An enclosed amount of nitrogen gas undergoes thermodynamic processes as follows: from an initial state A to a state B to C to D and back to A, as shown in the P-V diagram. Assume that the gas behaves ideally. What is the change in internal energy of the gas for the entire process, A-B-C-D-A? (pressure at B is 10kPa)

An Enclosed Amount Of Nitrogen Gas Undergoes Thermodynamic Processes As Follows: From An Initial State

Answers

Answer 1

Answer:

The total internal energy change for the entire process is  -0.94 kJ

Explanation:

Process A to B is an isothermal process, therefore, [tex]u_A[/tex] - [tex]u_B[/tex] = 0

Process B to C

P = -mV + C

When P = 12, V = 0.12

When P = 4, V = 0.135

Therefore, we have;

12 = -m·0.12 + C

4 = -m·0.135 + C

Solving gives

m = 533.33

C = 76

[tex]T = \dfrac{1}{nR} \times (-533.33 \times V^2 + 76 \times V)[/tex]

p₂ = p₁V₁/V₂ = 12*0.1/0.12 = 10 kPa

The work done = 0.5*(0.135 - 0.12)*(4 - 10.0) = -0.045 kJ = -45 J

For heat supplied

Assuming an approximate polytropic process, we have;

Work done = (p₃×v₃ - p₂×v₂)/(n - 1)

Which gives;

-45 = (4*0.135 - 10*0.12)/(n -1)

∴ n -1 = (4*0.135 - 10*0.12)/-45 =   14.67

n = 15.67

Q = W×(n - γ)/(γ - 1)

Q = -45*(15.67 - 1.4)/(1.4 - 1) = -1,605.375 J

u₃ - u₂ = Q + W = -1,605.375 J - 45 J = -1650 J = -1.65 kJ

For the constant pressure process D to C, we have;

[tex]Q = c_p \times \dfrac{p}{R} \times (V_4 -V_3) = \dfrac{5}{2} \times p \times (V_4 -V_3)[/tex]

Q₄₋₃ = (0.1 - 0.135) * 4*5/2 = -0.35 kJ

W₄₋₃ = 4*(0.1 - 0.135) = -0.14 kJ

u₄ - u₃ = Q₄₋₃ + W₄₋₃ = -0.14 kJ + -0.35 kJ = -0.49 kJ

For the process D to A, we have a constant volume process

[tex]Q_{1-4} = \dfrac{c_v}{R} \times V \times (p_1 - p_4) = \dfrac{3}{2} \times 0.1 \times (12 - 4) = 1.2 \ kJ[/tex]

W₁₋₄ = 0 for constant volume process, therefore, u₁ - u₄ = 1.2 kJ

The total internal energy change Δ[tex]u_{process}[/tex] for the entire process is therefore;

Δ[tex]u_{process}[/tex] = u₂ - u₁ + u₃ - u₂ + u₄ - u₃ + u₁ - u₄ = 0  - 1.65 - 0.49 + 1.2 = -0.94 kJ.


Related Questions

The robot HooRU is lost in space, floating around aimlessly, and radiates heat into the depths of the cosmos at the rate of 13.1 W. HooRU's surface area is 1.55 m2 and the emissivity of its surface is 0.287. Ignoring the radiation that HooRU absorbs from the cold universe, what is HooRU's temperature T?

Answers

Answer:

The temperature is  [tex]T = 168.44 \ K[/tex]

Explanation:

From the question ewe are told that

   The rate of heat transferred is    [tex]P = 13.1 \ W[/tex]

     The surface area is  [tex]A = 1.55 \ m^2[/tex]

      The emissivity of its surface is  [tex]e = 0.287[/tex]

Generally, the rate of heat transfer is mathematically represented as

           [tex]H = A e \sigma T^{4}[/tex]

=>         [tex]T = \sqrt[4]{\frac{P}{e* \sigma } }[/tex]

where  [tex]\sigma[/tex] is the Boltzmann constant with value  [tex]\sigma = 5.67*10^{-8} \ W\cdot m^{-2} \cdot K^{-4}.[/tex]

substituting value  

             [tex]T = \sqrt[4]{\frac{13.1}{ 0.287* 5.67 *10^{-8} } }[/tex]

            [tex]T = 168.44 \ K[/tex]

High voltage power is often carried in wire bundles made up of individual strands. In your initial post to the discussion, discuss the forces on the strands of wire due to the current flowing through them. What would happen if the force acted opposite of the known behavior

Answers

Answer:

More current will be loss through the metal wire strands if the force on them was repulsive, and more stress will be induced on the wire strands due to internal and external flexing.

Explanation:

A wire bundle is made up of wire strands bunched together to increase flexibility that is not always possible in a single solid metal wire conductor. In the strands of wire carrying a high voltage power, each strand carries a certain amount of current, and the current through the strands all travel in the same direction. It is know that for two conductors or wire, separated by a certain distance, that carries current flowing through them in the same direction, an attractive force is produced on these wires, one on the other. This effect is due to the magnetic induction of a current carrying conductor. The forces between these strands of the high voltage wire bundle, pulls the wire strands closer, creating more bond between these wire strands and reducing internal flex induced stresses.

If the case was the opposite, and the wires opposed themselves, the effect would be that a lot of cost will be expended in holding these wire strands together. Also, stress within the strands due to the repulsion, will couple with external stress from the flexing of the wire, resulting in the weakening of the material.

The biggest problem will be that more current will be lost in the wire due to increased surface area caused by the repulsive forces opening spaces between the strand. This loss is a s a result of the 'skin effect' in wire transmission, in which current tends to flow close to the surface of the metal wire. The skin effect generates power loss as heat through the exposed surface area.

In 1949, an automobile manufacturing company introduced a sports car (the "Model A") which could accelerate from 0 to speed v in a time interval of Δt. In order to boost sales, a year later they introduced a more powerful engine (the "Model B") which could accelerate the car from 0 to speed 2.92v in the same time interval. Introducing the new engine did not change the mass of the car. Compare the power of the two cars, if we assume all the energy coming from the engine appears as kinetic energy of the car.

Answers

Answer: [tex]\frac{P_B}{P_A}[/tex] = 8.5264

Explanation: Power is the rate of energy transferred per unit of time: P = [tex]\frac{E}{t}[/tex]

The energy from the engine is converted into kinetic energy, which is calculated as: [tex]KE = \frac{1}{2}.m.v^{2}[/tex]

To compare the power of the two cars, first find the Kinetic Energy each one has:

K.E. for Model A

[tex]KE_A = \frac{1}{2}.m.v^{2}[/tex]

K.E. for model B

[tex]KE_B = \frac{1}{2}.m.(2.92v)^{2}[/tex]

[tex]KE_B = \frac{1}{2}.m.8.5264v^{2}[/tex]

Now, determine Power for each model:

Power for model A

[tex]P_{A}[/tex] = [tex]\frac{m.v^{2} }{2.t}[/tex]

Power for model B

[tex]P_B = \frac{m.8.5264.v^{2} }{2.t}[/tex]

Comparing power of model B to power of model A:

[tex]\frac{P_B}{P_A} = \frac{m.8.5264.v^{2} }{2.t}.\frac{2.t}{m.v^{2} }[/tex]

[tex]\frac{P_B}{P_A} =[/tex] 8.5264

Comparing power for each model, power for model B is 8.5264 better than model A.

