An iriternational organization must decide how to spend the $1,800,000 they have beenallotted for famine reliefin a remote area They expect to divide the money between buying rice at $38.50/ sack and beans at $35/ sack. The mumber. P. of people who would be fed if they buywsacks of rice and y sacks of beans is given by P=1.1x+y− 10 8
xy

What is the maximum number of people that can be fed, and how should the organization allocate its money? - Gound your answers to the nearest integer. Round your answers to the nearest integer: P mir ​
= is attained on buying sacks of rice and sacks of beans

Answers

Answer 1

Answer:

Step-by-step explanation:

To determine how the international organization should spend the allotted $1,800,000 on famine relief, we need to optimize the number of people fed. The number of people, P, who can be fed with x sacks of rice and y sacks of beans is given by the equation P = 1.1x + y - 10^8.

The objective is to maximize the number of people fed, represented by the variable P. The organization has a budget of $1,800,000 to purchase rice and beans. Let's assume the number of sacks of rice is x and the number of sacks of beans is y.

The cost of x sacks of rice can be calculated as $38.50 * x, and the cost of y sacks of beans is $35 * y. The total cost should not exceed the budget of $1,800,000. Therefore, the constraint can be written as:

38.50x + 35y ≤ 1,800,000.

To maximize P, we need to solve the optimization problem by finding the values of x and y that satisfy the constraint and maximize the objective function.

The equation P = 1.1x + y - 10^8 represents the number of people who can be fed. The term 1.1x represents the number of people fed per sack of rice, and y represents the number of people fed per sack of beans. The constant term 10^8 accounts for the initial population in the area.

By solving the optimization problem subject to the constraint, we can determine the optimal values of x and y that maximize the number of people fed within the given budget of $1,800,000.

Learn more about Optimization Problem here :

https://brainly.com/question/16768045

#SPJ11


Related Questions

Find the points on the curve given below, where the tangent is horizontal. (Round the answers to three decimal places.)
y = 9 x 3 + 4 x 2 - 5 x + 7
P1(_____,_____) smaller x-value
P2(_____,_____)larger x-value

Answers

The points where the tangent is horizontal are:P1 ≈ (-0.402, 6.311)P2 ≈ (0.444, 9.233)

The given curve is y = 9x^3 + 4x^2 - 5x + 7.

We need to find the points on the curve where the tangent is horizontal. In other words, we need to find the points where the slope of the curve is zero.Therefore, we differentiate the given function with respect to x to get the slope of the curve at any point on the curve.

Here,dy/dx = 27x^2 + 8x - 5

To find the points where the slope of the curve is zero, we solve the above equation for

dy/dx = 0. So,27x^2 + 8x - 5 = 0

Using the quadratic formula, we get,

x = (-8 ± √(8^2 - 4×27×(-5))) / (2×27)x

  = (-8 ± √736) / 54x = (-4 ± √184) / 27

So, the x-coordinates of the points where the tangent is horizontal are (-4 - √184) / 27 and (-4 + √184) / 27.

We need to find the corresponding y-coordinates of these points.

To find the y-coordinate of P1, we substitute x = (-4 - √184) / 27 in the given function,

y = 9x^3 + 4x^2 - 5x + 7y

  = 9[(-4 - √184) / 27]^3 + 4[(-4 - √184) / 27]^2 - 5[(-4 - √184) / 27] + 7y

  ≈ 6.311

To find the y-coordinate of P2, we substitute x = (-4 + √184) / 27 in the given function,

y = 9x^3 + 4x^2 - 5x + 7y

  = 9[(-4 + √184) / 27]^3 + 4[(-4 + √184) / 27]^2 - 5[(-4 + √184) / 27] + 7y

  ≈ 9.233

Therefore, the points where the tangent is horizontal are:P1 ≈ (-0.402, 6.311)P2 ≈ (0.444, 9.233)(Round the answers to three decimal places.)

Learn more about Tangents:

brainly.com/question/4470346

#SPJ11

in how many different ways can 14 identical books be distributed to three students such that each student receives at least two books?

Answers

The number of different waysof distributing 14 identical books is 45.

To find the number of different ways in which 14 identical books can be distributed to three students, such that each student receives at least two books, we need to use the stars and bars method.

Let us first give two books to each of the three students.

This leaves us with 8 books.

We can now distribute the remaining 8 books using the stars and bars method.

We will use two bars and 8 stars. The two bars divide the 8 stars into three groups, representing the number of books each student receives.

For example, if the stars are grouped as shown below:* * * * | * * | * * *this represents that the first student gets 4 books, the second student gets 2 books, and the third student gets 3 books.

The number of ways to arrange two bars and 8 stars is equal to the number of ways to choose 2 positions out of 10 for the bars.

This can be found using combinations, which is written as: 10C2 = (10!)/(2!(10 - 2)!) = 45

Therefore, the number of different ways to distribute 14 identical books to three students such that each student receives at least two books is 45.

#SPJ11

Let us know more about combinations : https://brainly.com/question/28065038.

an insurance company sells 40% of its renters policies to home renters and the remaining 60% to apartment renters. among home renters, the time from policy purchase until policy cancellation has an exponential distribution with mean 4 years, and among apartment renters, it has an exponential distribution with mean 2 years. calculate the probability that the policyholder is a home renter, given that a renter still has a policy one year after purchase.

Answers

The probability that the policyholder is a home renter, given that a renter still has a policy one year after purchase, is approximately 0.260 or 26.0%.

Let H denote the event that the policyholder is a home renter, and A denote the event that the policyholder is an apartment renter. We are given that P(H) = 0.4 and P(A) = 0.6.

Let T denote the time from policy purchase until policy cancellation. We are also given that T | H ~ Exp(1/4), and T | A ~ Exp(1/2).

We want to calculate P(H | T > 1), the probability that the policyholder is a home renter, given that a renter still has a policy one year after purchase:

P(H | T > 1) = P(H and T > 1) / P(T > 1)

Using Bayes' theorem and the law of total probability, we have:

P(H | T > 1) = P(T > 1 | H) * P(H) / [P(T > 1 | H) * P(H) + P(T > 1 | A) * P(A)]

To find the probabilities in the numerator and denominator, we use the cumulative distribution function (CDF) of the exponential distribution:

P(T > 1 | H) = e^(-1/4 * 1) = e^(-1/4)

P(T > 1 | A) = e^(-1/2 * 1) = e^(-1/2)

P(T > 1) = P(T > 1 | H) * P(H) + P(T > 1 | A) * P(A)

= e^(-1/4) * 0.4 + e^(-1/2) * 0.6

Putting it all together, we get:

P(H | T > 1) = e^(-1/4) * 0.4 / [e^(-1/4) * 0.4 + e^(-1/2) * 0.6]

≈ 0.260

Therefore, the probability that the policyholder is a home renter, given that a renter still has a policy one year after purchase, is approximately 0.260 or 26.0%.

Learn more about probability here:

https://brainly.com/question/32117953

#SPJ11

5. Compute the volume and surface area of the solid obtained by rotating the area enclosed by the graphs of \( f(x)=-x+4 \) and \( g(x)=x^{2}-x+3 \) about the line \( x=4 \).

Answers

The surface area of the solid obtained by rotating the area enclosed by the graphs of [tex]\( f(x)=-x+4 \) and \( g(x)=x^{2}-x+3 \)[/tex]about the line x = 4 is 67π/3.

The graphs of the two functions are shown below: graph{x^2-x+3 [-5, 5, -2.5, 8]--x+4 [-5, 5, -2.5, 8]}Notice that the two graphs intersect at x = 2 and x = 3. The line of rotation is x = 4. We need to consider the portion of the curves from x = 2 to x = 3.

To find the volume of the solid of revolution, we can use the formula:[tex]$$V = \pi \int_a^b R^2dx,$$[/tex] where R is the distance from the line of rotation to the curve at a given x-value. We can express this distance in terms of x as follows: R = |4 - x|.

