An evacuated tube uses an accelerating voltage of 50 kV to accelerate electrons to hit a copper plate and produce X-rays. Non-relativistically, what would be the maximum speed (in m/s) of these electrons

Answers

Answer 1

Answer:

Explanation:

Accelerating voltage = 50 x 10³ V

energy created = q V where q is charge on electron and V is accelerating potential

So qV = 1/2 m v² , m is mass of electron and v is velocity

Putting values

1.6 x 10⁻¹⁹ x 50 x 10³ = 1/2 x 9.1 x 10⁻³¹ x v²

v² = 175.8 x 10¹⁴

v = 13.25 x 10⁷ m /s


Related Questions

The interference of two sound waves of similar amplitude but slightly different frequencies produces a loud-soft-loud oscillation we call __________.
a. the Doppler effect
b. vibrato
c. constructive and destructive interference
d. beats

Answers

Answer:

the correct answer is d Beats

Explanation:

when two sound waves interfere time has different frequencies, the result is the sum of the waves is

       y = 2A cos 2π (f₁-f₂)/2    cos 2π (f₁ + f₂)/2

where in this expression the first part represents the envelope and the second part represents the pulse or beatings of the wave.

When examining the correct answer is d Beats


When looking at the chemical symbol, the charge of the ion is displayed as the
-superscript
-subscript
-coefficient
-product

Answers

Answer:

superscript

Explanation:

When looking at the chemical symbol, the charge of the ion is displayed as the Superscript. This is because the charge of ions is usually written up on the chemical symbol while the atom/molecule is usually written down the chemical symbol. The superscript refers to what is written up on the formula while the subscript is written down on the formula.

An example is H2O . The 2 present represents two molecule of oxygen and its written as the subscript while Fe2+ in which the 2+ is written up is known as the superscript.

Answer:

superscript

Explanation:

how do a proton and neutron compare?

Answers

Answer:

c.they have opposite charges.

Explanation:

because the protons have a positive charge and the neutrons have no charge.

An ice skater spinning with outstretched arms has an angular speed of 5.0 rad/s . She tucks in her arms, decreasing her moment of inertia by 11 % . By what factor does the skater's kinetic energy change? (Neglect any frictional effects.)

Answers

Answer:

  K_{f} / K₀ =1.12

Explanation:

This problem must work using the conservation of angular momentum (L), so that the moment is conserved in the system all the forces must be internal and therefore the torque is internal and the moment is conserved.

Initial moment. With arms outstretched

         L₀ = I₀ w₀

the wo value is 5.0 rad / s

final moment. After he shrugs his arms

         [tex]L_{f}[/tex] = I_{f}  w_{f}

indicate that the moment of inertia decreases by 11%

        I_{f} = I₀ - 0.11 I₀ = 0.89 I₀

        L_{f} = L₀

        I_{f} w_{f}  = I₀ w₀

        w_{f} = I₀ /I_{f}    w₀

let's calculate

        w_{f} = I₀ / 0.89 I₀   5.0

        w_{f} = 5.62 rad / s

Having these values ​​we can calculate the change in kinetic energy

         [tex]K_{f}[/tex] / K₀ = ½ I_{f} w_{f}² (½ I₀ w₀²)

         K_{f} / K₀ = 0.89 I₀ / I₀ (5.62 / 5)²

         K_{f} / K₀ =1.12

The objective lens of a microscope has a focal length of 5.5mm. Part A What eyepiece focal length will give the microscope an overall angular magnification of 300

Answers

Complete Question

The distance between the objective and eyepiece lenses in a microscope is 19 cm . The objective lens has a focal length of 5.5 mm .

What eyepiece focal length will give the microscope an overall angular magnification of 300?

Answer:

The  eyepiece focal length is  [tex]f_e = 0.027 \ m[/tex]

Explanation:

From the question we are told that

    The focal length is  [tex]f_o = 5.5 \ mm = -0.0055 \ m[/tex]

This negative sign shows the the microscope is diverging light

     The  angular magnification is [tex]m = 300[/tex]

     The  distance between the objective and the eyepieces lenses is  [tex]Z = 19 \ cm = 0.19 \ m[/tex]

Generally the magnification is mathematically represented as

        [tex]m = [\frac{Z - f_e }{f_e}] [\frac{0.25}{f_0} ][/tex]

Where [tex]f_e[/tex] is the eyepiece focal length of the microscope

  Now  making [tex]f_e[/tex] the subject  of the formula

         [tex]f_e = \frac{Z}{1 - [\frac{M * f_o }{0.25}] }[/tex]

substituting values

        [tex]f_e = \frac{ 0.19 }{1 - [\frac{300 * -0.0055 }{0.25}] }[/tex]

         [tex]f_e = 0.027 \ m[/tex]

     

A 30 L electrical radiator containing heating oil is placed in a 50 m3room. Both the roomand the oil in the radiator are initially at 10◦C. The radiator with a rating of 1.8 kW is nowturned on. At the same time, heat is lost from the room at an average rate of 0.35 kJ/s.After some time, the average temperature is measured to be 20◦C for the air in the room,and 50◦C for the oil in the radiator. Taking the density and the specific heat of the oil to be950 kg/m3and 2.2 kJ/kg◦C, respectively, determine how long the heater is kept on. Assumethe room is well sealed so that there are no air leaks.