Underline your answer for each situation: If you advance the movie one frame, the knot at point A would be a) in the same place b) higher c) lower d) to the right e) to the left If the person generates a new pulse like the first but more quickly, the pulse would be a) same size b) wider c) narrower If the person generates another pulse like the first but he moves his hand further, the pulse would be a) same size b) taller c) shorter If the person generates another pulse like the first but the rope is tightened, the pulse will move a) at the same rate b) faster c) slower Now the person moves his hand back and forth several times to produce several waves. You freeze the movie and get this snapshot. Underline your answer for each situation: If you advance the movie one frame, the knot at point A would be a) in the same place b) higher c) lower d) to the right e) to the left If you advance the movie one frame, the pattern of the waves will be _________relative to the hand. a) in the same place b) shifted right c) shifted left d) shifted up e) shifted down If the person starts over and moves his hand more quickly, the peaks of the waves will be a) the same distance apart b) further apart c) closer together If you lower the frequency of a wave on a string you will lower its speed. b) increase its wavelength. c). lower its amplitude. d) shorten its period.

Answers

Answer:

a) correct answer is b higher , b) correct answer is b higher , c) correct answer is b faster , d)  traveling wave , e)

Explanation:

A traveling wave is described by the expression

            y = A sin (kx - wt)

where k is the wave vector and w is the angular velocity

 

let's examine every situation presented

a) a new faster pulse is generated

A faster pulse should have a higher angular velocity

equal speed is related to the period and frequency

            w = 2π f = 2π / T

therefore in this case the period must decrease so that the angular velocity increases

the correct answer is c narrower

b) Generate a pulse, but move your hand more.

Moving the hand increases the amplitude (A) of the pulse

the correct answer is b higher

c) generates a pulse but the force is tightened

Set means that more tension force is applied to the string, so the velicate changes

       v = √ (T /μ)

the correct answer is b faster

d) move your hand back and forth

in this case you would see a pulse series whose sum corresponds to a traveling wave

e) Advance a frame the movie

in this case the wave will be displaced a whole period to the right

the correct answer is b

f) move your hand faster

the waves will have a maximum fast, so they are closer

answer C

g) decrease wave frequency

Since the speed of the wave is a constant m ak, decreasing the frequency must increase the wavelength to keep the velocity constant.

the correct answer is b increases its wavelength

A box on a ramp is connected by a rope to a winch. The winch is turned so that the box moves down the ramp at a constant speed. The box experiences kinetic friction with the ramp. Which forces on the box do zero work as the box moves down the ramp?

a. Weight (gravitational force)
b. Normal force
c. Kinetic friction force
d. Tension force
e. None

Answers

Answer:

Option B:

The normal force

Explanation:

The normal force does no work as the box slides down the ramp.

Work can only be done when the force succeeds in moving the object in the direction of the force.

All the other forces involved have a component that is moving the box in their direction.

However, the normal force does not, as it points downwards into the ramp. Since the normal force is pointing into the ramp, and the box is sliding down the ramp, we can say that no work is being done by the normal force because the box is not moving in its direction (which would have been the box moving into the ramp)

Two guitarists attempt to play the same note of wavelength 6.50 cm at the same time, but one of the instruments is slightly out of tune. Consequently, a 17.0-Hz beat frequency is heard between the two instruments. What were the possible wavelengths of the out-of-tune guitar’s note? Express your answers, separated by commas, in centimeters to three significant figures IN cm.

Answers

Answer:

The two value of the wavelength for the out of tune guitar is  

[tex]\lambda _2 = (6.48,6.52) \ cm[/tex]

Explanation:

From the question we are told that

     The wavelength of the note is [tex]\lambda = 6.50 \ cm = 0.065 \ m[/tex]

     The difference in beat frequency is [tex]\Delta f = 17.0 \ Hz[/tex]

     

Generally the frequency of the note played by the guitar that is in tune is  

        [tex]f_1 = \frac{v_s}{\lambda}[/tex]

Where [tex]v_s[/tex] is the speed of sound with a constant value [tex]v_s = 343 \ m/s[/tex]

       [tex]f_1 = \frac{343}{0.0065}[/tex]

      [tex]f_1 = 5276.9 \ Hz[/tex]

The difference in beat is mathematically represented as

       [tex]\Delta f = |f_1 - f_2|[/tex]

Where [tex]f_2[/tex] is the frequency of the sound from the out of tune guitar

     [tex]f_2 =f_1 \pm \Delta f[/tex]

substituting values

      [tex]f_2 =f_1 + \Delta f[/tex]

      [tex]f_2 = 5276.9 + 17.0[/tex]  

     [tex]f_2 = 5293.9 \ Hz[/tex]

The wavelength for this frequency is

      [tex]\lambda_2 = \frac{343 }{5293.9}[/tex]

     [tex]\lambda_2 = 0.0648 \ m[/tex]

    [tex]\lambda_2 = 6.48 \ cm[/tex]

For the second value of the second frequency

     [tex]f_2 = f_1 - \Delta f[/tex]

     [tex]f_2 = 5276.9 -17[/tex]

      [tex]f_2 = 5259.9 Hz[/tex]

The wavelength for this frequency is

   [tex]\lambda _2 = \frac{343}{5259.9}[/tex]

   [tex]\lambda _2 = 0.0652 \ m[/tex]

   [tex]\lambda _2 = 6.52 \ cm[/tex]

This question involves the concepts of beat frequency and wavelength.

The possible wavelengths of the out-of-tune guitar are "6.48 cm" and "6.52 cm".

The beat frequency is given by the following formula:

[tex]f_b=|f_1-f_2|\\\\[/tex]

f₂ = [tex]f_b[/tex] ± f₁

where,

f₂ = frequency of the out-of-tune guitar = ?

