619
#SPJ11
calculate the mean free path of a photon in the core in mm,
given: The radius of the solar core is 0.1R (R is the solar radius)
The core contains 25% of the sun's total mass.
The mean free path of a photon in the core in mm can be calculated using the given information which are:Radius of solar core = 0.1R, where R is the solar radius.
The core contains 25% of the sun's total mass First, we will calculate the radius of the core:Radius of core, r = 0.1RWe know that the mass of the core, M = 0.25Ms, where Ms is the total mass of the sun.A formula that can be used to calculate the mean free path of a photon is given by:l = 1 / [σn]Where l is the mean free path, σ is the cross-sectional area for interaction and n is the number density of the target atoms/molecules.
Let's break the formula down for easier understanding:σ = πr² where r is the radius of the core n = N / V where N is the number of target atoms/molecules in the core and V is the volume of the core.l = 1 / [σn] = 1 / [πr²n]We can calculate N and V using the mass of the core, M and the mass of a single atom, m.N = M / m Molar mass of the sun.
To know more about calculated visit:
https://brainly.com/question/30781060
#SPJ11
A medium-sized banana provides about 105 Calories of energy. HINT (a) Convert 105 Cal to joules. (b) Suppose that amount of energy is transformed into kinetic energy of a 2.13 kg object initially at rest. Calculate the final speed of the object (in m/s). m/s J (c) If that same amount of energy is added to 3.79 kg (about 1 gal) of water at 19.7°C, what is the water's final temperature (in °C)?
(a) To convert 105 Calories to joules, multiply by 4.184 J/cal.
(b) Using the principle of conservation of energy, we can calculate the final speed of the object.
(c) Applying the specific heat formula, we can determine the final temperature of the water.
To convert Calories to joules, we can use the conversion factor of 4.184 J/cal. Multiplying 105 Calories by 4.184 J/cal gives us the energy in joules.
The initial kinetic energy (KE) of the object is zero since it is initially at rest. The total energy provided by the banana, which is converted into kinetic energy, is equal to the final kinetic energy. We can use the equation KE = (1/2)mv^2, where m is the mass of the object and v is the final speed. Plugging in the known values, we can solve for v.
The energy transferred to the water can be calculated using the equation Q = mcΔT, where Q is the energy transferred, m is the mass of the water, c is the specific heat capacity of water (approximately 4.184 J/g°C), and ΔT is the change in temperature. We can rearrange the formula to solve for ΔT and then add it to the initial temperature of 19.7°C to find the final temperature.
It's important to note that specific values for the mass of the object and the mass of water are needed to obtain precise calculations.
learn more about "temperature ":- https://brainly.com/question/27944554
#SPJ11
The decay energy of a short-lived particle has an uncertainty of 2.0 Mev due to its short lifetime. What is the smallest lifetime (in s) it can have? X 5 3.990-48 + Additional Materials
The smallest lifetime of the short-lived particle can be calculated using the uncertainty principle, and it is determined to be 5.0 × 10^(-48) s.
According to the uncertainty principle, there is a fundamental limit to how precisely we can know both the energy and the time of a particle. The uncertainty principle states that the product of the uncertainties in energy (ΔE) and time (Δt) must be greater than or equal to a certain value.
In this case, the uncertainty in energy is given as 2.0 MeV (megaelectronvolts). We can convert this to joules using the conversion factor 1 MeV = 1.6 × 10^(-13) J. Therefore, ΔE = 2.0 × 10^(-13) J.
The uncertainty principle equation is ΔE × Δt ≥ h/2π, where h is the Planck's constant.
By substituting the values, we can solve for Δt:
(2.0 × 10^(-13) J) × Δt ≥ (6.63 × 10^(-34) J·s)/(2π)
Simplifying the equation, we find:
Δt ≥ (6.63 × 10^(-34) J·s)/(2π × 2.0 × 10^(-13) J)
Δt ≥ 5.0 × 10^(-48) s
Therefore, the smallest lifetime of the short-lived particle is determined to be 5.0 × 10^(-48) s.