Since the line of rotation is x = 4, the distance from the line of rotation to any point on the curve will be |4 - x|. We can thus write the formula for the volume of the solid of revolution as[tex]:$$V = \pi \int_2^3 |4 - x|^2 dx.$$[/tex]

Squaring |4 - x| gives us:(4 - x)² = x² - 8x + 16. So the integral becomes:[tex]$$V = \pi \int_2^3 (x^2 - 8x + 16) dx.$$[/tex]

Evaluating the integral, we get[tex]:$$V = \pi \left[ \frac{x^3}{3} - 4x^2 + 16x \right]_2^3 = \frac{11\pi}{3}.$$[/tex]

Therefore, the volume of the solid obtained by rotating the area enclosed by the graphs of [tex]\( f(x)=-x+4 \) and \( g(x)=x^{2}-x+3 \)[/tex] about the line x = 4 is 11π/3.

The formula for the surface area of a solid of revolution is given by:[tex]$$S = 2\pi \int_a^b R \sqrt{1 + \left( \frac{dy}{dx} \right)^2} dx,$$[/tex] where R is the distance from the line of rotation to the curve at a given x-value, and dy/dx is the derivative of the curve with respect to x. We can again express R as |4 - x|. The derivative of f(x) is -1, and the derivative of g(x) is 2x - 1.

Thus, we can write the formula for the surface area of the solid of revolution as:[tex]$$S = 2\pi \int_2^3 |4 - x| \sqrt{1 + \left( \frac{dy}{dx} \right)^2} dx.$$[/tex]

Evaluating the derivative of g(x), we get:[tex]$$\frac{dy}{dx} = 2x - 1.$$[/tex]

Substituting this into the surface area formula and simplifying, we get:[tex]$$S = 2\pi \int_2^3 |4 - x| \sqrt{1 + (2x - 1)^2} dx.$$[/tex]

Squaring 2x - 1 gives us:(2x - 1)² = 4x² - 4x + 1. So the square root simplifies to[tex]:$$\sqrt{1 + (2x - 1)^2} = \sqrt{4x² - 4x + 2}.$$[/tex]

The integral thus becomes:[tex]$$S = 2\pi \int_2^3 |4 - x| \sqrt{4x² - 4x + 2} dx.$$[/tex]

To evaluate this integral, we will break it into two parts. When x < 4, we have:[tex]$$S = 2\pi \int_2^3 (4 - x) \sqrt{4x² - 4x + 2} dx.$$[/tex]

When x > 4, we have:[tex]$$S = 2\pi \int_2^3 (x - 4) \sqrt{4x² - 4x + 2} dx.$$[/tex]

We can simplify the expressions under the square root by completing the square:[tex]$$4x² - 4x + 2 = 4(x² - x + \frac{1}{2}) + 1.$$[/tex]

Differentiating u with respect to x gives us:[tex]$$\frac{du}{dx} = 2x - 1.$$[/tex]We can thus rewrite the surface area formula as:[tex]$$S = 2\pi \int_2^3 |4 - x| \sqrt{4u + 1} \frac{du}{dx} dx.[/tex]

Evaluating these integrals, we get[tex]:$$S = \frac{67\pi}{3}.$$[/tex]

Therefore, the surface area of the solid obtained by rotating the area enclosed by the graphs of [tex]\( f(x)=-x+4 \) and \( g(x)=x^{2}-x+3 \)[/tex]about the line x = 4 is 67π/3.

Learn more about distance  here:

https://brainly.com/question/15256256

#SPJ11

A telemarketer makes six phone calls per hour and is able to make a sale on 30 percent of these contacts. During the next two hours, find: a. The probability of making exactly four sales.

Answers

The probability of making exactly four sales in the next two hours is 45.6.

To find the probability of making exactly four sales in the next two hours, we need to calculate the probability of making four sales in the first hour and two sales in the second hour.

In one hour, the telemarketer makes 6 phone calls. The probability of making a sale on each call is 30%, so the probability of making a sale is 0.30. To find the probability of making four sales in one hour, we use the binomial probability formula:

[tex]P(X=k) = C(n,k) * p^k * (1-p)^(n-k)[/tex]

where:
P(X=k) is the probability of getting exactly k successes
C(n,k) is the number of combinations of n items taken k at a time
p is the probability of success on a single trial
n is the number of trials

In this case, n = 6 (number of phone calls in an hour), k = 4 (number of sales), and p = 0.30 (probability of making a sale on each call). Plugging in these values:

P(X=4) = [tex]C(6,4) * 0.30^4 * (1-0.30)^(6-4)[/tex]

Calculating [tex]C(6,4) = 6! / (4!(6-4)!) = 15,[/tex] we get:

P(X=4) = [tex]15 * 0.30^4 * (1-0.30)^2[/tex]

Next, we need to find the probability of making two sales in the second hour. Following the same steps as above, but with n = 6 and k = 2, we get:

P(X=2) = [tex]C(6,2) * 0.30^2 * (1-0.30)^(6-2)[/tex]

Calculating [tex]C(6,2) = 6! / (2!(6-2)!) = 15[/tex], we get:

P(X=2) = [tex]15 * 0.30^2 * (1-0.30)^4[/tex]

Finally, we multiply the probabilities of making four sales in the first hour and two sales in the second hour to get the probability of making exactly four sales in the next two hours:

P(X=4 in hour 1 and X=2 in hour 2) = P(X=4) * P(X=2)

Substituting the calculated probabilities:

P(X=4 in hour 1 and X=2 in hour 2) = [tex](15 * 0.30^4 * (1-0.30)^2) * (15 * 0.30^2 * (1-0.30)^4)[/tex] = 45.59

Learn more about probability from the given link:

https://brainly.com/question/31828911

#SPJ11

Imagine we are given a sample of n observations y = (y1, . . . , yn). write down the joint probability of this sample of data

Answers

This can be written as P(y1) * P(y2) * ... * P(yn).The joint probability of a sample of n observations, y = (y1, . . . , yn), can be written as the product of the probabilities of each individual observation.


To find the joint probability, you need to calculate the probability of each individual observation.

This can be done by either using a probability distribution function or by estimating the probabilities based on the given data.

Once you have the probabilities for each observation, simply multiply them together to get the joint probability.

The joint probability of a sample of n observations, y = (y1, . . . , yn), can be written as the product of the probabilities of each individual observation.

This can be expressed as P(y) = P(y1) * P(y2) * ... * P(yn), where P(y1) represents the probability of the first observation, P(y2) represents the probability of the second observation, and so on.

To calculate the probabilities of each observation, you can use a probability distribution function if the distribution of the data is known. For example, if the data follows a normal distribution, you can use the probability density function of the normal distribution to calculate the probabilities.

If the distribution is not known, you can estimate the probabilities based on the given data. One way to do this is by counting the frequency of each observation and dividing it by the total number of observations. This gives you an empirical estimate of the probability.

Once you have the probabilities for each observation, you simply multiply them together to obtain the joint probability. This joint probability represents the likelihood of observing the entire sample of data.

To learn more about probability

https://brainly.com/question/31828911

#SPJ11

Find the slope of the tangent line to the graph of r=2−2cosθ when θ= π/2

Answers

Thus, x = (2 − 2cosθ)cosθ and y = (2 − 2cosθ)sinθ. The derivative of y with respect to x can be found as follows: dy/dx = (dy/dθ)/(dx/dθ) = (2sinθ)/(−2sinθ) = −1 .Therefore, the slope of the tangent line at θ = π/2 is -1.