[tex]f_b[/tex] = beat frequency = 17 Hz

f₁ = frequency of in-tune guitar = [tex]\frac{speed\ of\ sound\ in\ air}{\lambda_1}=\frac{343\ m/s}{0.065\ m}=5276.9\ Hz[/tex]

Therefore,

f₂ = 5276.9 Hz ± 17 HZ

f₂ = 5293.9 Hz (OR) 5259.9 Hz

Now, calculating the possible wavelengths:

[tex]\lambda_2=\frac{speed\ of\ sound}{f_2}\\\\\lambda_2 = \frac{343\ m/s}{5293.9\ Hz}\ (OR)\ \frac{343\ m/s}{5259.9\ Hz}\\\\[/tex]

λ₂ = 6.48 cm (OR) 6.52 cm

Learn more about beat frequency here:

https://brainly.com/question/10703578?referrer=searchResults

A Nearsighted Eye. A certain very nearsighted person cannot focus on anything farther than 36.0 cm from the eye. Consider the simplified model of the eye. In a simplified model of the human eye, the aqueous and vitreous humors and the lens all have a refractive index of 1.40, and all the refraction occurs at the cornea, whose vertex is 2.60 cm from the retina.

Required:
a. If the radius of curvature of the cornea is 0.65 cm when the eye is focusing on an object 36.0 cm from the cornea vertex and the indexes of refraction are as described before, what is the distance from the cornea vertex to the retina?
b. What does this tell you about the shape of the nearsighted eye?

1. This distance is greater than for the normal eye.
2. This distance is shorter than for the normal eye.

Answers

Answer:

a) The distance from the cornea vertex to the retina is 2.37 cm

b) This distance is shorter than for the normal eye.

Explanation:

a) Let refractive index of air,

n(air) = x = 1

Let refractive index of lens,

n(lens) = y = 1.4

Object distance, s = 36 cm

Radius of curvature, R = 0.65 cm

The distance from the cornea vertex to the retina is the image distance because image is formed in the retina.

Image distance, s' = ?

(x/s) + (y/s') = (y-x)/R

(1/36) + (1.4/s') = (1.4 - 1)/0.65

1.4/s' = 0.62 - 0.028

1.4/s' = 0.592

s' = 1.4/0.592

s' = 2.37 cm

Distance from the cornea vertex to the retina is 2.37 cm

(b) For a normal eye, the distance between the cornea vertex and the retina is 2.60 cm. Since 2.37 < 2.60, this distance is shorter than for normal eye.

Two red blood cells each have a mass of 9.0 x 10-14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion from the excess charge prevents the cells from clumping together. One cell carries -2.5pC and the other -3.30 pC, and each cell can be modeled as a sphere 3.75 × 10-6 m in radius. If the red blood cells start very far apart and move directly toward each other with the same speed.
1. What initial speed would each need so that they get close enough to just barely touch?
2. What is the maximum acceleration of the cells as they move toward each other and just barely touch?

Answers

Answer:

Explanation:

Given that:

The mass of the cell is 9.0 x 10^-14 kg

The charges of the cell is -2.5pC and the other -3.30 pC

[tex]q_1=-2.5\times10^{-12}C \ \ and \ \ q_2=-3.75\times10^{-12}C[/tex]

Radius is  3.75 × 10-6 m

The final distance is twice the radius

i.e [tex]2*(3.75 \times 10^{-6}) = 7.5*10^{-6}m[/tex]

The formula for the velocity of the cell is

[tex]mv^2=\frac{q_1q_2}{4\pi \epsilon 2 r} \\[/tex]

[tex]v=\sqrt{\frac{q_1q_2}{4\pi \epsilon 2 r} }[/tex]

[tex]=\sqrt{\frac{(-2.5\times10^{-12})(-3.3\times10^{-12}}{4(3.14)(8.85\times10^{-112}(2\times3.75\times10^{-6})(9\times10^{-14})} } \\\\=\sqrt{\frac{(-8.25\times10^{-24})}{(7503.03\times10^{-32})} } \\\\=\sqrt{109955.5779} \\\\=331.60m/s[/tex]

The maximum acceleration of the cells as they move toward each other and just barely touch is

[tex]ma= \frac{q_1q_2}{4\pi \epsilon (2r)^2} \\\\a= \frac{q_1q_2}{4\pi \epsilon (2r)^2(m)}[/tex]

[tex]=\frac{(-2.5\times10^{-12})(-3.3\times10^{-12})}{4(3.14)(8.85\times10^{-12})(2\times3.75\times10^{-6})^2(9\times10^{-14})}[/tex]

[tex]=\frac{(-8.25\times10^{-24})}{(56272.725\times10^{-38})} \\\\=1.47\times10^{10}m/s^2[/tex]

The answers obtained are;

1. The initial speed of each of the red blood cells is [tex]v= 331.66\,m/s[/tex].

2. The maximum acceleration of the cells is [tex]a=1.47\times 10^{10}\,m/s^2[/tex].

The answer is explained as shown below.

We have, the mass of the red blood cell;

[tex]m=9\times 10^{-14}\,kg[/tex]

Also, the charges of the cells are;

[tex]q_1=-2.5\times 10^{-12}\,C[/tex] and[tex]q_2=-3.30\times 10^{-12}\,C[/tex]

The distance between the charges when they barely touch will be two times the radius of each charge.

[tex]r=2\times r\,'=2\times3.75\times10^{-6}\,m=7.5\times10^{-6}\,m[/tex]

Kinetic Energy of moving charges

1. As both the cells are negatively charged they will repel each other.

So, for the cells to come nearly close, their kinetic energies must be equal to the electric potential between them.[tex]\frac{1}{2}mv^2+ \frac{1}{2}mv^2=k\frac{q_1 q_2}{r^2}[/tex]Where, [tex]k=9\times10^9\,Nm^2/C^2[/tex] is the Coulomb's constant.

Now, substituting all the known values in the equation, we get;

[tex](9\times 10^{-14}\,kg)\times v^2=9\times 10^9Nm^2/C^2\times\frac{(-2.5\times 10^{-12}\,C)\times(-3.30\times 10^{-12}\,C)}{7.5\times10^{-6}\,m}[/tex]

[tex]v^2=9\times 10^9Nm^2/C^2\times\frac{(-2.5\times 10^{-12}\,C)\times(-3.30\times 10^{-12}\,C)}{7.5\times10^{-6}\,m\times(9\times 10^{-14}\,kg)} =110000\,m^2/s^2[/tex]

[tex]\implies v=\sqrt{110000\,m^2/s^2}=331.66\,m/s[/tex]

Electrostatic force between two charges

2. Also as the force between them is repulsive, there must be an acceleration to make them barely touch each other.

[tex]ma=k\frac{q_1 q_2}{r^2}[/tex]

Substituting the known values, we get;

[tex](9\times 10^{-14}\,kg)\times a=9\times 10^9Nm^2/C^2\times\frac{(-2.5\times 10^{-12}\,C)\times(-3.30\times 10^{-12}\,C)}{(7.5\times10^{-6}\,m)^2}[/tex]

[tex]\implies a=9\times 10^9Nm^2/C^2\times\frac{(-2.5\times 10^{-12}\,C)\times(-3.30\times 10^{-12}\,C)}{(7.5\times10^{-6}\,m)^2\times(9\times 10^{-14}\,kg) }[/tex]

[tex]a=1.47\times 10^{10}\,m/s^2[/tex]

Find out more information about moving charges here:

https://brainly.com/question/14632877

what is the orbital speed for a satellite 3.5 x 10^8m from the center of mars? Mars mass is 6.4 x 10^23 kg

Answers

Answer:

v = 349.23 m/s

Explanation:

It is required to find the orbital speed for a satellite [tex]3.5\times 10^8\ m[/tex] from the center of mass.

