An economy has a Cobb-Douglas production function: Y=K α
(LE) 1−α
The economy has a capital share of 1/3, a saving rate of 20 percent, a depreciation rate of 5 percent, a rate of population growth of 2 percent, and a rate of labor-augmenting technological change of 1 percent. In steady state, capital per effective worker is: 4 4 6 1 1.6

Answers

Answer 1

Capital per effective worker in steady state is 6.

In the Cobb-Douglas production function, Y represents output, K represents capital, L represents labor, and α represents the capital share of income.

The formula for capital per effective worker in steady state is:

k* = (s / (n + δ + g))^(1 / (1 - α))

Given:

Capital share (α) = 1/3

Saving rate (s) = 20% = 0.20

Depreciation rate (δ) = 5% = 0.05

Rate of population growth (n) = 2% = 0.02

Rate of labor-augmenting technological change (g) = 1% = 0.01

Plugging in the values into the formula:

k* = (0.20 / (0.02 + 0.05 + 0.01))^(1 / (1 - 1/3))

k* = (0.20 / 0.08)^(1 / (2 / 3))

k* = 2.5^(3 / 2)

k* ≈ 6

Therefore, capital per effective worker in steady state is approximately 6.

In steady state, the economy will have a capital per effective worker of 6

To know more about technological change, visit

https://brainly.com/question/15602412

#SPJ11


Related Questions

According to a company's websife, the top 10% of the candidates who take the entrance test will be called for an interview. The reported mean and standard deviation of the test scores are 63 and 9 , respectively. If test scores are normolly distributed, what is the minimum score required for an interview? (You may find it useful to reference the Z table. Round your final answer to 2 decimal places.)

Answers

The minimum score required for an interview is approximately 74.52 (rounded to 2 decimal places). To find the minimum score required for an interview, we need to determine the score that corresponds to the top 10% of the distribution.

Since the test scores are normally distributed, we can use the Z-table to find the Z-score that corresponds to the top 10% of the distribution.

The Z-score represents the number of standard deviations a particular score is away from the mean. In this case, we want to find the Z-score that corresponds to the cumulative probability of 0.90 (since we are interested in the top 10%).

Using the Z-table, we find that the Z-score corresponding to a cumulative probability of 0.90 is approximately 1.28.

Once we have the Z-score, we can use the formula:

Z = (X - μ) / σ

where X is the test score, μ is the mean, and σ is the standard deviation.

Rearranging the formula, we can solve for X:

X = Z * σ + μ

Substituting the values, we have:

X = 1.28 * 9 + 63

Calculating this expression, we find:

X ≈ 74.52

Therefore, the minimum score required for an interview is approximately 74.52 (rounded to 2 decimal places).

Learn more about cumulative probability here:

https://brainly.com/question/31714928

#SPJ11

G is the centroid of equilateral Triangle ABC. D,E, and F are midpointsof the sides as shown. P,Q, and R are the midpoints of line AG,line BG and line CG, respectively. If AB= sqrt 3, what is the perimeter of DREPFQ?

Answers

The perimeter of DREPFQ is 1

How to determine the value

In an equilateral triangle, the intersection is the centroid

From the information given, we have that;

AB =√3

Then, we can say that;

AG = BG = CG = √3/3

Also, we have that D, E, and F are the midpoints of the sides of triangle Then, DE = EF = FD = √3/2.

AP = BP = CP = √3/6.

To find the perimeter of DREPFQ, we need to add up the lengths of the line segments DQ, QE, ER, RF, FP, and PD.

The perimeter of DREPFQ is √3/6 × √3/2)

Multiply the value, we get;

√3× √3/ 6 × 2

Then, we get;

3/18

divide the values, we have;

= 0.167

Multiply this by six sides;

= 1

Learn more about centroid at: https://brainly.com/question/7644338

#SPJ4

The complete question:

G is the centroid of equilateral Triangle ABC. D,E, and F are midpointsof the sides as shown. P,Q, and R are the midpoints of line AG,line BG and line CG, respectively. If AB= sqrt 3, what is the perimeter of DREPFQ

Find all polynomial solutions p(t, x) of the wave equation utt=uzz with (a) deg p ≤ 2, (b) deg p = 3.

Answers

The polynomial solution for deg p = 3 is p(t, x) = At³ + Bx³ + Ct² + Dx² - 3At² - 2Ct - 3Bx² - 2Dx, where A, B, C, and D are constants.