Answers

Answer:

Explanation:

Heat absorbed by oil

= mass x specific heat x rise in temperature

= 30 x 10⁻³ x 950 x 2.2 x 10³ x ( 50-10 )

= 25.08 x 10⁵ J  

Heat absorbed by air

= 50 x 1.2 x 1.0054 x 10³ x ( 20-10 )

= 6.03 x 10⁵ J

Total heat absorbed = 31.11 x 10⁵ J

If time required = t

heat lost from room

= .35 x 10³ t

Total heat generated in time t

= 1.8 x 10³ t

Heat generated = heat used

1.8 x 10³ t =  .35 x 10³ t  + 31.11 x 10⁵

1.45 x 10³ t = 31.11 x 10⁵

t = 31.11 x 10⁵ / 1.45 x 10³

t = 2145.5 s

A simple pendulum of length 1.62 m has a mass of 117 g attached. It is drawn back 38.0 degrees and then released. What is the maximum speed of the mass

Answers

Answer:

The maximum speed of the mass is 4.437 m/s.

Explanation:

Given;

length of pendulum, L = 1.62 m

attached mass, m = 117 g

angle of inclination, θ = 38°

This mass was raised to a height of

h = 1.62 - cos38° = 1.0043 m

Apply the principle of conservation of mechanical energy

PE = KE

mgh = ¹/₂mv²

v  = √(2gh)

v = √(2 * 9.8 * 1.0043)

v = 4.437 m/s.

Therefore, the maximum speed of the mass is 4.437 m/s.

The center of gravity of an ax is on the centerline of the handle, close to the head. Assume you saw across the handle through the center of gravity and weigh the two parts. What will you discover?

Answers

Answer:

I believe it is they will weigh the same

Explanation:

Center of gravity is the axis on which the mass rotates evenly if I remember correctly from AP Physics

The head side is heavier than the handle side. - this will be discovered.

What is center of gravity of a object?

Theoretically, the body's center of gravity is where all of the weight is believed to be concentrated. Knowing the centre of gravity is crucial because it may be used to forecast how a moving object will behave when subjected to the effects of gravity. In designing immobile constructions like buildings and bridges, it is also helpful.

We know that center of gravity is  close to some particular point refers the mass of the point is greater then others. It is given that: The center of gravity of an ax is on the centerline of the handle, close to the head.

So, we can conclude that the head side of the ax is heavier than the handle side of it.

Learn more about center of gravity here:

https://brainly.com/question/17409320

#SPJ5

Pulling out of a dive, the pilot of an airplane guides his plane into a vertical circle with a radius of 600 m. At the bottom of the dive, the speed of the airplane is 150 m/s. What is the apparent weight of the 70.0-kg pilot at that point?

Answers

Answer:

The apparent weight of the pilot is 3311 N

Explanation:

Given;

radius of the vertical circle, r = 600 m

speed of the plane, v = 150 m/s

mass of the pilot, m = 70 kg

Weight of the pilot due to his circular motion;

[tex]W= F_v\\\\F_v = \frac{mv^2}{r} \\\\F_v = \frac{70*150^2}{600} \\\\F_v = 2625 \ N[/tex]

Real weight of the pilot;

[tex]W_R = mg\\\\W_R = 70 *9.8\\\\W_R = 686 \ N[/tex]

Apparent weight - Real weight of pilot = weight due to centripetal force

[tex]F_N - mg = \frac{mv^2}{r} \\\\F_N = \frac{mv^2}{r} + mg\\\\F_N = 2625 \ N + 686 \ N\\\\F_N = 3311\ N[/tex]

Therefore, the apparent weight of the pilot is 3311 N

What is the transmitted intensity of light if an additional polarizer is added perpendicular to the first polarizer in the setup described in Question 3

Answers

Answer:

3) Transmitted intensity of light if unpolarized light passes through a single polarizing filter = 40 W/m²

- Transmitted intensity of light if an additional polarizer is added perpendicular to the first polarizer in the setup described = 7.5 W/m²

Explanation:

Complete Question

3) What is the transmitted intensity of light if unpolarized light passes through a single polarizing filter and the initial intensity is 80 W/m²?

- What is the transmitted intensity of light if an additional polarizer is added perpendicular to the first polarizer in the setup described in Question 3 (the setup)? Show all work in your answer.

The image of this setup attached to this question as obtained from online is attached to this solution.

Solution

3) When unpolarized light passes through a single polarizer, the intensity of the light is cut in half.