The slope of the tangent line to the graph of r=2−2cosθ when θ= π/2 is -1. In order to find the slope of the tangent line to the graph of r=2−2cosθ when θ= π/2, the steps to follow are as follows:

1: Find the derivative of r with respect to θ. r(θ) = 2 − 2cos θDifferentiating both sides with respect to θ, we get dr/dθ = 2sinθ

2: Find the slope of the tangent line when θ = π/2We are given that θ = π/2, substituting into the derivative obtained in  1 gives: dr/dθ = 2sinπ/2 = 2(1) = 2Thus the slope of the tangent line at θ=π/2 is 2

. However, we require the slope of the tangent line at θ=π/2 in terms of polar coordinates.

3: Use the polar-rectangular conversion formula to find the slope of the tangent line in terms of polar coordinatesLet r = 2 − 2cos θ be the polar equation of a curve.

The polar-rectangular conversion formula is as follows: x = rcos θ, y = rsinθ.Using this formula, we can express the polar equation in terms of rectangular coordinates.

Thus, x = (2 − 2cosθ)cosθ and y = (2 − 2cosθ)sinθThe derivative of y with respect to x can be found as follows:dy/dx = (dy/dθ)/(dx/dθ) = (2sinθ)/(−2sinθ) = −1

Therefore, the slope of the tangent line at θ = π/2 is -1.

Learn more about tangent line here:

https://brainly.com/question/31617205

#SPJ11

Use the Quotient Rule to differentiate the function f(t)=sin(t)/t^2+2 i

Answers

The derivative of f(t) = sin(t)/(t^2 + 2i) using the Quotient Rule is f'(t) = [cos(t)*(t^2 + 2i) - 2tsin(t)] / (t^2 + 2i)^2.

To differentiate the function f(t) = sin(t)/(t^2 + 2i) using the Quotient Rule, we first need to identify the numerator and denominator functions. In this case, the numerator is sin(t) and the denominator is t^2 + 2i.

Next, we apply the Quotient Rule, which states that the derivative of a quotient of two functions is equal to (the derivative of the numerator times the denominator minus the numerator times the derivative of the denominator) divided by (the denominator squared).

Using this rule, we can find the derivative of f(t) as follows:

f'(t) = [(cos(t)*(t^2 + 2i)) - (sin(t)*2t)] / (t^2 + 2i)^2

Simplifying this expression, we get:

f'(t) = [cos(t)*(t^2 + 2i) - 2tsin(t)] / (t^2 + 2i)^2

Therefore, the differentiated function of f(t)=sin(t)/t^2+2 i is f'(t) = [cos(t)*(t^2 + 2i) - 2tsin(t)] / (t^2 + 2i)^2.

To know more about Quotient Rule refer here:

https://brainly.com/question/29255160#

#SPJ11

A triangle was dilated by a scale factor of 2. if cos a° = three fifths and segment fd measures 6 units, how long is segment de? triangle def in which angle f is a right angle, angle d measures a degrees, and angle e measures b degrees segment de = 3.6 units segment de = 8 units segment de = 10 units segment de = 12.4 units

Answers

A triangle was dilated by a scale factor of 2. The length of segment DE is 12 units.

To find the length of segment DE, we can use the concept of similar triangles.

Given that the triangle DEF was dilated by a scale factor of 2, the corresponding sides of the original triangle and the dilated triangle are in the ratio of 1:2.

Since segment FD measures 6 units in the dilated triangle, we can find the length of segment DE as follows

Length of segment DE = Length of segment FD * Scale factor

Length of segment DE = 6 units * 2

Length of segment DE = 12 units

Therefore, the length of segment DE is 12 units.

Learn more about triangle

brainly.com/question/2773823

#SPJ11

A triangle was dilated by a scale factor of 2. if cos a° = three fifths and segment of measures 6 units. Since segment FD measures 6 units, segment DE, which corresponds to FD in the original triangle, will be half of that. So, segment DE = 6/2 = 3 units.

The given problem involves a triangle that has been dilated by a scale factor of 2. We are given that the cosine of angle a is equal to three fifths and that segment FD measures 6 units. We need to find the length of segment DE.

To find the length of segment DE, we can use the fact that the triangle has been dilated by a scale factor of 2. This means that the lengths of corresponding sides have been multiplied by 2.

Since segment FD measures 6 units, segment DE, which corresponds to FD in the original triangle, will be half of that. So, segment DE = 6/2 = 3 units.

Therefore, the length of segment DE is 3 units.

Learn more about scale factor:

https://brainly.com/question/29464385

#SPJ11

Find the Maclaurin series for f(x) using the definition of a Maclaurin series. [Assume that f has a power series expansion. Do not show that R n

(x)→0.. f(x)= 8
cos3x

∑ n=0
[infinity]

Find the associated radius of convergence, R. R=

Answers

The Maclaurin series for f(x) = 8cos(3x) is given by ∑ (n=0 to infinity) (8(-1)^n(3x)^(2n))/(2n)! with a radius of convergence of infinity.

To find the Maclaurin series for f(x) = 8cos(3x), we can use the definition of a Maclaurin series. The Maclaurin series representation of a function is an expansion around x = 0.

The Maclaurin series for cos(x) is given by ∑ (n=0 to infinity) ((-1)^n x^(2n))/(2n)!.

Using this result, we can substitute 3x in place of x and multiply the series by 8 to obtain the Maclaurin series for f(x) = 8cos(3x):

f(x) = 8cos(3x) = ∑ (n=0 to infinity) (8(-1)^n(3x)^(2n))/(2n)!

The associated radius of convergence, R, for this Maclaurin series is infinity. This means that the series converges for all values of x, as the series does not approach a specific value or have a finite range of convergence. Therefore, the Maclaurin series for f(x) = 8cos(3x) is valid for all real values of x.

Learn more about Maclaurin series  click here :brainly.com/question/31383907

#SPJ11





a. Simplify √2+√3 / √75 by multiplying the numerator and denominator by √75.

Answers

the final simplified expression by rationalizing the denominator is:
(5√2 + 15) / 75

To simplify the expression √2 + √3 / √75, we can multiply the numerator and denominator by √75. This process is known as rationalizing the denominator.

Step 1: Multiply the numerator and denominator by √75.
(√2 + √3 / √75) * (√75 / √75)
= (√2 * √75 + √3 * √75) / (√75 * √75)
= (√150 + √225) / (√5625)

Step 2: Simplify the expression inside the square roots.
√150 can be simplified as √(2 * 75), which further simplifies to 5√2.
√225 is equal to 15.

Step 3: Substitute the simplified expressions back into the expression.
(5√2 + 15) / (√5625)

Step 4: Simplify the expression further.
The square root of 5625 is 75.

So, the final simplified expression is:
(5√2 + 15) / 75

To know more about denominator, visit:

https://brainly.com/question/32621096

#SPJ11

the joint density function of y1 and y2 is given by f(y1, y2) = 30y1y22, y1 − 1 ≤ y2 ≤ 1 − y1, 0 ≤ y1 ≤ 1, 0, elsewhere. (a) find f 1 2 , 1 2 .

Answers

Hence, the joint density function of [tex]f(\frac{1}{2},\frac{1}{2} )= 3.75.[/tex]

We must evaluate the function at the specific position [tex](\frac{1}{2}, \frac{1}{2} )[/tex] to get the value of the joint density function, [tex]f(\frac{1}{2}, \frac{1}{2} ).[/tex]

Given that the joint density function is defined as:

[tex]f(y_{1}, y_{2}) = 30 y_{1}y_{2}^2, y_{1} - 1 \leq y_{2} \leq 1 - y_{1}, 0 \leq y_{1} \leq 1, 0[/tex]

elsewhere

We can substitute [tex]y_{1 }= \frac{1}{2}[/tex] and [tex]y_{2 }= \frac{1}{2}[/tex] into the function:

[tex]f(\frac{1}{2} , \frac{1}{2} ) = 30(\frac{1}{2} )(\frac{1}{2} )^2\\= 30 * \frac{1}{2} * \frac{1}{4} \\= \frac{15}{4} \\= 3.75[/tex]

Therefore, [tex]f(\frac{1}{2} , \frac{1}{2} ) = 3.75.[/tex]

Learn more about Joint density function:

https://brainly.com/question/31266281

#SPJ11

find the value of x for which the line tangent to the graph of f(x)=72x2−5x 1 is parallel to the line y=−3x−4. write your answer as a fraction.