(a) Case: deg p ≤ 2

Let's assume p(t, x) = At² + Bx² + Ct + Dx + E, where A, B, C, D, and E are constants.

Substituting p(t, x) into the wave equation, we have:

(p_tt) = 2A,

(p_zz) = 2B,

(p_t) = 2At + C,

(p_z) = 2Bx + D.

Therefore, the wave equation becomes:

2A = 2B.

This implies that A = B.

Next, we consider the terms involving t and x:

2At + C = 0,

2Bx + D = 0.

From the first equation, we get C = -2At. Substituting this into the second equation, we have D = -4Bx.

Finally, we have the constant term:

E = 0.

So, the polynomial solution for deg p ≤ 2 is p(t, x) = At² + Bx² - 2At - 4Bx, where A and B are constants.

(b) Case: deg p = 3

Let's assume p(t, x) = At³ + Bx³ + Ct² + Dx² + Et + Fx + G, where A, B, C, D, E, F, and G are constants.

Substituting p(t, x) into the wave equation, we have:

(p_tt) = 6At,

(p_zz) = 6Bx,

(p_t) = 3At² + 2Ct + E,

(p_z) = 3Bx² + 2Dx + F.

Therefore, the wave equation becomes:

6At = 6Bx.

This implies that A = Bx.

Next, we consider the terms involving t and x:

3At² + 2Ct + E = 0,

3Bx² + 2Dx + F = 0.

From the first equation, we get E = -3At² - 2Ct. Substituting this into the second equation, we have F = -3Bx² - 2Dx.

Finally, we have the constant term:

G = 0.

So, the polynomial solution for deg p = 3 is p(t, x) = At³ + Bx³ + Ct² + Dx² - 3At² - 2Ct - 3Bx² - 2Dx, where A, B, C, and D are constants.

Learn more about Polynomial Solution here:

https://brainly.com/question/29599975

#SPJ11

tanning parlor located in a major located in a major shopping center near a large new england city has the following history of customers over the last four years (data are in hundreds of customers) year feb may aug nov yearly totals 2012 3.5 2.9 2.0 3.2 11.6 2013 4.1 3.4 2.9 3.6 14 2014 5.2 4.5 3.1 4.5 17.3 2015 6.1 5.0 4.4 6.0 21.5

Answers

The Cycle Factor Forecast is 0.13,0.13,0.13,0.13 and the Overall Forecast is 6.3,5.4,4.9,6.3.

Time series forecasting differs from supervised learning in their goal. One of the main variables in forecasting is the history of the very metric we are trying to predict. Supervised learning on the other hand usually seeks to predict using primarily exogenous variables.

A and B. The table is shown below with attached python code at the very end. To get this values simply use stats model as they have all the functions needed. Seasonal index is also in the table.

C and D: To forecast either of these, we will use tbats with a frequency of 4 which has proven to be better than an auto arima on average. Again code, is attached at end. Forecasts are below. It seems tabs though a naïve forecast was best for the cycle factor.

Cycle Factor Forecast: 0.13,0.13,0.13,0.13

Overall Forecast: 6.3,5.4,4.9,6.3

E:0.324

Again I simply created a function in python to calculate the RMSE of any two time series.

F.

CODE:

import pandas as pd

from statsmodels.tsa.seasonal import seasonal_decompose

import numpy as np

import matplotlib.pyplot as plt

data=3.5,2.9,2.0,3.2,4.1,3.4,2.9,2.6,5.2,4.5,3.1,4.5,6.1,5,4.4,6,6.8,5.1,4.7,6.5

df=pd.DataFrame()

df"actual"=data

df.index=pd.date_range(start='1/1/2004', periods=20, freq='3M')

df"mv_avg"=df"actual".rolling(4).mean()

df"trend"=seasonal_decompose(df"actual",two_sided=False).trend

df"seasonal"=seasonal_decompose(df"actual",two_sided=False).seasonal

df"cycle"=seasonal_decompose(df"actual",two_sided=False).resid

def rmse(predictions, targets):

return np.sqrt(((predictions - targets) ** 2).mean())

rmse_values=rmse(np.array(6.3,5.4,4.9,6.3),np.array(6.8,5.1,4.7,6.5))

plt.style.use("bmh")

plot_df=df.ilocNo InterWiki reference defined in properties for Wiki called ""!

plt.plot(plot_df.index,plot_df"actual")

plt.plot(plot_df.index,plot_df"mv_avg")

plt.plot(plot_df.index,plot_df"trend")

plt.plot(df.ilocNo InterWiki reference defined in properties for Wiki called "-4"!.index,6.3,5.4,4.9,6.3)

plt.legend("actual","mv_avg","trend","predictions")

Therefore, the Cycle Factor Forecast is 0.13,0.13,0.13,0.13 and the Overall Forecast is 6.3,5.4,4.9,6.3.