Mass of Mars, [tex]M=6.4\times 10^{23}\ kg[/tex]

The orbital speed for a satellite is given by the formula as follows :

[tex]v=\sqrt{\dfrac{GM}{r}} \\\\v=\sqrt{\dfrac{6.67\times 10^{-11}\times 6.4\times 10^{23}}{3.5\times 10^8}} \\\\v=349.23\ m/s[/tex]

So, the orbital speed for a satellite is 349.23 m/s.

A 4.5 kg ball swings from a string in a vertical circle such that it has constant sum of kinetic and gravitational potential energy. Ignore any friction forces from the air or in the string. What is the difference in the tension between the lowest and highest points on the circle

Answers

Answer:

88.29 N

Explanation:

mass of the ball = 4.5 kg

weight of the ball will be = mass x acceleration due to gravity(9.81 m/s^2)

weight W = 4.5 x 9.81 = 44.145 N

centrifugal forces Tc act on the ball as it swings.

At the top point of the vertical swing,

Tension on the rope = Tc - W.

At the bottom point of the vertical swing,

Tension on the rope = Tc + W

therefore,

difference in tension between these two points will be;

Net tension = tension at bottom minus tension at the top

= Tc + W - (Tc - W) = Tc + W -Tc + W

= 2W

imputing the value of the weight W, we have

2W = 2 x 44.145 = 88.29 N

In a contest, two tractors pull two identical blocks of stone thesame distance over identical surfaces. However, block A is moving twice as fast as block B when it crosses the finish line. Which statement is correct?a) Block A has twiceas much kinetic energy as block B.b) Block B has losttwice as much kinetic energy to friction as block A.c) Block B has losttwice as much kinetic energy as block A.d) Both blocks havehad equal losses of energy to friction.e) No energy is lostto friction because the ground has no displacement.

Answers

Answer:

d) Both blocks have had equal losses of energy to friction

Explanation:

As it is mentioned in the question that two tractors pull two same stone blocks having the identical distance over the same surfaces

Moreover, the block A is twice as fast than block B at the time of crossing the finish line

So based on the above information,  it contains the losses of identical friction

And we also know that

Friction energy loss is

[tex]= \mu \times m \times g \times D[/tex]

It would be the same for both the blocks

hence, the option d is correct

The correct answer will be both blocks have had equal losses of energy to friction.

What is friction?

Friction is defined as when any object is slides on a surface by means of any external force then the force in the opposite direction generated between the surface and the body restrict the motion of the body this force is called as the friction.

As it is mentioned in the question that two tractors pull two same stone blocks having the identical distance over the same surfaces.

Moreover, the block A is twice as fast as block B at the time of crossing the finish line.

So based on the above information,  it contains the losses of identical friction.

And we also know that

Friction energy loss is

[tex]E_f=\mu m g D[/tex]

It would be the same for both the blocks

Hence both blocks have had equal losses of energy to friction.

To know more about friction, follow

https://brainly.com/question/24386803

a wall, a 55.6 kg painter is standing on a 3.15 m long homogeneous board that is resting on two saw horses. The board’s mass is 14.5 kg. The saw horse on the right is 1.00 m from the right. How far away can the painter walk from the saw horse on the right until the board begins to tip?

Answers

Answer:

0.15 m

Explanation:

First calculating the center of mass from the saw horse

[tex]\frac{3.15}{2} -1=0.575 m[/tex]

from the free body diagram we can write

Taking moment about the saw horse

55.9×9.81×y=14.5×0.575×9.81

y= 0.15 m

So, the painter walk from the saw horse on the right until the board begins to tip is 0.15 m far.

A glass flask whose volume is 1000 cm^3 at a temperature of 1.00°C is completely filled with mercury at the same temperature. When the flask and mercury are warmed together to a temperature of 52.0°C , a volume of 8.50 cm^3 of mercury overflows the flask.Required:If the coefficient of volume expansion of mercury is βHg = 1.80×10^−4 /K , compute βglass, the coefficient of volume expansion of the glass. Express your answer in inverse kelvins.

Answers

Answer:

the coefficient of volume expansion of the glass is [tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]

Explanation:

Given that:

Initial volume of the glass flask = 1000 cm³ = 10⁻³ m³

temperature of the glass flask and mercury= 1.00° C

After heat is applied ; the final temperature = 52.00° C

Temperature change ΔT = 52.00° C - 1.00° C = 51.00° C

Volume of the mercury overflow = 8.50 cm^3 = 8.50 ×  10⁻⁶ m³

the coefficient of volume expansion of mercury is 1.80 × 10⁻⁴ / K

The increase in the volume of the mercury =  10⁻³ m³ ×  51.00 × 1.80 × 10⁻⁴

The increase in the volume of the mercury = [tex]9.18*10^{-6} \ m^3[/tex]

Increase in volume of the glass =  10⁻³ × 51.00 × [tex]\beta _{glass}[/tex]

Now; the mercury overflow = Increase in volume of the mercury - increase in the volume of the flask

the mercury overflow = [tex](9.18*10^{-6} - 51.00* \beta_{glass}*10^{-3})\ m^3[/tex]

[tex]8.50*10^{-6} = (9.18*10^{-6} -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]

[tex]8.50*10^{-6} - 9.18*10^{-6} = ( -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]

[tex]-6.8*10^{-7} = ( -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]

[tex]6.8*10^{-7} = ( 51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]

[tex]\dfrac{6.8*10^{-7}}{51.00 * 10^{-3}}= ( \beta_{glass} )[/tex]

[tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]

Thus; the coefficient of volume expansion of the glass is [tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]

A car is designed to get its energy from a rotating flywheel with a radius of 1.50 m and a mass of 430 kg. Before a trip, the flywheel is attached to an electric motor, which brings the flywheel's rotational speed up to 5,200 rev/min.

Required:
a. Find the kinetic energy stored in the flywheel.
b. If the flywheel is to supply energy to the car as would a 15.0-hp motor, find the length of time the car could run before the flywheel would have to be brought back up to speed.