Hence, if the initial intensity of unpolarized light is I₀ = 80 W/m²

The intensity of the light rays thay pass through the first single polarizer = I₁ = (I₀/2) = (80/2) = 40 W/m²

- According to Malus' law, the intensity of transmitted light through a polarizer is related to the intensity of the incident light and the angle at which the polarizer is placed with respect to the major axis of the polarizer before the current polarizer of concern.

I₂ = I₁ cos² θ

where

I₂ = intensity of light that passes through the second polarizer = ?

I₁ = Intensity of light from the first polarizer that is incident upon the second polarizer = 40 W/m²

θ = angle between the major axis of the first and second polarizer = 30°

I₂ = 40 (cos² 30°) = 40 (0.8660)² = 30 W/m²

In the same vein, the intensity of light that passes through the third/additional polarizer is related to the intensity of light that passes through the second polarizer and is incident upon this third/additional polarizer through

I₃ = I₂ cos² θ

I₃ = intensity of light that passes through the third/additional polarizer = ?

I₂ = Intensity of light from the second polarizer that is incident upon the third/additional polarizer = 30 W/m²

θ = angle between the major axis of the second and third/additional polarizer = 60° (although, it is 90° with respect to the first polarizer, it is the angle it makes with the major axis of the second polarizer, 60°, that matters)

I₃ = 30 (cos² 60°) = 30 (0.5)² = 7.5 W/m²

Hope this Helps!!!

When a particular wire is vibrating with a frequency of 6.3 Hz, a transverse wave of wavelength 53.3 cm is produced. Determine the speed of wave pulses along the wire.

Answers

Answer:

335.79cm/s

Explanation:

When a transverse wave of wavelength λ is produced during the vibration of a wire, the frequency(f), and the speed(v) of the wave pulses are related to the wavelength as follows;

v = fλ        ------------------(ii)

From the question;

f = 6.3Hz

λ = 53.3cm

Substitute these values into equation (i) as follows;

v = 6.3 x 53.3

v = 335.79cm/s

Therefore, the speed of the wave pulses along the wire is 335.79cm/s

A force of 44 N will stretch a rubber band 88 cm ​(0.080.08 ​m). Assuming that​ Hooke's law​ applies, how far will aa 11​-N force stretch the rubber​ band? How much work does it take to stretch the rubber band this​ far?

Answers

Answer:

The rubber band will be stretched 0.02 m.

The work done in stretching is 0.11 J.

Explanation:

Force 1 = 44 N

extension of rubber band = 0.080 m

Force 2 = 11 N

extension = ?

According to Hooke's Law, force applied is proportional to the extension provided elastic limit is not extended.

F = ke

where k = constant of elasticity

e = extension of the material

F = force applied.

For the first case,

44 = 0.080K

K = 44/0.080 = 550 N/m

For the second situation involving the same rubber band

Force = 11 N

e = 550 N/m

11 = 550e

extension e = 11/550 = 0.02 m

The work done to stretch the rubber band this far is equal to the potential energy stored within the rubber due to the stretch. This is in line with energy conservation.

potential energy stored = [tex]\frac{1}{2}ke^{2}[/tex]

==> [tex]\frac{1}{2}* 550* 0.02^{2}[/tex] = 0.11 J

An asteroid that has an orbit with a semi-major axis of 4 AU will have an orbital period of about ______ years.

Answers

Answer:

16 years.

Explanation:

Using Kepler's third Law.

P2=D^3

P=√d^3

Where P is the orbital period and d is the distance from the sun.

From the question the semi major axis of the asteroid is 4 AU= distance. The distance is always express in astronomical units.

P=?

P= √4^3

P= √256

P= 16 years.

Orbital period is 16 years.

The rock and meterstick balance at the 25-cm mark, as shown in the sketch. The meterstick has a mass of 1 kg. What must be the mass of the rock? (Show work).

Answers

Answer:

1 kg

Explanation:

Check the diagram attached below for the diagram.

Let the weight of the rock be W and the mass of the meter stick be M. Note that the mass of the meter stick will be placed at the middle of the meter stick i.e at the 50cm mark

Using the principle of moment to calculate the weight of the rock. It states that the sum of clockwise moments is equal to the sum of anti clockwise moment.

Moment = Force * perpendicular distance

The meterstick acts in the clockwise direction while the rock acys in the anti clockwise direction

Clockwise moment = 1kg * 25 = 25kg/cm

Anticlockwise moment = W * 25cm = 25W kg/cm

Equating both moments of forces

25W = 25

W = 25/23

W = 1 kg

The mass of the rock is also 1 kg

1. As you pass a freight truck with a trailer on a highway, you notice that its trailer is bouncing up and down slowly. Is it more likely that the trailer is heavily loaded or nearly empty

Answers

Answer:

It's more likely that the trailer is heavily loaded

Explanation:

Due to the fact that the frequency is proportional to the square root of the force constant and inversely proportional to the square root of the mass, it is very likely that the truck would be heavily loaded because the force constant would be the same whether the truck is empty or heavily loaded.