Learn more about the Cycle Factor Forecast here:

https://brainly.com/question/32348366.

#SPJ4

"Your question is incomplete, probably the complete question/missing part is:"

A tanning parlor located in a major shopping center near a large New England city has the following history of customers over the last four years (data are in hundreds of customers):

a. Construct a table in which you show the actual data (given in the table), the centered moving average, the centered moving-average trend, the seasonal factors, and the cycle factors for every quarter for which they can be calculated in years 1 through 4.

b. Determine the seasonal index for each quarter.

c. Project the cycle factor through 2008.

d. Make a forecast for each quarter of 2008.

e. The actual numbers of customers served per quarter in 2008 were 6.8, 5.1, 4.7 and 6.5 for quarters 1 through 4, respectively (numbers are in hundreds). Calculate the RMSE for 2008.

f. Prepare a time-series plot of the actual data, the centered moving averages, the long-term trend, and the values predicted by your model for 2004 through 2008 (where data are available).

Which of the following is the appropriate substitution for the Bernoulli differential equation xyy ′−2xy=4xy 2? Letz= y ∧−1 y ∧−3 y ∧ −4 (D) y∧ −2

Answers

To solve the Bernoulli differential equation xyy' - 2xy = 4xy^2, we can make the substitution z = y^(1-2) = y^(-1).  The appropriate substitution is z = y^(-2), not one of the options listed. This substitution simplifies the equation and transforms it into a separable first-order differential equation. By Differentiating both sides of the equation with respect to x, we get: dz/dx = d(y^(-1))/dx

Using the chain rule, we have:

dz/dx = (-1)(y^(-2))(dy/dx)

dz/dx = -y^(-2)dy/dx

Substituting this into the original differential equation, we have:

xy(-y^(-2)dy/dx) - 2xy = 4xy^2

Simplifying, we get:

-y(dy/dx) - 2 = 4y^2

Now, we have a separable first-order differential equation. By rearranging terms, we get:

dy/dx = -(4y^2 + 2)/y

To further simplify the equation, we can substitute z = y^(-2), giving us:

dy/dx = -(-4z + 2)

Therefore, the appropriate substitution for the Bernoulli differential equation is z = y^(-2), not one of the options listed.

Learn more about differential equation here:

https://brainly.com/question/32645495

#SPJ11

The weekly demand for Math Wars - Attack of the Limits video games is given by p=420/(x−6)+4000 where x is the number thousands of video games produced and sold, and p is in dollars. Using the Marginal Revenue function, R ′(x), approximate the marginal revenue when 12,000 video games have been produced and sold.
_____dollars

Answers

The marginal revenue when 12,000 video games have been produced and sold is 105 dollars.

Given function, p=420/(x-6)+4000

To find the marginal revenue function, R′(x)

As we know, Revenue, R = price x quantity

R = p * x (price, p and quantity, x are given in the function)

R = (420/(x-6) + 4000) x

Revenue function, R(x) = (420/(x-6) + 4000) x

Differentiating R(x) w.r.t x,

R′(x) = d(R(x))/dx

R′(x) = [d/dx] [(420/(x-6) + 4000) x]

On expanding and simplifying,

R′(x) = 420/(x-6)²

Now, to approximate the marginal revenue when 12,000 video games have been produced and sold, we need to put the value of x = 12

R′(12) = 420/(12-6)²

R′(12) = 105 dollars

Therefore, the marginal revenue when 12,000 video games have been produced and sold is 105 dollars.

To know more about marginal revenue function visit:

https://brainly.com/question/30764099

#SPJ11

This test: 100 point (s) possible This question: 2 point (s) possible Find an equation for the line with the given properties. Express your answer using either the general form or the slope -intercept

Answers

The slope-intercept form of a linear equation is [tex]y = mx + b[/tex], where m is the slope of the line and b is the y-intercept.

A linear equation is of the form [tex]y = mx + b[/tex]. The slope-intercept form of a linear equation is [tex]y = mx + b[/tex], where m is the slope of the line and b is the y-intercept. The slope is the change in the y-coordinates divided by the change in the x-coordinates. For example, if the slope of the line is 2, then for every one unit that x increases, y increases by two units.