Learn more about uncertainty principle here:
https://brainly.com/question/30402752
#SPJ11
Timer 0.346 s S a. The accuracy of the given timer b. The accuracy of ruler c. The relative error in measured acceleration due to gravity v cm d. What will happen to the value of g if the ball falls from height y= 100.0 cm Y=60.0 cm Timer 0.346 s QUESTION 5 1.4 points A Free Fall experiment was performed by a student in order to find the gravitional acceleration (9exp). The motion of a free falling object from rest is given by the following equation : 2y g= t2 Use the free fall setup diagram and the given equation to answer the following: Y=60.0 cm
The accuracy of the given timer is 0.346 s.The accuracy of the ruler is not provided in the given information. The relative error in measured acceleration due to gravity (g) in cm is not specified in the question. If the ball falls from a height of y = 100.0 cm or y = 60.0 cm, the value of g (gravitational acceleration) will remain constant.
The equation provided, 2y = [tex]gt^2[/tex], relates the distance fallen (y) to the time squared [tex](t^2)[/tex], but it does not depend on the initial height.
The gravitational acceleration, g, is constant near the surface of the Earth regardless of the starting height of the object.
To know more about acceleration refer to-
https://brainly.com/question/2303856
#SPJ11
The magnitude of the orbital angular momentum of an electron in an atom is L=120ħ. How many different values of L, are possible?
The number of different values of orbital angular momentum (L) possible for an electron in an atom is 241.
The orbital angular momentum of an electron is quantized and can only take on specific values given by L = mħ, where m is an integer representing the magnetic quantum number and ħ is the reduced Planck's constant.
In this case, we are given that L = 120ħ. To find the possible values of L, we need to determine the range of values for m that satisfies the equation.
Dividing both sides of the equation by ħ, we have L/ħ = m. Since L is given as 120ħ, we have m = 120.
The possible values of m can range from -120 to +120, inclusive, resulting in 241 different values (-120, -119, ..., 0, ..., 119, 120).
Therefore, there are 241 different values of orbital angular momentum (L) possible for the given magnitude of 120ħ.
learn more about orbital angular momentum here:
https://brainly.com/question/31626716
#SPJ11
If given a 2-D conductor at zero Kelvin temperature, then the electron density will be expressed as:
If given a 2-D conductor at zero Kelvin temperature, then the electron density will be expressed as:
n = (2 / h²) * m_eff * E_F
Where n is the electron density in the conductor, h is the Planck's constant, m_eff is the effective mass of the electron in the conductor, and E_F is the Fermi energy of the conductor.
The Fermi energy of the conductor is a measure of the maximum energy level occupied by the electrons in the conductor at absolute zero temperature.
To learn more about conductor, refer below:
https://brainly.com/question/14405035
#SPJ11
A 10 m wide building has a gable shaped roof that is
angled at 23.0° from the horizontal (see the linked
figure).
What is the height difference between the lowest and
highest point of the roof?
The height difference between the lowest and highest point of the roof is needed. By using the trigonometric function tangent, we can determine the height difference between the lowest and highest point of the gable-shaped roof.
To calculate the height difference between the lowest and highest point of the roof, we can use trigonometry. Here's how:
1. Identify the given information: The width of the building is 10 m, and the roof is angled at 23.0° from the horizontal.
2. Draw a diagram: Sketch a triangle representing the gable roof. Label the horizontal base as the width of the building (10 m) and the angle between the base and the roof as 23.0°.
3. Determine the height difference: The height difference corresponds to the vertical side of the triangle. We can calculate it using the trigonometric function tangent (tan).
tan(angle) = opposite/adjacent
In this case, the opposite side is the height difference (h), and the adjacent side is the width of the building (10 m).
tan(23.0°) = h/10
Rearrange the equation to solve for h:
h = 10 * tan(23.0°)
Use a calculator to find the value of tan(23.0°) and calculate the height difference.
By using the trigonometric function tangent, we can determine the height difference between the lowest and highest point of the gable-shaped roof. The calculated value will provide the desired information about the vertical span of the roof.
To know more about tangent visit:
https://brainly.com/question/1533811
#SPJ11
A uranium nucleus (mass 238 units) at rest decays into a helium nucleus (mass 4.0 units) and a thorium nucleus (mass 234 units). If the velocity of the helium nucleus is 4531124
( m/s), what is the magnitude of the velocity of the thorium nucleus? Give your answer to one decimal place
The magnitude of the velocity of the thorium nucleus is approximately 77042.4 m/s (rounded to one decimal place).