Answers

The value of x for which the line tangent to the graph of f(x) = 72x² - 5x + 1 is parallel to the line y = -3x - 4 is x = 1/72.

To find the value of x for which the line tangent to the graph of f(x) = 72x² - 5x + 1 is parallel to the line y = -3x - 4, we need to determine when the derivative of f(x) is equal to the slope of the given line.

Let's start by finding the derivative of f(x). The derivative of f(x) with respect to x represents the slope of the tangent line to the graph of f(x) at any given point.

f(x) = 72x² - 5x + 1

To find the derivative f'(x), we apply the power rule and the constant rule:

f'(x) = d/dx (72x²) - d/dx (5x) + d/dx (1)

= 144x - 5

Now, we need to equate the derivative to the slope of the given line, which is -3:

f'(x) = -3

Setting the derivative equal to -3, we have:

144x - 5 = -3

Let's solve this equation for x:

144x = -3 + 5

144x = 2

x = 2/144

x = 1/72

Therefore, the value of x for which the line tangent to the graph of f(x) = 72x² - 5x + 1 is parallel to the line y = -3x - 4 is x = 1/72.

To know more about slope click on below link :

https://brainly.com/question/32513937#

#SPJ11

Find the real solutions of the following equation \[ x^{4}-10 x^{2}+9=0 \] Write the given equation in quadratic form using the correct substitution (Type an equation using \( u \) as the variable. Do

Answers

Convert the equation into a quadratic equation in u, which can be easily solved for the real solutions. Therefore, The real solutions of the given equation [tex]x^{4}-10x^{2} +9=0[/tex]  are x=-3,-1, 1,3 .

Let's substitute [tex]u=x^{2}[/tex]  into the given equation. Then we have [tex]u^{2} - 10u +9 =0[/tex] which is a quadratic equation in u.

We can now solve this quadratic equation using factoring, completing the square, or the quadratic formula.

By factoring, we can rewrite the equation as  (u−9)(u−1)=0. Setting each factor equal to zero gives us two possible values for u: u=9 and u=1.

Substituting back [tex]u=x^{2}[/tex]  into these values, we obtain [tex]x^{2} =9[/tex] and [tex]x^{2} =1[/tex].

Taking the square root of both sides, we find two solutions for each equation:

x=+3,-3 and x=+1,-1.

Hence, the real solutions of the given equation [tex]x^{4}-10x^{2} +9=0[/tex] are x=-3,-1, 1,3 .

Learn more about quadratic equation here:

https://brainly.com/question/30098550

#SPJ11

3. (8 points) Let U={p∈P 2

(R):p(x) is divisible by x−3}. Then U is a subspace of P 2

(R) (you do not need to show this). (a) Find a basis of U. (Make sure to justify that the set you find is a basis of U.) (b) Find another subspace W of P 2

(R) such that P 2

(R)=U⊕W. (For your choice of W, make sure to justify why the sum is direct, and why the sum is equal to P 2

(R).)

Answers

The subspace U = span{g(x)}, the set {g(x)} is a basis of U.

Given set, U = {p ∈ P2(R) : p(x) is divisible by (x - 3)}.

Part (a) - We have to find the basis of the given subspace, U.

Let's consider a polynomial

g(x) = x - 3 ∈ P1(R).

Then the set, {g(x)} is linearly independent.

Since U = span{g(x)}, the set {g(x)} is a basis of U. (Note that {g(x)} is linearly independent and U = span{g(x)})

We have to find another subspace, W of P2(R) such that P2(R) = U ⊕ W. The sum is direct and the sum is equal to P2(R).

Let's consider W = {p ∈ P2(R) : p(3) = 0}.

Let's assume a polynomial f(x) ∈ P2(R) is of the form f(x) = ax^2 + bx + c.

To show that the sum is direct, we will have to show that the only polynomial in U ∩ W is the zero polynomial.  

That is, we have to show that f(x) ∈ U ∩ W implies f(x) = 0.

To prove the above statement, we have to consider f(x) ∈ U ∩ W.

This means that f(x) is a polynomial which is divisible by x - 3 and f(3) = 0.  

Since the degree of the polynomial (f(x)) is 2, the only possible factorization of f(x) as x - 3 and ax + b.

Let's substitute x = 3 in f(x) = (x - 3)(ax + b) to get f(3) = 0.

Hence, we have b = 0.

Therefore, f(x) = (x - 3)ax = 0 implies a = 0.

Hence, the only polynomial in U ∩ W is the zero polynomial.

This shows that the sum is direct.

Now we have to show that the sum is equal to P2(R).

Let's consider any polynomial f(x) ∈ P2(R).

We can write it in the form f(x) = (x - 3)g(x) + f(3).

This shows that f(x) ∈ U + W. Since U ∩ W = {0}, we have P2(R) = U ⊕ W.

Therefore, we have,Basis of U = {x - 3}

Another subspace, W of P2(R) such that P2(R) = U ⊕ W is {p ∈ P2(R) : p(3) = 0}. The sum is direct and the sum is equal to P2(R).

Let us know moree about subspace : https://brainly.com/question/32594251.

#SPJ11

If x is the number of thousands of dollars spent on labour, and y is the thousands of dollars spent on parts, then the output of a factory is given by: Q(x,y)=42x 1/6
y 5/6
Where Q is the output in millions of units of product. Now, if $236,000 is to be spent on parts and labour, how much should be spent on each to optimize output? Round your answers to the nearest dollar.

Answers

To optimize the output with a total budget of $236,000, approximately $131,690 should be spent on labor and $104,310 on parts, rounding to the nearest dollar.

Given the equation of the output of a factory, Q (x, y) = 42 x^(1/6) * y^(5/6), where Q is the output in millions of units of product, x is the number of thousands of dollars spent on labor, and y is the thousands of dollars spent on parts.

To optimize output, it is necessary to determine the optimal spending on each of the two components of the factory, given a total of $236,000.

To do this, the first step is to set up an equation for the amount spent on each component. Since x and y are given in thousands of dollars, the total amount spent, T, is equal to the sum of 1,000 times x and y, respectively.

Therefore, T = 1000x + 1000y

In addition, the output of the factory, Q, is defined in millions of units of product.

Therefore, to convert the output from millions of units to units, it is necessary to multiply Q by 1,000,000.

Hence, the optimal amount of each component that maximizes the output can be expressed as max Q = 1,000,000

Q (x, y) = 1,000,000 * 42 x^(1/6) * y^(5/6)

Now, substitute T = 236,000 and solve for one of the variables, then solve for the other one to maximize the output.

Solving for y, 1000x + 1000y = 236,000

y = 236 - x, which is the equation of the factory output as a function of x.

Substitute y = 236 - x in the factory output equation, Q (x, y) = 42 x^(1/6) * (236 - x)^(5/6)

Now take the derivative of this equation to find the maximum,

Q' (x) = (5/6) * 42 * (236 - x)^(-1/6) * x^(1/6) = 35 x^(1/6) * (236 - x)^(-1/6)

Setting this derivative equal to zero and solving for x,

35 x^(1/6) * (236 - x)^(-1/6) = 0 or x = 131.69

If x = 0, then y = 236, so T = $236,000

If x = 131.69, then y = 104.31, so T = $236,000

Therefore, the amount that should be spent on labor and parts to optimize output is $131,690 on labor and $104,310 on parts.