Answers

Answer:

a

  [tex]KE = 7.17 *10^{7} \ J[/tex]

b

 [tex]t = 6411.09 \ s[/tex]

Explanation:

From the question we are told that

    The radius of the flywheel is  [tex]r = 1.50 \ m[/tex]

      The mass of the flywheel is [tex]m = 430 \ kg[/tex]

          The rotational speed of the flywheel is [tex]w = 5,200 \ rev/min = 5200 * \frac{2 \pi }{60} =544.61 \ rad/sec[/tex]

      The power supplied by the motor is  [tex]P = 15.0 hp = 15 * 746 = 11190 \ W[/tex]

         

     Generally the moment of inertia of the flywheel is  mathematically represented as

       [tex]I = \frac{1}{2} mr^2[/tex]

substituting values

       [tex]I = \frac{1}{2} ( 430)(1.50)^2[/tex]

       [tex]I = 483.75 \ kgm^2[/tex]

The kinetic energy that is been stored is  

       [tex]KE = \frac{1}{2} * I * w^2[/tex]

substituting values

        [tex]KE = \frac{1}{2} * 483.75 * (544.61)^2[/tex]

        [tex]KE = 7.17 *10^{7} \ J[/tex]

Generally power is mathematically represented as

          [tex]P = \frac{KE}{t}[/tex]

=>      [tex]t = \frac{KE}{P}[/tex]

substituting the value

        [tex]t = \frac{7.17 *10^{7}}{11190}[/tex]

        [tex]t = 6411.09 \ s[/tex]

A heavy, 6 m long uniform plank has a mass of 30 kg. It is positioned so that 4 m is supported on the deck of a ship and 2 m sticks out over the water. It is held in place only by its own weight. You have a mass of 70 kg and walk the plank past the edge of the ship. How far past the edge do you get before the plank starts to tip, in m

Answers

Answer:

about 1 meter

Explanation:

   

The distance past the edge that the man will get before the plank starts to tip is; 0.4285 m

We are given;

Mass of plank; m = 30 kg

Length of plank; L = 6m

Mass of man; M = 70 kg

Since the plank has 2 supports which are the deck of the ship, then it means that, we can take moments about the right support before the 2m stick out of the plank.

Thus;

Moment of weight of plank about the right support;

τ_p = mg((L/2) - 2)

τ_p = 30 × 9.8((6/2) - 2)

τ_p = 294 N.m

Moment of weight of man about the right support;

τ_m = Mgx

where x is the distance past the edge the man will get before the plank starts to tip.

τ_m = 70 × 9.8x

τ_m = 686x

Now, moment of the board is counterclockwise while that of the man is clockwise. Thus;

τ_m = τ_p

686x = 294

x = 294/686

x = 0.4285 m

Read more at; https://brainly.com/question/22150651

A charged particle q moves at constant velocity through a crossed electric and magnetic fields (E and B, which are both constant in magnitude and direction). Write the magnitude of the electric force on the particle in terms of the variables given. Do the same for the magnetic force

Answers

Answer:

The magnitude of the electric force on the particle in terms of the variables given is, F = qE

The magnitude of the magnetic force on the particle in terms of the variables given is, F = q (v x B)

Explanation:

Given;

a charged particle, q

magnitude of electric field, E

magnitude of magnetic field, B

The magnitude of the electric force on the particle in terms of the variables given;

F = qE

The magnitude of the magnetic force on the particle in terms of the variables given;

F = q (v x B)

where;

v is the constant velocity of the charged particle

Answer:

The magnitude of the electric force acting on a charged particle moving through an electric field = |qE|

The magnitude of the magnetic force of a charged particle moving at a particular velocity through a magnetic field = |qv × B|

Explanation:

The electric force acting on a charged particle, q, moving through an electric field, E, is given as a product of the charge on the particle (a scalar quantity) and the electric field (a vector quantity).

Electric force = qE

The magnitude of the electric force = |qE|

That is, magnitude of the product of the charge and the electric field vector.

The magnetic force acting on a charged particle, q, moving with a velocity, v, through a magnetic field, B is a vector product of qv [a product of the charge of the particle (a scalar quantity) and the velocity of the particle (a vector quantity)] and B (a vector quantity).

It is given mathematically as (qv × B)

The magnitude of the magnetic force is the magnitude of the vector product obtained.

Magnitude of the magnetic force = |qv × B|

Hope this Helps!!!

In 1898, the world land speed record was set by Gaston Chasseloup-Laubat driving a car named Jeantaud. His speed was 39.24 mph (63.15 km/h), much lower than the limit on our interstate highways today. Repeat the calculations of Example 2.7 (assume the car accelerates for 6 miles to get up to speed, is then timed for a one-mile distance, and accelerates for another 6 miles to come to a stop) for the Jeantaud car. (Assume the car moves in the +x direction.)
Find the acceleration for the first 6 miles.

Answers

Answer:

the acceleration [tex]a^{\to} = (0.0159 \ \ m/s^2 )i[/tex]

Explanation:

Given that:

the initial speed v₁ = 0 m/s i.e starting from rest ; since the car accelerates at a distance Δx = 6 miles in order to teach that final speed v₂ of 63.15 km/h.

So;  the acceleration for the first 6 miles can be calculated by using the formula:

v₂² = v₁² + 2a (Δx)

Making acceleration  a the subject of the formula in the above expression ; we have:

v₂² - v₁² = 2a (Δx)

[tex]a = \dfrac{v_2^2 - v_1^2 }{2 \Delta x}[/tex]

[tex]a = \dfrac{(63.15 \ km/s)^2 - (0 \ m/s)^2 }{2 (6 \ miles)}[/tex]

[tex]a = \dfrac{(17.54 \ m/s)^2 - (0 \ m/s)^2 }{2 (9.65*10^3 \ m)}[/tex]

[tex]a =0.0159 \ m/s^2[/tex]

Thus;

Assume the car moves in the +x direction;

the acceleration [tex]a^{\to} = (0.0159 \ \ m/s^2 )i[/tex]

A 25 kg box is 220 N pulled at constant speed up a frictionless inclined plane by a force that is parallel to the incline. If the plane is inclined at an angle of 25o above the horizontal, the magnitude of the applied force is

Answers

Answer:

F = 103.54N

Explanation:

In order to calculate the magnitude of the applied force, you take into account that the forces on the box are the applied force F and the weight of the box W.

The box moves with a constant velocity. By the Newton second law you have that the sum of forces must be equal to zero.

Furthermore, you have that the sum of forces are given by:

[tex]F-Wsin\theta=0[/tex]                (1)

F: applied force = ?

W: weight of the box = Mg = (25kg)(9.8m/s^2) = 245N

θ: degree of the incline = 25°

You solve the equation (1) for F:

[tex]F=Wsin\theta=(245N)sin(25\°)=103.54N[/tex]          (2)

The applied force on the box is 103.54N

Which three terms are needed to describe the energy a BASE jumper has as

she falls toward the ground?

O A. Potential

B. Electromagnetic

C. Gravitational

D. Kinetic

Answers

B would be your answer

Answer:

I’m saying kinetic gravitational and electromagnetic and I will comment on this if I got it right

Explanation:.