To solve this problem, we can use the principle of conservation of momentum. Since the uranium nucleus is initially at rest, the total momentum before and after the decay should be conserved.
Let's denote the initial velocity of the uranium nucleus as v₁ and the final velocities of the helium and thorium nuclei as v₂ and v₃, respectively.
According to the conservation of momentum:
m₁v₁ = m₂v₂ + m₃v₃
In this case, the mass of the uranium nucleus (m₁) is 238 units, the mass of the helium nucleus (m₂) is 4.0 units, and the mass of the thorium nucleus (m₃) is 234 units.
Since the uranium nucleus is initially at rest (v₁ = 0), the equation simplifies to:
0 = m₂v₂ + m₃v₃
Given that the velocity of the helium nucleus (v₂) is 4531124 m/s, we can solve for the magnitude of the velocity of the thorium nucleus (v₃).
0 = 4.0 × 4531124 + 234 × v₃
Simplifying the equation:
v₃ = - (4.0 × 4531124) / 234
Evaluating the expression:
v₃ = - 77042.4 m/s
To know more about velocity
https://brainly.com/question/80295
#SPJ4
The magnitude of the velocity of the thorium nucleus is 77410.6
The total mass of the products is 238 u, the same as the mass of the uranium nucleus. There are only two products, so they must have gone off in opposite directions in order to conserve momentum.
Let's assume that the helium nucleus went off to the right, and that the thorium nucleus went off to the left. That way, the momentum of the two particles has opposite signs, so they add to zero.
We know that the helium nucleus has a velocity of 4531124 m/s, so its momentum is(4.0 u)(4531124 m/s) = 1.81245e+13 kg m/s. We also know that the momentum of the thorium nucleus has the same magnitude, but the opposite sign. That means that its velocity has the same ratio to that of the helium nucleus as the mass of the helium nucleus has to the mass of the thorium nucleus. That ratio is(4.0 u)/(234.0 u) = 0.017094So the velocity of the thorium nucleus is(0.017094)(4531124 m/s) = 77410 m/s.
Answer: 77410.6
Learn more about magnitude
https://brainly.com/question/31022175
#SPJ11
: 4. Given that the energy in the world is virtually constant, why do we sometimes have an "energy crisis"? 5a What is the ultimate end result of energy transformations. That is, what is the final form that most energy types eventually transform into? 5b What are the environmental concerns of your answer to 5a?
Energy refers to the capacity or ability to do work or produce a change. It is a fundamental concept in physics and plays a crucial role in various aspects of our lives and the functioning of the natural world.
4. Energy crisis occurs when the supply of energy cannot meet up with the demand, causing a shortage of energy. Also, the distribution of energy is not equal, and some regions may experience energy shortages while others have more than enough.
5a. The ultimate end result of energy transformations is heat. Heat is the final form that most energy types eventually transform into. For instance, the energy released from burning fossil fuels is converted into heat. The same is true for the energy generated from nuclear power, wind turbines, solar panels, and so on.
5b. Environmental concerns about the transformation of energy into heat include greenhouse gas emissions, global warming, and climate change. The vast majority of the world's energy is produced by burning fossil fuels. The burning of these fuels produces carbon dioxide, methane, and other greenhouse gases that trap heat in the atmosphere, resulting in global warming. Global warming is a significant environmental issue that affects all aspects of life on Earth.
To know more about Energy visit:
https://brainly.com/question/30672691
#SPJ11
A certain boat traveling on a river displaces a volume of 6.7 m of water. The density of the water is 1000 kg/m2.) a. What is the mass of the water displaced by the boat? b. What is the weight of the boat?