To learn more about derivatives visit:

https://brainly.com/question/23819325

#SPJ11

let x be a discrete random variable with symmetric distribution, i.e. p(x = x) = p(x = −x) for all x ∈x(ω). show that x and y := x2 are uncorrelated but not independent

Answers

Answer:

Step-by-step explanation:

The random variables x and y = x^2 are uncorrelated but not independent. This means that while there is no linear relationship between x and y, their values are not independent of each other.

To show that x and y are uncorrelated, we need to demonstrate that the covariance between x and y is zero. Since x is a symmetric random variable, we can write its probability distribution as p(x) = p(-x).

The covariance between x and y can be calculated as Cov(x, y) = E[(x - E[x])(y - E[y])], where E denotes the expectation.

Expanding the expression for Cov(x, y) and using the fact that y = x^2, we have:

Cov(x, y) = E[(x - E[x])(x^2 - E[x^2])]

Since the distribution of x is symmetric, E[x] = 0, and E[x^2] = E[(-x)^2] = E[x^2]. Therefore, the expression simplifies to:

Cov(x, y) = E[x^3 - xE[x^2]]

Now, the third moment of x, E[x^3], can be nonzero due to the symmetry of the distribution. However, the term xE[x^2] is always zero since x and E[x^2] have opposite signs and equal magnitudes.

Hence, Cov(x, y) = E[x^3 - xE[x^2]] = E[x^3] - E[xE[x^2]] = E[x^3] - E[x]E[x^2] = E[x^3] = 0

This shows that x and y are uncorrelated.

However, to demonstrate that x and y are not independent, we can observe that for any positive value of x, y will always be positive. Thus, knowledge about the value of x provides information about the value of y, indicating that x and y are dependent and, therefore, not independent.

Learn more about Probability Distribution here :

]brainly.com/question/28197859

#SPJ11

on average, students study 11 hours a week. the standard deviation is 3.5 hours and the number of hours studying follows a bell-shaped distribution. what percentage of students study between 11 and 14.5 hours per week? integer only without the % mark.

Answers

The percentage of students who study between 11 and 14.5 hours per week is approximately 34%.

Given that the average number of hours students study per week is 11, the standard deviation is 3.5 hours, and the distribution is bell-shaped. We need to find out the percentage of students who study between 11 and 14.5 hours per week.

To solve this problem, we need to find the z-scores for both the values 11 and 14.5.

Once we have the z-scores, we can use a standard normal distribution table to find the percentage of values that lie between these two z-scores.

Using the formula for z-score, we can calculate the z-score for the value 11 as follows:

z = (x - μ) / σ

z = (11 - 11) / 3.5

z = 0

Similarly, the z-score for the value 14.5 is:

z = (x - μ) / σ

z = (14.5 - 11) / 3.5

z = 1

Using a standard normal distribution table, we can find that the area between z = 0 and z = 1 is approximately 0.3413 or 34.13%.

Therefore, approximately 34% of students study between 11 and 14.5 hours per week.

Therefore, the percentage of students who study between 11 and 14.5 hours per week is approximately 34%.

To know more about z-score visit:

brainly.com/question/31871890

#SPJ11

consider a general linear programming problem in standard form which is infeasible show the dual of the original problem is feasible and the optimal cost is infinite

Answers

As per duality theory, every original linear programming problem has an associated dual problem. The dual of the original linear programming problem is feasible and the optimal cost is infinite.

Let's consider a general linear programming problem in standard form that is infeasible. We aim to demonstrate that the dual of the original problem is feasible, and the optimal cost is infinite.

Linear programming (LP), or linear optimization, is a mathematical technique used to determine the optimal solution for a given mathematical model with linear relationships, typically involving maximizing profit or minimizing cost. LP falls under the broader category of optimization techniques.

As per duality theory, every original linear programming problem has an associated dual problem. Solving one problem provides information about the other problem, and vice versa. The dual problem is obtained by creating a new problem with one variable for each constraint in the original problem.

To show that the dual of the original problem is feasible and the optimal cost is infinite, we will follow these steps:

Derive the dual of the given linear programming problem.

Demonstrate the feasibility of the dual problem.

Establish that the optimal cost of the dual problem is infinite.

Step 1: Dual of the linear programming problem

The given problem is:

Minimize Z = c'x

subject to Ax = b, x >= 0

Here, x and c are column vectors of n variables, and A is an m x n matrix.

The dual problem for this is:

Maximize Z = b'y

subject to A'y <= c, y >= 0

In the dual problem, y is an m-dimensional column vector of dual variables.

Step 2: Feasibility of the dual problem

Since the primal problem is infeasible, it means that no feasible solution exists for it. Consequently, the primal problem has no optimal solution. By the principle of weak duality, the optimal solution of the dual problem must be less than or equal to the optimal solution of the primal problem. As the primal problem has no optimal solution, the dual problem must have an unbounded optimal solution. Therefore, the dual problem is feasible.

Step 3: The optimal cost of the dual problem is infinite

Since the primal problem has no optimal solution, the principle of weak duality states that the optimal solution of the dual problem must be less than or equal to the optimal solution of the primal problem. As the primal problem has no optimal solution, the dual problem must have an unbounded optimal solution. Consequently, the optimal cost of the dual problem is infinite.

In conclusion, we have shown that the dual of the original problem is feasible, and the optimal cost is infinite.

Learn more about linear programming:

https://brainly.com/question/30763902

#SPJ11

2. A population of fish grows by 5% every year. Suppose 250 fish are harvested every year. a) Setup a difference equation to describe the size of the population yn

after n yeurs. [2] b) Suppose 20=6000. Will the population increase or decroase in size? Explain. (2) c) Suppose y0

=4000. Will the population increase or decrease in siae? Explain. [2]

Answers

a) The difference equation to describe the size of the population after n years is yn = yn-1 + 0.05yn-1 - 250.

b) If 20 = 6000, it means that the population after 20 years is 6000. Since the value is greater than the initial population, the population will increase in size.

c) If y0 = 4000, it means that the initial population is 4000. Since the growth rate is 5% per year, the population will increase in size over time.

a) The difference equation yn = yn-1 + 0.05yn-1 - 250 represents the growth of the population. The term yn-1 represents the population size in the previous year, and the term 0.05yn-1 represents the 5% growth in the population. Subtracting 250 accounts for the number of fish harvested each year.

b) If the population after 20 years is 6000, it means that the population has increased in size compared to the initial population. This is because the growth rate of 5% per year leads to a cumulative increase over time. Therefore, the population will continue to increase in size.

c) If the initial population is 4000, the population will increase in size over time due to the 5% growth rate per year. Since the growth rate is positive, the population will continue to grow. The exact growth trajectory can be determined by solving the difference equation recursively or by using other mathematical techniques.

Learn more about mathematical techniques

brainly.com/question/28269566

#SPJ11

A farmer has has four plots whose areas are in the ratio 1st: 2nd: 3rd:4th = 2:3:4:7. He planted both paddy and jute in 1st , 2nd, and 3rd plots respectively in the ratios 4:1, 2:3 and 3:2 in terms of areas and he planted only paddy in the 4th plot. Considering all the plots at time find the ratio of areas in which paddy and jute are planted.

Answers

To find the ratio of areas in which paddy and jute are planted, we need to determine the areas of each plot and calculate the total areas of paddy and jute planted. Let's break down the problem step by step.

Given:Plot ratios: 1st: 2nd: 3rd: 4th = 2: 3: 4: 7

Planting ratios for paddy and jute in the first three plots: 4:1, 2:3, 3:2

Let's assign variables to represent the areas of the plots:

Let the areas of the 1st, 2nd, 3rd, and 4th plots be 2x, 3x, 4x, and 7x, respectively (since the ratios are given as 2:3:4:7).