Two space ships collide in deep space. Spaceship P, the projectile, has a mass of 4M,
while the target spaceship T has a mass of M. Spaceship T is initially at rest and the
collision is elastic. If the final velocity of Tis 8.1 m/s, what was the initial velocity of
P?

Answers

Answer:

The initial velocity of spaceship P was u₁ = 5.06 m/s

Explanation:

In an elastic collision between two bodies the expression for the final velocity of the second body is given as follows:

[tex]V_{2} = \frac{(m_{2}-m_{1}) }{(m_{1}+m_{2})}u_{2} + \frac{2m_{1} }{(m_{1}+m_{2})}u_{1}[/tex]

Here, subscript 1 is used for spaceship P and subscript 2 is used for spaceship T. In this equation:

V₂ = Final Speed of Spaceship T = 8.1 m/s

m₁ = mass of spaceship P = 4 M

m₂ = mass of spaceship T = M

u₁ = Initial Speed of Spaceship P = ?

u₂ = Initial Speed of Spaceship T = 0 m/s

Using these values in the given equation, we get:

[tex]8.1 m/s = \frac{M-4M }{4M+M}(0 m/s) + \frac{2(4M) }{4M+M}u_{1}[/tex]

8.1 m/s = (8 M/5 M)u₁

u₁ = (5/8)(8.1 m/s)

u₁ = 5.06 m/s

An ice skater is in a fast spin with her arms held tightly to her body. When she extends her arms, which of the following statements in NOT true?
A. Het total angular momentum has decreased
B. She increases her moment of inertia
C. She decreases her angular speed
D. Her moment of inertia changes

Answers

Answer:

A. Her total angular momentum has decreased

Explanation:

Total angular momentum is the product of her moment of inertia and angular velocity. In this scenario it doesn’t decrease but rather remains constant as the movement of the arms doesn’t have any effect on the total angular momentum.

The movement of the arm under certain conditions however has varying effects and changes on parameters such as the moment of inertia and the angular speed.

A 3-liter container has a pressure of 4 atmospheres. The container is sent underground, with resulting compression into 2 L. Applying Boyle's Law, what will the new pressure be? choices: 2.3 atm 8 atm 6 atm 1.5 atm

Answers

Answer:

6 atm

Explanation:

PV = PV

(4 atm) (3 L) = P (2 L)

P = 6 atm

You’re driving down the highway late one night at 20 m/s when a deer steps onto the road 35 m in front of you. Your reaction time before stepping on the brakes is 0.50 s, and the maximum deceleration of your car is 10 m/s2.

a. How much distance is between you and the deer when you come to a stop?

b. What is the maximum speed you could have and still not hit the deer?

Answers

Answer:

(a) Distance between deer and car = 5 m

(b) Vmax = 21.92 m/s

Explanation:

a.

First we calculate distance covered during response time:

s₁ = vt   --------- equation 1

where,

s₁ = distance covered during response time = ?

v = speed of car = 20 m/s

t = response time = 0.5 s

Therefore,

s₁ = (20 m/s)(0.5 s)

s₁ = 10 m

Now, we calculate the distance covered by the car during deceleration. Using 3rd equation of motion:

2as₂ = Vf² - Vi²

s₂ = (Vf² - Vi²)/2a ------ eqation 2

where,

a = deceleration = - 10 m/s²

s₂ = Distance covered during deceleration = ?

Vf = Final Velocity = 0 m/s (since car finally stops)

Vi = Initial Velocity = 20 m/s

Therefore,

s₂ = [(0 m/s)² - (20 m/s)²]/2(-10 m/s²)

s₂ = (400 m²/s²)/(20 m/s²)

s₂ = 20 m

thus, the total distance covered by the car before coming to rest is given as:

s = s₁ + s₂

s = 10 m + 20 m

s = 30 m

Now, the distance between deer and car, when it comes to rest, can be calculated as:

Distance between deer and car = 35 m - s = 35 m - 30 m

Distance between deer and car = 5 m

b.

Since, the distance covered by the car in total must be equal to 35 m at maximum. Therefore,

s₁ + s₂ = 35 m

using equation 1 and equation 2 from previous part:

Vi t + (Vf² - Vi²)/2a = 35 m

Vi(0.5 s) + [(0 m/s)² - Vi²]/2(-10 m/s²) = 35 m

0.5 Vi + 0.05 Vi² = 35

0.05 Vi² + 0.5 Vi - 35 = 0

solving this quadratic equation, we get:

Vi = - 31.92 m/s  (OR)  Vi = 21.92 m/s

For maximum velocity:

Vmax = 21.92 m/s

A charge of 87.6 pC is uniformly distributed on the surface of a thin sheet of insulating material that has a total area of 65.2 cm^2. A Gaussian surface encloses a portion of the sheet of charge. If the flux through the Gaussian surface is 9.20 N⋅m^2/C, what area of the sheet is enclosed by the Gaussian surface?