That 85 kg paratrooper from the 50's was moving at constant speed of 56 m/s because the air was applying a frictional drag force to him that matched his weight. If he fell this way for 40 m, how much heat was generated by this frictional drag force in J

Answers

Answer:

46648 J

Explanation:

mass m= 85 Kg

velocity v = 56 m/s

distance covered s =40 m

According to Question,

frictional drag force to him that matched his weight

[tex]\Rightarrow F_d =mg\\=85\times9.81=833 N[/tex]

Therefore, work done by practometer against the drag force = heat was generated by this frictional drag force in J

W=Q= F_d×s

=833×56 = 46648 J

The figure shows an arrangement of four charged particles, with θ = 20.0° and d1 = 3.00 cm, which is the distance from the origin to a charge q1. Charge q1 is unknown, but q2= +7.00×10‒19 C and q3 = q4 = ‒2.00×10‒19 C. If there is no nett electrostatic force on q1 due to the other charges (the nett electrostatic force on q1 is zero), calculate the distance from the origin to q2, given by d2, in cm. Assume that all forces apart from the electrostatic forces in the system are negligible

Answers

Answer:

[tex]d_2=3.16cm[/tex]

Explanation:

So, in order to solve this problem, we must start by building a diagram of the problem itself. (See attached picture) And together with the diagram, we must build a free body diagram, which will include the forces that are being applied on the given charged particle together with their directions.

In this case we only care about the x-direction of the force, since the y-forces cancel each other. So if we do a sum of forces on the x-direction, we get the following:

[tex]\sum{F_{x}}=0[/tex]

so:

[Tex]-F_{12}+F_{13x}+F_{14x}=0[/tex]

Since [tex]F_{13x}=F_{14x}[/tex] we can simplify the equation as:

[tex]-F_{12}+2F_{13x}=0[/tex]

we can now solve this for [tex]F_{12}[/tex] so we get:

[tex]F_{12}=2F_{13x}[/tex]

Now we can substitute with the electrostatic force formula, so we get:

[tex]k_{e}\frac{q_{1}q_{2}}{r_{12}^{2}}=2k_{e}\frac{q_{1}q_{3}}{r_{13}^{2}}cos \theta[/tex]

We can cancel [tex]k_{e}[/tex] and [tex]q_{1}[/tex]

so the simplified equation is:

[tex]\frac{q_{2}}{r_{12}^{2}}=2\frac{q_{3}}{r_{13}^{2}}cos \theta[/tex]

From the given diagram we know that:

[tex]cos \theta = \frac{d_{1}}{r_{13}}[/tex]

so when solving for [tex]r_{13}[/tex] we get:

[tex]r_{13}=\frac{d_{1}}{cos\theta}[/tex]

and if we square both sides of the equation, we get:

[tex]r_{13}^{2}=\frac{d_{1}^{2}}{cos^{2}\theta}[/tex]

and we can substitute this into our equation:

[tex]\frac{q_{2}}{r_{12}^{2}}=2\frac{q_{3}}{d_{1}^{2}}cos^{3} \theta[/tex]

so we can now solve this for [tex]r_{12}[/tex] so we get:

[tex]r_{12}=\sqrt{\frac{d_{1}^{2}q_{2}}{2q_{3}cos^{3}\theta}}[/tex]

which can be rewritten as:

[tex]r_{12}=d_{1}\sqrt{\frac{q_{2}}{2q_{3}cos^{3}\theta}}[/tex]

and now we can substitute values.

[tex]r_{12}=(3cm)\sqrt{\frac{7x10^{-19}C}{2(2x10^{-19}C)cos^{3}(20^{o})}}[/tex]

which solves to:

[tex]r_{12}=6.16cm[/tex]

now, we must find [tex]d_{2}[/tex] by using the following equation:

[tex]r_{12}=d_{1}+d_{2}[/tex]

when solving for [tex]d_{2}[/tex] we get:

[tex]d_{2}=r_{12}-d_{1}[/tex]

when substituting we get:

[tex]d_{2}=6.16cm-3cm[/tex]

so:

[tex]d_{2}=3.16cm[/tex]

A small, rigid object carries positive and negative 3.00 nC charges. It is oriented so that the positive charge has coordinates (−1.20 mm, 1.20 mm) and the negative charge is at the point (1.70 mm, −1.30 mm).

Required:
a. Find the electric dipole moment of the object.
b. The object is placed in an electric field E = (7.80 103 î − 4.90 103 ĵ). Find the torque acting on the object.
c. Find the potential energy of the object–field system when the object is in this orientation.
d. Assuming the orientation of the object can change, find the difference between the maximum and the minimum potential energies of the system,

Answers

Answer:

Umax = 105.8nJ

Umin =-105.8nJ

Umax-Umin = 211.6nJ

Explanation:

An electron of mass 9.11 x 10^-31 kg has an initial speed of 4.00 x 10^5 m/s. It travels in a straight line, and its speed increases to 6.60 x10^5 m/s in a distance of 5.40 cm. Assume its acceleration is constant.

Required:
a. Determine the magnitude of the force exerted on the electron.
b. Compare this force (F) with the weight of the electron (Fg), which we ignored.

Answers

Answer:

a.     F = 2.32*10^-18 N

b.     The force F is 2.59*10^11 times the weight of the electron

Explanation:

a. In order to calculate the magnitude of the force exerted on the electron you first calculate the acceleration of the electron, by using the following formula:

[tex]v^2=v_o^2+2ax[/tex]         (1)

v: final speed of the electron = 6.60*10^5 m/s

vo: initial speed of the electron = 4.00*10^5 m/s

a: acceleration of the electron = ?

x: distance traveled by the electron = 5.40cm = 0.054m

you solve the equation (2) for a and replace the values of the parameters:

[tex]a=\frac{v^2-v_o^2}{2x}=\frac{(6.60*10^5m/s)^2-(4.00*10^5m/s)^2}{2(0.054m)}\\\\a=2.55*10^{12}\frac{m}{s^2}[/tex]

Next, you use the second Newton law to calculate the force:

[tex]F=ma[/tex]

m: mass of the electron = 9.11*10^-31kg

[tex]F=(9.11*10^{-31}kg)(2.55*10^{12}m/s^2)=2.32*10^{-18}N[/tex]

The magnitude of the force exerted on the electron is 2.32*10^-18 N

b. The weight of the electron is given by:

[tex]F_g=mg=(9.11*10^{-31}kg)(9.8m/s^2)=8.92*10^{-30}N[/tex]

The quotient between the weight of the electron and the force F is:

[tex]\frac{F}{F_g}=\frac{2.32*10^{-18}N}{8.92*10^{-30}N}=2.59*10^{11}[/tex]

The force F is 2.59*10^11 times the weight of the electron

Potential difference of a battery is 2.2 V when it is connected
across a resistance of 5 ohm, if suddenly the potential difference
falls to 1.8V, its internal resistance will be​

Answers

Answer:

1.1ohms

Explanation:

According to ohms law E = IR

If potential difference of a battery is 2.2 V when it is connected across a resistance of 5 ohm and if suddenly the voltage Falls to 1.8V then the current in the 5ohms resistor I = V/R = 1.8/5

I = 0.36A (This will be the load current).