Now, let's calculate the areas planted with paddy and jute in each plot:

1st plot: Paddy area = (4/5) * 2x = (8/5)x, Jute area = (1/5) * 2x = (2/5)x

2nd plot: Paddy area = (2/5) * 3x = (6/5)x, Jute area = (3/5) * 3x = (9/5)x

3rd plot: Paddy area = (3/5) * 4x = (12/5)x, Jute area = (2/5) * 4x = (8/5)x

4th plot: Paddy area = 4x, Jute area = 0

Now, let's calculate the total areas of paddy and jute planted:

Total paddy area = (8/5)x + (6/5)x + (12/5)x + 4x = (30/5)x + 4x = (34/5)x

Total jute area = (2/5)x + (9/5)x + (8/5)x + 0 = (19/5)x

Finally, let's find the ratio of areas in which paddy and jute are planted:

Ratio of paddy area to jute area = Total paddy area / Total jute area

= ((34/5)x) / ((19/5)x)

= 34/19

Therefore, the ratio of areas in which paddy and jute are planted is 34:19.

Learn more about ratio here

brainly.com/question/32331940

#SPJ11

By graphing the system of constraints, find the values of x and y that maximize the objective function. 2≤x≤6
1≤y≤5
x+y≤8

maximum for P=3x+2y (1 point) (2,1) (6,2) (2,5) (3,5)

Answers

The values of x and y that maximize the objective function P = 3x + 2y are x = 3 and y = 5.

Here, we have,

To find the values of x and y that maximize the objective function P = 3x + 2y, subject to the given system of constraints, we can graphically analyze the feasible region formed by the intersection of the constraint inequalities.

The constraints are as follows:

2 ≤ x ≤ 6

1 ≤ y ≤ 5

x + y ≤ 8

Let's plot these constraints on a graph:

First, draw a rectangle with vertices (2, 1), (2, 5), (6, 1), and (6, 5) to represent the constraints 2 ≤ x ≤ 6 and 1 ≤ y ≤ 5.

Next, draw the line x + y = 8. To do this, find two points that satisfy the equation.

For example, when x = 0, y = 8, and when y = 0, x = 8. Plot these two points and draw a line passing through them.

The feasible region is the intersection of the shaded region within the rectangle and the area below the line x + y = 8.

Now, we need to find the point within the feasible region that maximizes the objective function P = 3x + 2y.

Calculate the value of P for each corner point of the feasible region:

P(2, 1) = 3(2) + 2(1) = 8

P(6, 1) = 3(6) + 2(1) = 20

P(2, 5) = 3(2) + 2(5) = 19

P(3, 5) = 3(3) + 2(5) = 21

Comparing these values, we can see that the maximum value of P occurs at point (3, 5) within the feasible region.

Therefore, the values of x and y that maximize the objective function P = 3x + 2y are x = 3 and y = 5.

learn more on maximum value

https://brainly.com/question/5395730

#SPJ4

Find an equation for the sphere with the given center and radius. center (0, 0, 7), radius = 3

Answers

The equation for the sphere with the given center (0, 0, 7) and radius 3 is x²  + y²  + (z - 7)²  = 9.

An equation is a mathematical statement that asserts the equality of two expressions. It contains an equal sign (=) to indicate that the expressions on both sides have the same value. Equations are used to represent relationships, solve problems, and find unknown values.

An equation typically consists of variables, constants, and mathematical operations such as addition, subtraction, multiplication, and division. The goal of solving an equation is to find the values of the variables that satisfy the equation and make it true.

To find the equation for a sphere with a given center and radius, we can use the formula (x - h)² + (y - k)²  + (z - l)²  = r² , where (h, k, l) represents the center coordinates and r represents the radius.

In this case, the center is (0, 0, 7) and the radius is 3. Plugging these values into the formula, we get:

(x - 0)²  + (y - 0)²  + (z - 7)²  = 3²

Simplifying, we have:

x²  + y²  + (z - 7)²  = 9

Therefore, the equation for the sphere with the given center (0, 0, 7) and radius 3 is x²  + y²  + (z - 7)²  = 9.

To know more about sphere visit:

https://brainly.com/question/30459623

#SPJ11

Your answer must be rounded to the nearest full percent. (no decimal places) Include a minus sign, if required.
Last year a young dog weighed 20kilos, this year he weighs 40kilos.
What is the percent change in weight of this "puppy"?

Answers

The percent change in weight of the puppy can be calculated using the formula: Percent Change = [(Final Value - Initial Value) / Initial Value] * 100. The percent change in weight of the puppy is 100%.

In this case, the initial weight of the puppy is 20 kilos and the final weight is 40 kilos. Plugging these values into the formula, we have:

Percent Change = [(40 - 20) / 20] * 100

Simplifying the expression, we get:

Percent Change = (20 / 20) * 100

Percent Change = 100%

Therefore, the percent change in weight of the puppy is 100%. This means that the puppy's weight has doubled compared to last year.

Learn more about percent change here:

https://brainly.com/question/29341217

#SPJ11

Suma los primeros 10 terminos de la sucesion de fibonacci, y multiplica por el septimo termino de la suseccion. compara los resultados, que observas?

Answers

The sum of the first 10 Fibonacci terms is 143. Multiplying this sum by the seventh term (13) gives 1859. The product is larger than the sum, indicating the influence of the seventh term.

To solve this problem, we first need to calculate the first 10 terms of the Fibonacci sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55

Next, we calculate the sum of these 10 terms:

1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + 55 = 143

Now, we find the seventh term of the Fibonacci sequence, which is 13.

Finally, we multiply the sum of the first 10 terms (143) by the seventh term (13):

143 × 13 = 1859

Therefore, the product of the sum of the first 10 terms of the Fibonacci sequence and the seventh term is 1859.

Observation: The product of the sum and the seventh term is a larger number compared to the sum itself.

To know more about Fibonacci sequence:

https://brainly.com/question/29764204

#SPJ4

find the volume of the solid obtained by rotating the region
bounded by y=x and y= sqrt(x) about the line x=2
Find the volume of the solid oblained by rotating the region bounded by \( y=x \) and \( y=\sqrt{x} \) about the line \( x=2 \). Volume =

Answers

The volume of the solid obtained by rotating the region bounded by \[tex](y=x\) and \(y=\sqrt{x}\)[/tex] about the line [tex]\(x=2\) is \(\frac{-2}{3}\pi\) or \(\frac{2}{3}\pi\)[/tex] in absolute value.

To find the volume of the solid obtained by rotating the region bounded by \(y=x\) and \(y=\sqrt{x}\) about the line \(x=2\), we can use the method of cylindrical shells.

The cylindrical shells are formed by taking thin horizontal strips of the region and rotating them around the axis of rotation. The height of each shell is the difference between the \(x\) values of the curves, which is \(x-\sqrt{x}\). The radius of each shell is the distance from the axis of rotation, which is \(2-x\). The thickness of each shell is denoted by \(dx\).

The volume of each cylindrical shell is given by[tex]\(2\pi \cdot (2-x) \cdot (x-\sqrt{x}) \cdot dx\)[/tex].

To find the total volume, we integrate this expression over the interval where the two curves intersect, which is from \(x=0\) to \(x=1\). Therefore, the volume can be calculated as follows:

\[V = \int_{0}^{1} 2\pi \cdot (2-x) \cdot (x-\sqrt{x}) \, dx\]

We can simplify the integrand by expanding it:

\[V = \int_{0}^{1} 2\pi \cdot (2x-x^2-2\sqrt{x}+x\sqrt{x}) \, dx\]

Simplifying further:

\[V = \int_{0}^{1} 2\pi \cdot (x^2+x\sqrt{x}-2x-2\sqrt{x}) \, dx\]

Integrating term by term:

\[V = \pi \cdot \left(\frac{x^3}{3}+\frac{2x^{\frac{3}{2}}}{3}-x^2-2x\sqrt{x}\right) \Bigg|_{0}^{1}\]

Evaluating the definite integral:

\[V = \pi \cdot \left(\frac{1}{3}+\frac{2}{3}-1-2\right)\]

Simplifying:

\[V = \pi \cdot \left(\frac{1}{3}-1\right)\]

\[V = \pi \cdot \left(\frac{-2}{3}\right)\]

Therefore, the volume of the solid obtained by rotating the region bounded by \(y=x\) and \(y=\sqrt{x}\) about the line \(x=2\) is \(\frac{-2}{3}\pi\) or \(\frac{2}{3}\pi\) in absolute value.