Answers

Answer:

60.8 cm²

Explanation:

The charge density, σ on the surface is σ = Q/A where q = charge = 87.6 pC = 87.6 × 10⁻¹² C and A = area = 65.2 cm² = 65.2 × 10⁻⁴ m².

σ = Q/A = 87.6 × 10⁻¹² C/65.2 × 10⁻⁴ m² = 1.34 × 10⁻⁸ C/m²

Now, the charge through the Gaussian surface is q = σA' where A' is the charge in the Gaussian surface.

Since the flux, Ф = 9.20 Nm²/C and Ф = q/ε₀ for a closed Gaussian surface

So, q = ε₀Ф = σA'

ε₀Ф = σA'

making A' the area of the Gaussian surface the subject of the formula, we have

A' = ε₀Ф/σ

A' = 8.854 × 10⁻¹² F/m × 9.20 Nm²/C ÷ 1.34 × 10⁻⁸ C/m²

A' = 81.4568/1.34 × 10⁻⁴ m²

A' = 60.79 × 10⁻⁴ m²

A' ≅ 60.8 cm²

The flux through the Gaussian surface is 9.20 N⋅m^2/C then the surface area of the Gaussian Sheet is 60.76 square cm.

Charge and Charge Density

A certain amount of electrons in excess or defect is called a charge. Charge density is the amount of charge distributed over per unit of volume.

Given that, for a thin sheet of insulating material, the charge Q is 87.6 pC and surface area A is 65.2 square cm. Then the charge density for a thin sheet is given below.

[tex]\sigma = \dfrac {Q}{A}[/tex]

[tex]\sigma = \dfrac {87.6\times 10^{-12}}{65;.2\times 10^{-4}}[/tex]

[tex]\sigma = 1.34\times 10^{-8} \;\rm C/m^2[/tex]

Thus the charge density for a thin sheet of insulating material is [tex]1.34\times 10^{-8} \;\rm C/m^2[/tex].

Now, the flux through the Gaussian surface is 9.20 N⋅m^2/C. The charge over the Gaussian Surface is given as below.

[tex]Q' = \sigma A'[/tex]

Where Q' is the charge at the Gaussian Surface, A' is the surface area of the Gaussian surface and [tex]\sigma[/tex] is the charge density.

For the closed Gaussian Surface, Flux is given below.

[tex]\phi = \dfrac {Q'}{\epsilon_\circ}[/tex]

Hence the charge can be written as,

[tex]Q' = \phi\epsilon_\circ[/tex]

So the charge can be given as below.

[tex]Q' = \phi\epsilon_\circ = \sigma A'[/tex]

Then the surface area of the Gaussian surface is given below.

[tex]A' = \dfrac {\phi\epsilon_\circ}{\sigma}[/tex]

Substituting the values in the above equation,

[tex]A' = \dfrac {9.20 \times 8.85\times 10^{-12}}{1.38\times 10^{-8}}[/tex]

[tex]A' =0.006076\;\rm m^2[/tex]

[tex]A' = 60.76 \;\rm cm^2[/tex]

Hence we can conclude that the area of the Gaussian Surface is 60.76 square cm.

To know more about the charge and charge density, follow the link given below.

https://brainly.com/question/8532098.

the density of gold is 19 300kg/m^3. what is the mass of gold cube with the length 0.2015m?

Answers

Answer:

The mass is [tex]157.87m^3[/tex]

Explanation:

Given data

length of cube= 0.2015 m

density = 19300 kg/m^3.

But the volume of cube is given as [tex]l*l*l= l^3[/tex]

[tex]volume -of- cube= 0.2015*0.2015*0.2015= 0.00818 m^3[/tex]

The density is expressed as = mass/volume

[tex]mass=19300*0.00818= 157.87m^3[/tex]

The potential energy function
U(x,y)=A[(1/x2) + (1/y2)] describes a conservative force, where A>0.
Derive an expression for the force in terms of unit vectors i and j.

Answers

Answer:

[tex]F=-2A[\frac{1}{x^3}\hat{i}+\frac{1}{y^3}\hat{j}][/tex]

Explanation:

You have the following potential energy function:

[tex]U(x,y)=A[\frac{1}{x^2}+\frac{1}{y^2}}][/tex]           (1)

A > 0 constant

In order to find the force in terms of the unit vectors, you use the gradient of the potential function:

[tex]\vec{F}=\bigtriangledown U(x,y)=\frac{\partial}{\partial x}U\hat{i}+\frac{\partial}{\partial y}U\hat{j}[/tex]         (2)

Then, you replace the expression (1) into the expression (2) and calculate the partial derivatives:

[tex]\vec{F}=A\frac{\partial}{\partial x}[\frac{1}{x^2}+\frac{1}{y^2}]} \hat{i}+A\frac{\partial}{\partial x}[\frac{1}{x^2}+\frac{1}{y^2}]\hat{j}\\\\\vec{F}=A(-2x^{-3})\hat{i}+A(-2y^{-3})\hat{j}\\\\F=-2A[\frac{1}{x^3}\hat{i}+\frac{1}{y^3}\hat{j}][/tex](3)

The result obtained in (3) is the force expressed in terms of the unit vectors, for the potential energy function U(x,y).