According to the question (a). The mass of the water displaced by the boat is 6700 kg. (b). The weight of the boat is 65560 N.
a. To calculate the mass of the water displaced by the boat, we can use the formula:
[tex]\[ \text{mass} = \text{volume} \times \text{density} \][/tex]
Given that the volume of water displaced is 6.7 m³ and the density of water is 1000 kg/m³, we can substitute these values into the formula:
[tex]\[ \text{mass} = 6.7 \, \text{m³} \times 1000 \, \text{kg/m³} \][/tex]
[tex]\[ \text{mass} = 6700 \, \text{kg} \][/tex]
Therefore, the mass of the water displaced by the boat is 6700 kg.
b. To calculate the weight of the boat, we need to know the gravitational acceleration in the specific location. Assuming the standard gravitational acceleration of approximately 9.8 m/s²:
[tex]\[ \text{weight} = \text{mass} \times \text{acceleration due to gravity} \][/tex]
Given that the mass of the water displaced by the boat is 6700 kg, we can substitute this value into the formula:
[tex]\[ \text{weight} = 6700 \, \text{kg} \times 9.8 \, \text{m/s}^2 \][/tex]
[tex]\[ \text{weight} = 65560 \, \text{N} \][/tex]
Therefore, the weight of the boat is 65560 N.
To know more about gravitational visit-
brainly.com/question/29013218
#SPJ11
A police car is moving to the right at 27 m/s, while a speeder is coming up from behind at a speed 36 m/s, both speeds being with respect to the ground. The police officer points a radar gun at the oncoming speeder. Assume that the electromagnetic wave emitted by the gun has a frequency of 7.5×109 Hz. Find the difference between the frequency of the wave that returns to the police car after reflecting from the speeder's car and the frequency emitted by the police car.
In this scenario, a police car is moving to the right at 27 m/s, and a speeder is approaching from behind at 36 m/s.
The police officer points a radar gun at the speeder, emitting an electromagnetic wave with a frequency of 7.5×10^9 Hz. The task is to find the difference between the frequency of the wave that returns to the police car after reflecting from the speeder's car and the frequency emitted by the police car.
The frequency of the wave that returns to the police car after reflecting from the speeder's car is affected by the relative motion of the two vehicles. This phenomenon is known as the Doppler effect.
In this case, since the police car and the speeder are moving relative to each other, the frequency observed by the police car will be shifted. The Doppler effect formula for frequency is given by f' = (v + vr) / (v + vs) * f, where f' is the observed frequency, v is the speed of the wave in the medium (assumed to be the same for both the emitted and reflected waves), vr is the velocity of the radar gun wave relative to the speeder's car, vs is the velocity of the radar gun wave relative to the police car, and f is the emitted frequency.
In this scenario, the difference in frequency can be calculated as the observed frequency minus the emitted frequency: Δf = f' - f. By substituting the given values and evaluating the expression, the difference in frequency can be determined.
Learn more about electromagnetic here: brainly.com/question/31038220
#SPJ11
Explain the photoelectric effect. Again, diagrams are important
to the explanation.
A diagram illustrating the photoelectric effect would typically show light photons striking the surface of a metal, causing the ejection of electrons from the material. The diagram would also depict the energy levels of the material, illustrating how the energy of the photons must surpass the work function for electron emission to occur.
The photoelectric effect refers to the phenomenon in which electrons are emitted from a material's surface when it is exposed to light of a sufficiently high frequency or energy. The effect played a crucial role in establishing the quantum nature of light and laid the foundation for the understanding of photons as particles.
Here's a simplified explanation of the photoelectric effect:
1. When light (consisting of photons) with sufficient energy strikes the surface of a material, it interacts with the electrons within the material.
2. The energy of the photons is transferred to the electrons, enabling them to overcome the binding forces of the material's atoms.
3. If the energy transferred to an electron is greater than the material's work function (the minimum energy required to remove an electron from the material), the electron is emitted.
4. The emitted electrons, known as photoelectrons, carry the excess energy as kinetic energy.
A diagram illustrating the photoelectric effect would typically show light photons striking the surface of a metal, causing the ejection of electrons from the material. The diagram would also depict the energy levels of the material, illustrating how the energy of the photons must surpass the work function for electron emission to occur.
Learn more about photoelectric effect from the link
https://brainly.com/question/1359033
#SPJ11
7. A radio station broadcasts its radio signals at 92.6 MHz. Find the wavelength if the waves travel at 3.00 x 108 m/s.
The problem involves a radio station broadcasting at a frequency of 92.6 MHz, and the task is to determine the wavelength of the radio waves given their speed of travel, which is 3.00 x 10^8 m/s.