Before we can calculate the value of the internal resistance, we need to know the voltage drop across the internal resistance.

Voltage drop = 2.2V - 1.8V = 0.4V

Then we calculate the internal resistance using ohms law.

According to the law, V = Ir

V= voltage drop

I is the load current

r = internal resistance

0.4 = 0.36r

r = 0.4/0.36

r = 1.1 ohms

A fox locates rodents under the snow by the slight sounds they make. The fox then leaps straight into the air and burrows its nose into the snow to catch its meal. If a fox jumps up to a height of 85 cm , calculate the speed at which the fox leaves the snow and the amount of time the fox is in the air. Ignore air resistance.

Answers

Answer:

v = 4.08m/s₂

Explanation:

A skydiver stepped out of an airplane at an altitude of 1000m fell freely for 5.00s opened her parachute and slowed to 7.00m/s in a negligible time what was the total elapsed time from leaving the airplane to landing on the ground

Answers

Answer:

t = 17.68s

Explanation:

In order to calculate the total elapsed time that skydiver takes to reache the ground, you first calculate the distance traveled by the skydiver in the first 5.00s. You use the following formula:

[tex]y=y_o-v_ot-\frac{1}{2}gt^2[/tex]            (1)

y: height for a time t

yo: initial height = 1000m

vo: initial velocity = 0m/s

g: gravitational acceleration = 9.8m/s^2

t: time = 5.00 s

You replace the values of the parameters to get the values of the new height of the skydiver:

[tex]y=1000m-\frac{1}{2}(9.8m/s^2)(5.00s)^2\\\\y=877.5m[/tex]

Next, you take this value of 877.5m as the initial height of the second part of the trajectory of the skydiver. Furthermore, use the value of 7.00m/s as the initial velocity.

You use the same equation (1) with the values of the initial velocity and new height. We are interested in the time for which the skydiver arrives to the ground, then y = 0

[tex]0=877.5-7.00t-4.9t^2[/tex]       (2)

The equation (2) is a quadratic equation, you solve it for t with the quadratic formula:

[tex]t_{1,2}=\frac{-(-7.00)\pm \sqrt{(-7.00)^2-4(-4.9)(877.5)}}{2(-4.9)}\\\\t_{1,2}=\frac{7.00\pm 131.33}{-9.8}\\\\t_1=12.68s\\\\t_2=-14.11s[/tex]

You use the positive value of t1 because it has physical meaning.

Finally, you sum the times of both parts of the trajectory:

total time = 5.00s + 12.68s = 17.68s

The total elapsed time taken by the skydiver to arrive to the ground from the airplane is 17.68s

Jack and Jill went up the hill to fetch a pail of water. Jack, who’s mass is 75 kg, 1.5 times heavier than Jill’s mass, fell down and broke his crown after climbing a 15 m high hill. Jillcame tumbling after covering the same distance as Jack in 1/3rd of the time.Required:a. Who did the most work climbing up the hill? b. Who applied the most power?

Answers

Answer:

a) Jack does more work uphill

b) Numerically, we can see that Jill applied the most power downhill

Explanation:

Jack's mass = 75 kg

Jill's mass = [tex]1.5x = 75[/tex]

Jill's mass = [tex]x = \frac{75}{1.5}[/tex] = 50 kg

distance up hill = 15 m

a) work done by Jack uphill = mgh

where g = acceleration due to gravity= 9.81 m/s^2

work = 75 x 9.81 x 15 = 11036.25 J

similarly,

Jill's work uphill = 50 x 9.81 x 15 = 7357.5 J

this shows that Jack does more work climbing up the hill

b) assuming Jack's time downhill to be t,

then Jill's time = [tex]\frac{t}{3}[/tex]

we recall that power is the rate in which work id done, i.e

P = [tex]\frac{work}{time}[/tex]

For Jack, power = [tex]\frac{11036.25}{t}[/tex]

For Jill, power =  [tex]\frac{3*7357.5}{t}[/tex] =  [tex]\frac{22072.5}{t}[/tex]

Numerically, we can see that Jill applied the most power downhill

Two conductors made of the same material are connected across the same potential difference. Conductor A has seven times the diameter and seven times the length of conductor B. What is the ratio of the power delivere

Answers

Complete question:

Two conductors made of the same material are connected across the same potential difference. Conductor A has seven times the diameter and seven times the length of conductor B. What is the ratio of the power delivered to A to power delivered to B.

Answer:

The ratio of the power delivered to A to power delivered to B is 7 : 1

Explanation:

Cross sectional area of a wire is calculated as;

[tex]A = \frac{\pi d^2}{4}[/tex]

Resistance of a wire is calculated as;

[tex]R = \frac{\rho L}{A} \\\\R = \frac{4\rho L}{\pi d^2} \\\\[/tex]

Resistance in wire A;

[tex]R = \frac{4\rho _AL_A}{\pi d_A^2}[/tex]

Resistance in wire B;

[tex]R = \frac{4\rho _BL_B}{\pi d_B^2}[/tex]

Power delivered in wire;

[tex]P = \frac{V^2}{R}[/tex]

Power delivered in wire A;

[tex]P = \frac{V^2_A}{R_A}[/tex]

Power delivered in wire B;

[tex]P = \frac{V^2_B}{R_B}[/tex]

Substitute in the value of R in Power delivered in wire A;

[tex]P_A = \frac{V^2_A}{R_A} = \frac{V^2_A \pi d^2_A}{4 \rho_A L_A}[/tex]

Substitute in the value of R in Power delivered in wire B;

[tex]P_B = \frac{V^2_B}{R_B} = \frac{V^2_B \pi d^2_B}{4 \rho_B L_B}[/tex]

Take the ratio of power delivered to A to power delivered to B;

[tex]\frac{P_A}{P_B} = (\frac{V^2_A \pi d^2_A}{4\rho_AL_A} ) *(\frac{4\rho_BL_B}{V^2_B \pi d^2_B})\\\\ \frac{P_A}{P_B} = (\frac{V^2_A d^2_A}{\rho_AL_A} )*(\frac{\rho_BL_B}{V^2_B d^2_B})\\\\[/tex]

The wires are made of the same material, [tex]\rho _A = \rho_B[/tex]

[tex]\frac{P_A}{P_B} = (\frac{V^2_A d^2_A}{L_A} )*(\frac{L_B}{V^2_B d^2_B})\\\\[/tex]