Monochromatic coherent light shines through a pair of slits. If the wavelength of the light is decreased, which of the following statements are true of the resulting interference pattern? (There could be more than one correct choice.)
a. The distance between the maxima decreases.
b. The distance between the minima decreases.
c. The distance between the maxima stays the same.
d. The distance between the minima increases.
e. The distance between the minima stays the same.

Answers

Answer:

he correct answers are a, b

Explanation:

In the two-slit interference phenomenon, the expression for interference is

          d sin θ= m λ                       constructive interference

          d sin θ = (m + ½) λ             destructive interference

in general this phenomenon occurs for small angles, for which we can write

           tanθ = y / L

           tan te = sin tea / cos tea = sin tea

           sin θ = y / La

un

derestimate the first two equations.

Let's do the calculation for constructive interference

         d y / L = m λ

the distance between maximum clos is and

         y = (me / d) λ

this is the position of each maximum, the distance between two consecutive maximums

         y₂-y₁ = (L   2/d) λ - (L 1 / d) λ₁          y₂ -y₁ = L / d λ

examining this equation if the wavelength decreases the value of y also decreases

the same calculation for destructive interference

         d y / L = (m + ½) κ

         y = [(m + ½) L / d] λ

again when it decreases the decrease the distance

the correct answers are a, b

A wave with a frequency of 1200 Hz propagates along a wire that is under a tension of 800 N. Its wavelength is 39.1 cm. What will be the wavelength if the tension is decreased to 600 N and the frequency is kept constant

Answers

Answer:

The wavelength will be 33.9 cm

Explanation:

Given;

frequency of the wave, F = 1200 Hz

Tension on the wire, T = 800 N

wavelength, λ = 39.1 cm

[tex]F = \frac{ \sqrt{\frac{T}{\mu} }}{\lambda}[/tex]

Where;

F is the frequency of the wave

T is tension on the string

μ is mass per unit length of the string

λ is wavelength

[tex]\sqrt{\frac{T}{\mu} } = F \lambda\\\\\frac{T}{\mu} = F^2\lambda^2\\\\\mu = \frac{T}{F^2\lambda^2} \\\\\frac{T_1}{F^2\lambda _1^2} = \frac{T_2}{F^2\lambda _2^2} \\\\\frac{T_1}{\lambda _1^2} = \frac{T_2}{\lambda _2^2}\\\\T_1 \lambda _2^2 = T_2\lambda _1^2\\\\[/tex]

when the tension is decreased to 600 N, that is T₂ = 600 N

[tex]T_1 \lambda _2^2 = T_2\lambda _1^2\\\\\lambda _2^2 = \frac{T_2\lambda _1^2}{T_1} \\\\\lambda _2 = \sqrt{\frac{T_2\lambda _1^2}{T_1}} \\\\\lambda _2 = \sqrt{\frac{600* 0.391^2}{800}}\\\\\lambda _2 = \sqrt{0.11466} \\\\\lambda _2 =0.339 \ m\\\\\lambda _2 =33.9 \ cm[/tex]

Therefore, the wavelength will be 33.9 cm

An 88.0 kg spacewalking astronaut pushes off a 645 kg satellite, exerting a 110 N force for the 0.450 s it takes him to straighten his arms. How far apart are the astronaut and the satellite after 1.40 min?

Answers

Answer:

The astronaut and the satellite are 53.718 m apart.

Explanation:

Given;

mass of spacewalking astronaut, = 88 kg

mass of satellite, = 645 kg

force exerts by the satellite, F = 110N

time for this action, t = 0.45 s

Determine the acceleration of the satellite after the push

F = ma

a = F / m

a = 110 / 645

a = 0.171 m/s²

Determine the final velocity of the satellite;

v = u + at

where;

u is the initial velocity of the satellite = 0

v = 0 + 0.171 x 0.45

v = 0.077 m/s

Determine the displacement of the satellite after 1.4 m

d₁ = vt

d₁ = 0.077 x (1.4 x 60)

d₁ = 6.468 m

According to Newton's third law of motion, action and reaction are equal and opposite;

Determine the backward acceleration of the astronaut after the push;

F = ma

a = F / m

a = 110 / 88

a = 1.25 m/s²

Determine the final velocity of the astronaut

v = u + at

The initial velocity of the astronaut = 0

v = 1.25 x 0.45

v = 0.5625 m/s

Determine the displacement of the astronaut after 1.4 min

d₂ = vt

d₂ = 0.5625 x (1.4 x 60)

d₂ = 47.25 m

Finally, determine the total separation between the astronaut and the satellite;

total separation = d₁ + d₂

total separation = 6.468 m + 47.25 m

total separation = 53.718 m

Therefore, the astronaut and the satellite are 53.718 m apart.