To solve this problem, we can use the formula that relates the speed of a wave to its frequency and wavelength. The key parameters involved are frequency, wavelength, and speed.
The formula is: speed = frequency * wavelength. Rearranging the formula, we get: wavelength = speed / frequency. By substituting the given values of the speed (3.00 x 10^8 m/s) and the frequency (92.6 MHz, which is equivalent to 92.6 x 10^6 Hz), we can calculate the wavelength of the radio waves.
The speed of the radio waves is a constant value, while the frequency corresponds to the number of cycles or oscillations of the wave per second. The wavelength represents the distance between two corresponding points on the wave. In this case, we are given the frequency and speed, and we need to find the wavelength by using the derived formula.
Learn more about Frequency:
https://brainly.com/question/29739263
#SPJ11
Two capacitors, C, = 6.10 MF and Cz = 3.18 F, are connected in parallel, then the combination is connected to a 250 V battery. When the capacitors are charged, each one is removed from the circuit. Next, the two charged capacitors are connected to each other so that the positive plate of one
capacitor is connected to the negative plate of the other capacitor. What is the resulting charge on each capacitor (in uC)?
The resulting charge on each capacitor, both when connected in parallel to the battery and when connected to each other in series, is approximately 2.32 µC.
When capacitors are connected in parallel, the voltage across them is the same. Therefore, the voltage across the combination of capacitors in the first scenario (connected in parallel to the battery) is 250 V.
For capacitors connected in parallel, the total capacitance (C_total) is the sum of individual capacitances:
C_total = C1 + C2
Given:
C1 = 6.10 µF = 6.10 × 10^(-6) F
C2 = 3.18 F
C_total = C1 + C2
C_total = 6.10 × 10^(-6) F + 3.18 × 10^(-6) F
C_total = 9.28 × 10^(-6) F
Now, we can calculate the charge (Q) on each capacitor when connected in parallel:
Q = C_total × V
Q = 9.28 × 10^(-6) F × 250 V
Q ≈ 2.32 × 10^(-3) C
Therefore, the resulting charge on each capacitor when connected in parallel to the battery is approximately 2.32 µC.
When the capacitors are disconnected from the circuit and connected to each other in series, the charge remains the same on each capacitor.
Thus, the resulting charge on each capacitor when they are connected to each other in series is also approximately 2.32.
To learn more about voltage, Visit:
https://brainly.com/question/30764403
#SPJ11
An ideal step-down transformer has a primary coil of 710 turns and a secondary coil of 30 turns. Its primary coil is plugged into an outlet with 12 V(AC), from which it draws an rms current of 0.3 A. What is the voltage and rms current in the secondary coil?
- The voltage in the secondary coil is approximately 0.509 V (rms).
- The rms current in the secondary coil is approximately 7 A.
In an ideal step-down transformer, the voltage ratio is inversely proportional to the turns ratio. We can use this relationship to determine the voltage and current in the secondary coil.
Primary coil turns (Np) = 710
Secondary coil turns (Ns) = 30
Primary voltage (Vp) = 12 V (rms)
Primary current (Ip) = 0.3 A (rms)
Using the turns ratio formula:
Voltage ratio (Vp/Vs) = (Np/Ns)
Vs = Vp * (Ns/Np)
Vs = 12 V * (30/710)
Vs ≈ 0.509 V (rms)
Therefore, the voltage in the secondary coil is approximately 0.509 V (rms).
To find the current in the secondary coil, we can use the current ratio formula:
Current ratio (Ip/Is) = (Ns/Np)
Is = Ip * (Np/Ns)
Is = 0.3 A * (710/30)
Is ≈ 7 A (rms)
Therefore, the rms current in the secondary coil is approximately 7 A.
Learn more about step-down transformers at https://brainly.com/question/3767027
#SPJ11
1. The figure ustrated in the previous siide presents an elastic frontal colision between two balls One of them hos a mass m, of 0.250 kg and an initial velocity of 5.00 m/s. The other has a mass of m, 0.800 kg and is initially at rest. No external forces act on the bolls. Calculate the electies of the balls ofter the crash according to the formulas expressed below. Describe the following: What are the explicit date, expressed in the problem What or what are the implicit date expressed in the problem Compare the two results of the final speeds and say what your conclusion is. 2 3 4. -1-+ Before collision m2 mi TOL 102=0 After collision in
The figure in the previous siide presents an elastic frontal collision between two balls One of them hos a mass m, of 0.250 kg and an initial velocity of 5.00 m/s 3.125 J = (0.125 kg) * (v1f^2) + (0.400 kg) * (v2f^2)
To calculate the velocities of the balls after the collision, we can use the principles of conservation of momentum and conservation of kinetic energy for an elastic collision.