The wires are connected across the same potential; [tex]V_A = V_B[/tex]

[tex]\frac{P_A}{P_B} = (\frac{ d^2_A}{L_A} )* (\frac{L_B}{d^2_B} )[/tex]

wire A has seven times the diameter and seven times the length of wire B;

[tex]\frac{P_A}{P_B} = (\frac{ (7d_B)^2}{7L_B} )* (\frac{L_B}{d^2_B} )\\\\\frac{P_A}{P_B} = \frac{49d_B^2}{7L_B} *\frac{L_B}{d^2_B} \\\\\frac{P_A}{P_B} =\frac{49}{7} \\\\\frac{P_A}{P_B} = 7\\\\P_A : P_B = 7:1[/tex]

Therefore, the ratio of the power delivered to A to power delivered to B is

7 : 1

How much force is needed to cause a 15 kilogram bicycle to accelerate at a rate of 10
meters per second per second?
O A. 15 newtons
OB. 1.5 newtons
C. 150 newtons
OD. 10 newtons

Answers

Net force = (mass) x (acceleration)... that’s Newton’s 2nd law of motion.
Net force = (15kg) x (10 m/s squared)
Net force = 150 Newtons.

A helium nucleus (charge = 2e, mass = 6.63 10-27 kg) traveling at 6.20 105 m/s enters an electric field, traveling from point circled A, at a potential of 1.50 103 V, to point circled B, at 4.00 103 V. What is its speed at point circled B?

Answers

Answer:

[tex]v_B=3.78\times 10^5\ m/s[/tex]

Explanation:

It is given that,

Charge on helium nucleus is 2e and its mass is [tex]6.63\times 10^{-27}\ kg[/tex]

Speed of nucleus at A is [tex]v_A=6.2\times 10^5\ m/s[/tex]

Potential at point A, [tex]V_A=1.5\times 10^3\ V[/tex]

Potential at point B, [tex]V_B=4\times 10^3\ V[/tex]

We need to find the speed at point B on the circle. It is based on the concept of conservation of energy such that :

increase in kinetic energy = increase in potential×charge

[tex]\dfrac{1}{2}m(v_A^2-v_B^2)=(V_B-V_A)q\\\\\dfrac{1}{2}m(v_A^2-v_B^2)={(4\times 10^3-1.5\times 10^3)}\times 2\times 1.6\times 10^{-19}=8\times 10^{-16}\\\\v_A^2-v_B^2=\dfrac{2\times 8\times 10^{-16}}{6.63\times 10^{-27}}\\\\v_A^2-v_B^2=2.41\times 10^{11}\\\\v_B^2=(6.2\times 10^5)^2-2.41\times 10^{11}\\\\v_B=3.78\times 10^5\ m/s[/tex]

So, the speed at point B is [tex]3.78\times 10^5\ m/s[/tex].

Other Questions
When ethanol, C2H5OH (a component in some gasoline mixtures) is burned in air, one molecule of ethanol combines with three oxygen molecules to form two CO2 molecules and three H2O molecules.A) Write the balanced chemical equation for the reaction described.B) How many molecules of CO2 and H2O would be produced when 2 molecules ethanol are consumed? Equation?C) How many H2O molecules are formed, then 9 O2 molecules are consumed? What conversion factor did you use? Explain!D) If 15 ethanol molecules react, how many molecules O2 must also react? What conversion factor did you use? Explain! What is setting theme and plot PLEASE HELP Lily is cutting a piece of yarn into 3 (three) pieces. The 2nd piece is 3 times as long as the 1st piece, while the 3rd piece is 6 centimeters longer than the 1st piece. When the yarn has a total length of 211 centimeters, calculate the length of the first piece. Choose the correctly spelled word to complete the sentence:between the two leadThe ballet ended with aperformers.O A. pa dee doB. pah day dooC. pas de deuxD. pass dey deau A set of shirt prices are normally distributed with a mean of 45 dollars and a standard deviation of 5 dollars. What proportion of shirt prices are between 37 dollars and 59.35 dollars? You may round your answer to four decimal places. A high-jumper clears the bar and has a downward velocity of - 5.00 m/s just before landing on an air mattress and bouncing up at 1.0 m/s. The mass of the high-jumper is 60.0 kg. What is the magnitude and direction of the impulse that the air mattress exerts on her Which of these is an example of an engineering solution?OA. Studying the diets of people with autoimmune diseases.B. Creating a biodegradable trash bag.C. Figuring out how long it takes plastic to degrade in a landfill.D. Studying new species of insects in the Costa Rican jungles.ASAP!!! Which of the following situations might require voters to hold a special election What is the inverse of the function f(x) = 4x + 8? Which of the following would not help you and your family plan dinners for the week? Which of the following equations has the solution set {0}?A.) -14m - 7m + 1 = -7m + 1B.) -14m + 7m + 1 = -7m + 2C.) 14m - 7m - 1 = -7m + 1 The prism is cut by a plane that is parallel to a base of the prism.The intersection of the prism and the plane is a(*fill in the balnk*)cross section. There are five faculty members in a certain academic department. These individuals have 4, 6, 7, 10, and 15 years of teaching experience. Two of these individuals are randomly selected to serve on a personnel review committee. What is the probability that the chosen representatives have a total of at least 16 years of teaching experience g in computing the present value of lease payments, the lessee shoulduse the lessee's incremental borrowing rate unless the lessor's implicit interest rate is known to the lessee. expected rate of return. settlement rate. none of these answer are correct Find x. Round your answer to the nearest tenth of a degree. OMG HELPPP PLEASEEE plssss A firm considers to buy a machine in 2020. The cost of that machine is $ 5 000 000. The firm uses 5 year straight line depreciation which allows it to write off $ 1 000 000 depreciation expense each year. The firm is subject to 20% corporate tax rate. The firm's revenue in 2021 is expected to be $ 6 000 000 if the investment is not done. The revenue will be $ 9 000 000 if the investment is done. The firm's total costs (including both COGS and General&Administrative Costs) will be $ 4 000 000 if the investment is not done. The total costs will be $ 5 500 000 if the investment is done. Also the following information is given for the year 2021 Without Investment With Investment Inventories $ 300 000 $ 500 000 Acc. Receivables $ 200 000 $ 300 000 Acc. Payables $ 100 000 $ 150 000 Given the above information, calculate the free cash flow of that investment for the years 2020 and 2021. A transformer has 500 turns of the primary winding and 10 turns of the secondary winding. a) Determine the secondary voltage if the secondary circuit is open and the primary voltage is 120 V How was the fight for voting rights during the Civil Rights movement a continuation of the fight from reconstruction? A bridge connecting two cities separated by a lake has a length of 5.651 mi.Use the table of facts to find the length of the bridge in yards.Round your answer to the nearest tenth.