A very long, solid cylinder with radius R has positive charge uniformly distributed throughout it, with charge per unit volume \rhorho.
(a) Derive the expression for the electric field inside the volume at a distance r from the axis of the cylinder in terms of the charge density \rhorho.
(b) What is the electric field at a point outside the volume in terms of the charge per unit length \lambdaλ in the cylinder?
(c) Compare the answers to parts (a) and (b) for r = R.
(d) Graph the electric-field magnitude as a function of r from r = 0 to r = 3R.

Answers

Answer:

the answers are provided in the attachments below

Explanation:

Gauss law state that the net electric field coming out of a closed surface is directly proportional to the charge enclosed inside the closed surface

Applying Gauss law to the long solid cylinder

A) E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex]

B) E = 2K λ / r

C) Answers from parts a and b are the same

D) attached below

Applying Gauss's law which states that the net electric field in an enclosed surface is directly ∝ to the charge found in the enclosed surface.

A ) The expression for the electric field inside the volume at a distance r

Gauss law :  E. A = [tex]\frac{q}{e_{0} }[/tex]  ----- ( 1 )

where : A = surface area = 2πrL ,  q = p(πr²L)

back to equation ( 1 )

E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex]

B) Electric field at point Outside the volume in terms of charge per unit length  λ

Given that:  linear charge density = area * volume charge density

                                            λ    =  πR²P

from Gauss's law : E ( 2πrL) = [tex]\frac{q}{e_{0} }[/tex]

∴ E = [tex]\frac{\pi R^{2}P }{2e_{0}r\pi }[/tex]    ----- ( 2 )

where : πR²P = λ

Back to equation ( 2 )

E = λ  / 2e₀π*r              where : k = 1 / 4πe₀

∴ The electric field ( E ) at point outside the volume in terms of charge per unit Length λ

E = 2K λ / r

C) Comparing answers A and B

Answers to part A and B are similar

Hence we can conclude that Applying Gauss law to the long solid cylinder

E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex], E = 2K λ / r also Answers from parts a and b are the same.

Learn more about Gauss's Law : https://brainly.com/question/15175106

A 0.500-kg mass suspended from a spring oscillates with a period of 1.50 s. How much mass must be added to the object to change the period to 2.00 s

Answers

Answer:

389 kg

Explanation:

The computation of mass is shown below:-

[tex]T = 2\pi \sqrt{\frac{m}{k} }[/tex]

Where K indicates spring constant

m indicates mass

For the new time period

[tex]T^' = 2\pi \sqrt{\frac{m'}{k} }[/tex]

Now, we will take 2 ratios of the time period

[tex]\frac{T}{T'} = \sqrt{\frac{m}{m'} }[/tex]

[tex]\frac{1.50}{2.00} = \sqrt{\frac{0.500}{m'} }[/tex]

[tex]0.5625 = \sqrt{\frac{0.500}{m'} }[/tex]

[tex]m' = \frac{0.500}{0.5625}[/tex]

= 0.889 kg

Since mass to be sum that is

= 0.889 - 0.500

0.389 kg

or

= 389 kg

Therefore for computing the mass we simply applied the above formula.

The mass added to the object to change the period to 2.00 s is 0.389 kg and this can be determined by using the formula of the time period.

Given :

A 0.500-kg mass suspended from a spring oscillates with a period of 1.50 s.

The formula of the time period is given by:

[tex]\rm T = 2\pi\sqrt{\dfrac{m}{K}}[/tex]   ---- (1)

where m is the mass and K is the spring constant.

The new time period is given by:

[tex]\rm T'=2\pi\sqrt{\dfrac{m'}{K}}[/tex]   ---- (2)

where m' is the total mass after the addition and K is the spring constant.

Now, divide equation (1) by equation (2).

[tex]\rm \dfrac{T}{T'}=\sqrt{\dfrac{m}{m'}}[/tex]

Now, substitute the known terms in the above expression.

[tex]\rm \dfrac{1.50}{2}=\sqrt{\dfrac{0.5}{m'}}[/tex]

Simplify the above expression in order to determine the value of m'.