Learn more about volume here

https://brainly.com/question/463363

#SPJ11

A study is designed to test the effects of location (island vs. mainland) and squirrels (present or absent) on the cone sizes of lodgepole pines. Which of the following interaction plots is consistent with this combination of main effects and interactions? A main effect of location is present. A main effect of squirrels is present. An interaction between squirrels and location is present.

Answers

The interaction plot consistent with the combination of main effects and interactions described is Plot D, which shows an interaction between squirrels and location.

An interaction occurs when the effect of one independent variable (in this case, squirrels) on the dependent variable (cone sizes) depends on the level of another independent variable (location).

Based on the given information, we have the following main effects and interactions:

1. Main effect of location: This means that the location (island vs. mainland) has an independent effect on cone sizes. It suggests that there is a difference in cone sizes between the two locations.

2. Main effect of squirrels: This means that the presence or absence of squirrels has an independent effect on cone sizes. It suggests that the presence of squirrels may influence cone sizes.

3. Interaction between squirrels and location: This means that the effect of squirrels on cone sizes depends on the location. In other words, the presence or absence of squirrels may have a different impact on cone sizes depending on whether the trees are on an island or the mainland.

Among the given interaction plots, Plot D is consistent with these main effects and interactions. It shows that the effect of squirrels on cone sizes differs between the island and mainland locations, indicating an interaction between squirrels and location.

Therefore, Plot D is the interaction plot that aligns with the combination of main effects and interactions described in the question.

To learn more about variable, click here: brainly.com/question/28248724

#SPJ11

(c) add method public void printtree() to the binarysearchtree class that iterates over the nodes to print then in decreasing order

Answers

The `printTreeInDescendingOrder()` method takes a `Node` as a parameter. It starts by recursively traversing the right subtree, printing the values in decreasing order. Then, it prints the value of the current node. Finally, it recursively traverses the left subtree, also printing the values in decreasing order.

The `printtree()` method in the `BinarySearchTree` class can be implemented to iterate over the nodes of the tree and print them in decreasing order. Here is the code for the `printtree()` method:

```java

public void printtree() {

   if (root == null) {

       System.out.println("The tree is empty.");

       return;

   }

   printTreeInDescendingOrder(root);

}

private void printTreeInDescendingOrder(Node node) {

   if (node == null) {

       return;

   }

   printTreeInDescendingOrder(node.right);

   System.out.println(node.value);

   printTreeInDescendingOrder(node.left);

}

```

In the `printtree()` method, we first check if the tree is empty by verifying if the `root` node is `null`. If it is, we print a message indicating that the tree is empty and return.

If the tree is not empty, we call the `printTreeInDescendingOrder()` method, passing the `root` node as the starting point for iteration. This method recursively traverses the tree in a right-root-left order, effectively printing the values in decreasing order.

The `printTreeInDescendingOrder()` method takes a `Node` as a parameter. It starts by recursively traversing the right subtree, printing the values in decreasing order. Then, it prints the value of the current node. Finally, it recursively traverses the left subtree, also printing the values in decreasing order.

By using this approach, the `printtree()` method will print the values of the tree in decreasing order.

Learn more about parameter here

https://brainly.com/question/30395943

#SPJ11

To solve the separable equation dt the first thing the students did was to O integrate both sides with respect to M. O integrate both sides with respect to t. o differentiate the left hand side and then integrate the right hand side. O move all terms with M to the left, and all terms with t to the right.

Answers

In order to solve separable equation "dM/dt = a - k₁M", the first thing  students did was to (d) move all terms with M to the left, and all terms with t to the right.

In the separable differential equation dM/dt = a - k₁M, the goal is to rearrange the equation so that all terms involving M are on one side and all terms involving t are on the other side. This allows for the separation of variables, which is a common approach to solving separable equations.

By moving all terms with M to the left and all terms with t to the right, we obtain dM/(a - k₁M) = dt. This rearrangement is essential as it separates the variables M and t.

After this rearrangement, we integrate both sides separately. Integrating the left-hand side with respect to M and the right-hand side with respect to t allows us to find the antiderivatives and solve the equation. This results in the solution of the separable differential equation.

Therefore, the correct option is (d).

Learn more about Equation here

https://brainly.com/question/1584190

#SPJ4

The given question is incomplete, the complete question is

To solve the separable equation dM/dt = a - k₁M, the first thing the students did was to

(a) integrate both sides with respect to M.

(b) integrate both sides with respect to t.

(c) differentiate the left hand side and then integrate the right hand side.

(d) move all terms with M to the left, and all terms with t to the right.

1. If det ⎣


a
p
x

b
q
y

c
r
z




=−1 then Compute det ⎣


−x
3p+a
2p

−y
3q+b
2q

−z
3r+c
2r




(2 marks) 2. Compute the determinant of the following matrix by using a cofactor expansion down the second column. ∣


5
1
−3

−2
0
2

2
−3
−8




(4 marks) 3. Let u=[ a
b

] and v=[ 0
c

] where a,b,c are positive. a) Compute the area of the parallelogram determined by 0,u,v, and u+v. (2 marks)

Answers

Thus, the area of the parallelogram is given by:Area of the parallelogram = |u x v| = |ac| = ac.

1. The determinant of the matrix A is -1. To compute the determinant of matrix B, let det(B) = D.

We have:|B| = |3pq + ax - 2py|   |3pq + ax - 2py|   |3pq + ax - 2py||3qr + by - 2pz| + |-3pr - cy + 2qx| + |-2px + 3ry + cz||3qr + by - 2pz|   |3qr + by - 2pz|   |3qr + by - 2pz||-2px + 3ry + cz|D

= (3pq + ax - 2py)(3qr + by - 2pz)(-2px + 3ry + cz) - (3pq + ax - 2py)(-3pr - cy + 2qx)(-2px + 3ry + cz)|B|

 D = (3pq + ax - 2py)[(3r + b)y - 2pz] - (3pq + ax - 2py)[-3pc + 2qx + (2p - a)z]

= (3pq + ax - 2py)[3ry - 2pz + 3pc - 2qx - 2pz + 2az]

= (3pq + ax - 2py)[3r(y - p) - 2q(z - p) + 2a(z - p)] = (3pq + ax - 2py)[3r(y - p) - 2q(z - p) + 2a(z - p)]

= (3pq + ax - 2py)[3r(y - p) - 2q(z - p) + 2a(z - p)]

= (3pq + ax - 2py)[3r(y - p) - 2q(z - p) + 2a(z - p)]

= (3pq + ax - 2py)[3r(y - p) - 2q(z - p) + 2a(z - p)]

= (3pq + ax - 2py)[3r(y - p) - 2q(z - p) + 2a(z - p)]  D

= (3pq + ax - 2py)[3r(y - p) - 2q(z - p) + 2a(z - p)]

Thus, det(B) = D

= (3pq + ax - 2py)[3r(y - p) - 2q(z - p) + 2a(z - p)]2.

To compute the determinant of the matrix A, use the following formula:|A| = -5[(0)(-8) - (2)(-3)] - 1[(2)(2) - (0)(-3)] + (-3)[(2)(0) - (5)(-3)]

= -8 - (-6) - 45

= -47 Thus, the determinant of the matrix A is -47.3.

The area of a parallelogram is given by the cross product of the two vectors that form the parallelogram.

Here, the two vectors are u and v.