Let the initial velocity of the first ball (mass m1 = 0.250 kg) be v1i = 5.00 m/s, and the initial velocity of the second ball (mass m2 = 0.800 kg) be v2i = 0 m/s.
Using the conservation of momentum:
m1 * v1i + m2 * v2i = m1 * v1f + m2 * v2f
Substituting the values:
(0.250 kg) * (5.00 m/s) + (0.800 kg) * (0 m/s) = (0.250 kg) * v1f + (0.800 kg) * v2f
Simplifying the equation:
1.25 kg·m/s = 0.250 kg·v1f + 0.800 kg·v2f
Now, we can use the conservation of kinetic energy:
(1/2) * m1 * (v1i^2) + (1/2) * m2 * (v2i^2) = (1/2) * m1 * (v1f^2) + (1/2) * m2 * (v2f^2)
Substituting the values:
(1/2) * (0.250 kg) * (5.00 m/s)^2 + (1/2) * (0.800 kg) * (0 m/s)^2 = (1/2) * (0.250 kg) * (v1f^2) + (1/2) * (0.800 kg) * (v2f^2)
Simplifying the equation:
3.125 J = (0.125 kg) * (v1f^2) + (0.400 kg) * (v2f^2)
Now we have two equations with two unknowns (v1f and v2f). By solving these equations simultaneously, we can find the final velocities of the balls after the collision.
To know more about collision refer here:
https://brainly.com/question/13138178#
#SPJ11
A satellite revolving around Earth has an orbital radius of 1.5 x 10^4 km. Gravity being the only force acting on the satele calculate its time period of motion in seconds. You can use the following numbers for calculation: Mass of Earth = 5.97 x 10^24 kg Radius of Earth = 6.38 x 10^3 km Newton's Gravitational Constant (G) = 6.67 x 10^-11 N m^2/kg^2 Mass of the Satellite = 1050 kg O a. 1.90 x 10^4 s O b. 4.72 x 10^3 s O c. 11.7 x 10^7 s O d. 3.95 x 10^6 s O e. 4.77 x 10^2 s O f. 2.69 x 10^21 s
The time period of motion of a satellite revolving around Earth with an orbital radius of 1.5 x 10^4 km is 67805.45 seconds
The time period of a satellite revolving around Earth with an orbital radius of 1.5 x 10^4 km can be calculated as follows: Given values are:
Mass of Earth (M) = 5.97 x 10^24 kg
Radius of Earth (R) = 6.38 x 10^3 km
Newton's Gravitational Constant (G) = 6.67 x 10^-11 N m^2/kg^2
Mass of the Satellite (m) = 1050 kg
Formula used for finding the time period is
T= 2π√(r^3/GM) where r is the radius of the orbit and M is the mass of the Earth
T= 2π√((1.5 x 10^4 + 6.38 x 10^3)^3/(6.67 x 10^-11 x 5.97 x 10^24))T = 2π x 10800.75T = 67805.45 seconds
The time period of motion of the satellite is 67805.45 seconds.
We have given the radius of the orbit of a satellite revolving around the Earth and we have to find its time period of motion. The given values of the mass of the Earth, the radius of the Earth, Newton's gravitational constant, and the mass of the satellite can be used for calculating the time period of motion of the satellite. We know that the time period of a satellite revolving around Earth can be calculated by using the formula, T= 2π√(r^3/GM) where r is the radius of the orbit and M is the mass of the Earth. Hence, by substituting the given values in the formula, we get the time period of the satellite to be 67805.45 seconds.
The time period of motion of a satellite revolving around Earth with an orbital radius of 1.5 x 10^4 km is 67805.45 seconds.
To know more about Gravitational Constant visit
brainly.com/question/17239197
#SPJ11