[tex]\rm m'=\dfrac{0.5}{0.5625}[/tex]

m' = 0.889 Kg

Now, the mass added to the object to change the period to 2.00 s is given by:

m" = 0.889 - 0.500

m" = 0.389 Kg

For more information, refer to the link given below:

https://brainly.com/question/2144584

g At some point the road makes a right turn with a radius of 117 m. If the posted speed limit along this part of the highway is 25.1 m/s, how much should Raquel bank the turn so that a vehicle traveling at the posted speed limit can make the turn without relying on the frictional force between the tires and the road

Answers

Answer:

Ф = 28.9°

Explanation:

given:

radius (r) = 117m

velocity (v) = 25.1 m/s

required: angle Ф

Ф = inv tan (v² / (r * g))      we know that g = 9.8

Ф = inv tan (25.1² / (117 * 9.8))

Ф = 28.9°

Two objects attract each other with a gravitational force of magnitude 1.02 10-8 N when separated by 19.7 cm. If the total mass of the two objects is 5.14 kg, what is the mass of each

Answers

Answer:

The two masses are 3.39 Kg and 1.75 Kg

Explanation:

The gravitational force of attraction between two bodies is given by the formula;

F = Gm₁m₂/d²

where G is the gravitational force constant = 6.67 * 10⁻¹¹ Nm²Kg⁻²

m₁ = mass of first object; m₂ = mass of second object; d = distance of separation between the objects

Further calculations are provided in the attachment below

A 150m race is run on a 300m circular track of circumference. Runners start running from the north and turn west until reaching the south. What is the magnitude of the displacement made by the runners?

Answers

Answer:

95.5 m

Explanation:

The displacement is the position of the ending point relative to the starting point.

In this case, the magnitude of the displacement is the diameter of the circular track.

d = 300 m / π

d ≈ 95.5 m

Other Questions
HELP ME PWhat are the reactants in a chemical reaction?O A. The ending substancesB. New substances that are formedO c. All substances that are involvedO D. The starting substances On December 1, Christy Co. accepted a 60-day, 6%, $1,000 note due January 30. On December 31, the appropriate year-end adjusting entry was made. On January 30, the note was honored and paid in full. The entry to record receipt of payment on January 30 (assuming no reversing entry was made) would include a credit to: (Check all that apply.) Sarah's car travels 28 miles on on gallon of gas. Greta's car travel 18 kilometers on one liter of gas. Which car gets better gas mileage? 3. A tunnel is 300 feet deep and makes an angle of 30 with the ground, as shown below.30300 feetTunneHow long is the tunnel? A reversible reaction has an equilibrium constant of 0.75. If the forward rate constant is 0.62 mol/L/s, what's the reverse reaction rate constant?A. 0.910B. 0.827C. 1.010D. 1.210 Mr. mahatma Gandhi an essay in English 200 words Write the following isotope in nuclide notation: oxygen-14 30 POINTS IF ANSWERED IN THE NEXT FIVE MINUTES. Ms. Roth has made 200 headbands and is deciding what price to charge for them. She knows that she will sell more if the price is lower. To estimate the number she can expect to sell, she uses the function defined as ()=2001.5, where is the price in dollars. Which choice describes a function, (), that models the total sales in dollars she can expect? Abigail was skateboarding home when the wheel axle of her skateboard broke. She had already traveled two-thirds of the way home and had to walk the rest of the way. Walking the rest of the way home took her twice as long as it took her to ride her skateboard. How many times faster is Abigail on her skateboard than she is walking? The potential energy function U(x,y)=A[(1/x2) + (1/y2)] describes a conservative force, where A>0. Derive an expression for the force in terms of unit vectors i and j. If sin + cos = 1.2, find sin cos THANKS! (: Let f(x)= (2/3)^xComplete each statement. A. The domain of f(x) is____.B. The range of f(x) is_____.C. The y-intercept of the graph of f(x) is______.D. The horizontal asymptote of the graph of f(x) is the ( x-axis / y-axis ). (Circle one.)E. The graph of f(x) is ( increasing / decreasing ) from left to right. (Circle one.)F. The value of the ( base / coefficient / exponent ) determines whether the graph of an exponentialfunction is increasing or decreasing from left to right. (Circle one.) whats the answer ???? help dude 3. A photograph is 40 cm long and 20 cm wide. Find its area. MATH HELP ASAP PLSSSS A rat population has an average weight gain between weeks 2 and 4 of 10 grams, and the narrow-sense heritability of the weight gain between 2 and 4 weeks is 25%. What average weight gain would be expected among the offspring of parents whose average gain was 15 grams? Viking Corporation is owned equally by Sven and his wife Olga, each of whom hold 160 shares in the company. Viking redeemed 80 shares of Sven's stock for $1,900 per share on December 31, 20X3. Viking has total E&P of $580,000. What are the tax consequences to Viking because of the stock redemption? The weather report says that a devastating and unexpected freeze is expected to hit Florida tonight during the peak of the citrus harvest. In an efficient market, one would expect the price of Florida Orange's stock to Group of answer choices increase immediately. drop immediately. gradually increase for the next several weeks. unable to determine. gradually decline for the next several weeks. Connect 2 ideas in a sentence. Use the words derision, vexed and vehemently. The part ofthe part of cell solely responsible for respiration is (a)nucleus( b) mitochondria( c )nucleus( d) Golgi apparatus