Thus, the area of the parallelogram is given by:Area of the parallelogram = |u x v| = |ac| = ac.

To know more about cross product, visit:

https://brainly.in/question/246465

#SPJ11

The area of the parallelogram determined by `0`, `u`, `v`, and `u + v` is `ac`.

1. To compute `det [-x 3p+a 2p; -y 3q+b 2q; -z 3r+c 2r]`,

we should use the formula of the determinant of a matrix that has the form of `[a b c; d e f; g h i]`.

The formula is `a(ei − fh) − b(di − fg) + c(dh − eg)`.Let `M = [-x 3p+a 2p; -y 3q+b 2q; -z 3r+c 2r]`.

Applying the formula, we obtain:

det(M) = `-x(2q)(3r + c) - (3q + b)(2r)(-x) + (-y)(2p)(3r + c) + (3p + a)(2r)(-y) - (-z)(2p)(3q + b) - (3p + a)(2q)(-z)

= -2(3r + c)(px - qy) - 2(3q + b)(-px + rz) - 2(3p + a)(qz - ry)

= -2(3r + c)(px - qy + rz - qz) - 2(3q + b)(-px + rz + qz - py) - 2(3p + a)(qz - ry - py + qx)

= -2(3r + c)(p(x + z - q) - q(y + z - r)) - 2(3q + b)(-p(x - y + r - z) + q(z - y + p)) - 2(3p + a)(q(z - r + y - p) - r(x + y - q + p))

= -2[3r + c + 2(3q + b) + 3p + a](p(x + z - q) - q(y + z - r)) - 2[3q + b + 2(3p + a) + 3r + c](-p(x - y + r - z) + q(z - y + p))`.

But `det(A) = -1`,

so we have:`

-1 = det(A) = det(M) = -2[3r + c + 2(3q + b) + 3p + a](p(x + z - q) - q(y + z - r)) - 2[3q + b + 2(3p + a) + 3r + c](-p(x - y + r - z) + q(z - y + p))`.

Therefore:

`1 = 2[3r + c + 2(3q + b) + 3p + a](p(x + z - q) - q(y + z - r)) + 2[3q + b + 2(3p + a) + 3r + c](-p(x - y + r - z) + q(z - y + p))`.

2. Using the cofactor expansion down the second column,

we obtain:`det(A) = -2⋅(1)⋅(2)⋅(-3) + (−2)⋅(−3)⋅(2) + (5)⋅(2)⋅(2) = 12`.

Therefore, `det(A) = 12`.3.

We need to use the formula for the area of a parallelogram that is determined by two vectors.

The formula is: `area = |u x v|`, where `u x v` is the cross product of vectors `u` and `v`.

In our case, `u = [a; b]` and `v = [0; c]`. We have: `u x v = [0; 0; ac]`.

Therefore, `area = |u x v| = ac`.

Thus, the area of the parallelogram determined by `0`, `u`, `v`, and `u + v` is `ac`.

To know more about parallelogram, visit:

https://brainly.com/question/28854514

#SPJ11

Other Questions
When the diaphragm contracts during inspiration a.1. the lung volume decreases causing the air pressure in alveoli to increaseb.the lung volume increases causing the air pressure in alveoli to decrease c.1. the lung volume decreases causing the air pressure in alveoli to decrease d.1. The lung volume increases causing the air pressure in alveoli to increase lace the structures the sperm must pass through in the correct order: sperm cells penatrating secondary oocyte 1 2 3 Propulsions students have conducted work to come up with new compressor, whose total pressure ratio is 29. Which has been designed to mach number of 0.8The engine draws air through inlet at 119 kg/s.The flight static conditions are 24 kpa and 24 deg C. The specific heat ratio of air and constant pressure specific capacity of air are 1.4 and 1006 J/Kg K respectively. If air is compressed isentropically in compressor then calculate the ideal power in MW required to drive compressor.please provide complete solution asap because it is urgent and will do thumbs up for sure. The population of a town is currently 1928 people and is expected to triple every 4 years. How many people will be living there in 20 years Which is an appropriate strategy for products at the decline stage of the product cycle? You have previously used KMno4 in acid solution as strong oxidizing agent and Sncl 2 as good reducing agent At the right diagram galvanic cell involv ing these two reagents Clearly indicate (1 ) Your choice 0 f electrodes (2 ) ions in the solutions and (3 ) the behavior 0 f a]1 parts 0 f the cell in detail a5 YoU did for 343 Daniell cell The hookworm, Necator americanus, which infects some 900 million people worldwide, may ingest more than 0.5 ml of human host blood daily. Given that an infection may number more than 1,000 individual hookworms, calculate the total volume of host blood that may be lost per day to a severe nematode infection.Given that the total blood volume of the average adult human is 5 liters, calculate the percentage of total blood volume lost daily in the example above. find the average value of ()=9 1 over [4,6] average value a patient refuses a simple procedure that you believe is in the patient's best interest. what two ethical principles are in conflict in this situation? use the incremental irr rule to correctly choose between investments a and b when the cost of capital is 7.0%. at what cost of capital would your decision change? qid 300 is flagged when a host has tcp port 7000 open. on the first scan, a host was found to be vulnerable to qid 300. on the second scan, tcp port 7000 was not included. what will be the vulnerability status of qid 300 on the latest report? a client is hospitalized and on multiple antibiotics. the client develops frequent diarrhea. what action by the nurse is most important? )True or False: If a researcher computes a chi-square goodness-of-fit test in which k = 4 and n = 40, then the degrees of freedom for this test is 3 An object starts from rest to 20 m/s in 40 s with a constant acceleration. What is its acceleration in m/s^2 QUESTION 5 Which transport system can move an ion across the plasma membrane against its concentration gradient without using ATP? Oa. Primary active transport Ob. Secondary active transport Oc. Simple diffusion Od. Facilitated diffusion Oe. Facilitated diffusion via a carrier protein. Lounge Chairs and Swivel Chairs are made using the equipment of two departments: I and II. It requires one hour in each department to make a Lounge chair, but making a Swivel Chair takes one hour in department I and two hours in Department II. Department I has four hours of time available, and II has six hours available. Each lounge chair made and sold contributes $1 to profit, and each Swivel chair contributes $0.50 to profit.Determine the maximum profit that can be achieved. Is it possible to make two units of each product? If so, what profit will be achieved? Is it possible to make three units of each product? In the Keynesian cross model of Chapter 11, if the interest rate is constant and the MPC is 0.7, then the government purchases multiplier is:a. 0.3b. 3.3c. 0.7d. 1.4 Given f(x,y)=e^2xy. Use Lagrange multipliers to find the maximum value of the function subject to the constraint x^3+y^3=16. a firm that electroplates inexpensive jewelry produces toxic waste, some of which ends up in a nearby river because of pipe leakage. if state regulators notice the problem and order the firm to make repairs and improve its monitoring processes, the supply curve will shift from s1 to s2.what region of the graph represents the deadweight loss that is eliminated by the change? use the area tool to outline the region. A patient in an emergency room complained to the doctor that she was not able to feel heat on her hand. The doctor knew that there were two nerve cells between the heat receptors in the hand and the heat-sensitive receptors in the brain. The arrangement of these receptors is shown in the following diagram. The doctor thought that the trouble might be in the synapse between A and B and made the following two hypotheses: A) No neurotransmitter is being released from nerve cell A. B) Nerve cell B does not have receptors for the neurotransmitter that is released from A. To test these hypotheses, the doctor designed an experiment to apply a neurotransmitter to the cell body of nerve cell A and observe any activity from nerve cell B. Evaluate whether or not this experiment would enable the doctor to support one hypothesis and reject the other. During World War I, physicians noted a phenomenon called "phantom pains'. Soldiers with amputated limbs complained of pain or itching in the missing limb. Using your knowledge of the nervous system explain why you think this phenomenon exists