The general form of a linear equation is [tex]Ax + By = C[/tex], where A, B, and C are constants.

To convert the slope-intercept form to the general form, rearrange the equation to get [tex]-mx + y = b[/tex].

Multiply each term of the equation by -1 to get [tex]mx - y = -b[/tex].

Finally, rearrange the equation to get [tex]Ax + By = C[/tex], where [tex]A = m[/tex], [tex]B = -1[/tex], and[tex]C = -b[/tex].

Learn more about slope here:

https://brainly.com/question/27892019

#SPJ11

An organization drills 3 wells to provide access to clean drinking water. The cost (in dollars ) to drill and maintain the wells for n years is represented by 34,500+540n . Write and interpret an expr

Answers

This means that the total cost for drilling and maintaining the wells for 5 years would be $37,500.

The expression representing the cost (in dollars) to drill and maintain the wells for n years is given by:

34,500 + 540n

In the given expression, the constant term 34,500 represents the initial cost of drilling the wells, which includes expenses such as equipment, labor, and permits. The term 540n represents the cost of maintaining the wells for n years, with 540 being the annual maintenance cost per well.

Interpreting the expression:

The expression allows us to calculate the total cost of drilling and maintaining the wells for a given number of years, n. As the value of n increases, the cost will increase proportionally, reflecting the additional expenses incurred for maintenance over time.

For example, if we plug in n = 5 into the expression, we can calculate the cost of drilling and maintaining the wells for 5 years:

[tex]\(34,500 + 540 \times 5 = 37,500\).[/tex]

To know more about Expression visit-

brainly.com/question/14083225

#SPJ11

if the information 7/15 was shown on a pie chart what would be the angle

Answers

If the information 7/15 was shown on a pie chart, the angle would be approximately 168 degrees.

To find the angle, you can use the formula:

(angle) = (fraction of total) x 360 degrees

In this case, the fraction of the total represented by 7/15 is:

7/15 = 0.4667

Multiplying this by 360 degrees gives:

0.4667 x 360 = 168 degrees

Therefore, the angle on the pie chart representing 7/15 would be approximately 168 degrees.
Final answer:

The question asks about converting a fraction into an angle for a pie chart. You multiply the fraction (7/15) by the total degrees in a circle (360 degrees) which gives you approximately 168 degrees.

Explanation:

The subject is tied to the understanding of how data is represented in pie charts, specifically how fractions or percentages can be expressed in terms of angles in a pie chart. This question pertains to the interpretation of pie charts in mathematics, more specifically to fundamental aspects of geometry and data representation.

First, we must understand that a pie chart is a circular chart divided into sectors or 'pies', where the arc length of each sector (and consequently its central angle and area), is proportional to the quantity it represents. So the total measurement for a pie chart is 360 degrees - the same as a full circle. When you have a fraction like 7/15, it represents a portion of the whole. To convert this fraction into an angle for the pie chart, we need to multiply it by the total degrees in a circle.

So, the calculation would be (7/15) * 360. When you do the math, you get around 168 degrees. So if the information 7/15 was shown on a pie chart, it would open up an angle of approximately 168 degrees.

Learn more about Pie Chart Angle here:

https://brainly.com/question/36809318

#SPJ11

The Brady family received 27 pieces of mail on December 25 . The mail consisted of letters, magazines, bills, and ads. How many letters did they receive if they received three more magazines than bill

Answers

The Brady family received 12 letters on December 25th.

They received 9 magazines.

They received 3 bills.

They received 3 ads.

To solve this problem, we can use algebra. Let x be the number of bills the Brady family received. We know that they received three more magazines than bills, so the number of magazines they received is x + 3.

We also know that they received a total of 27 pieces of mail, so we can set up an equation:

x + (x + 3) + 12 + 3 = 27

Simplifying this equation, we get:

2x + 18 = 27

Subtracting 18 from both sides, we get:

2x = 9

Dividing by 2, we get:

x = 3

So the Brady family received 3 bills. Using x + 3, we know that they received 3 + 3 = 6 magazines. We also know that they received 12 letters and 3 ads. Therefore, the Brady family received 12 letters on December 25th.

Know more about algebra here:

https://brainly.com/question/953809

#SPJ11

Fill in the blanks with the correct values: The five number summary for a particular quantitative variable is

Min = 9; Q1 = 20; Median = 30; Q3 = 34; Max = 40

The middle 50% of observations are between BLANK and BLANK


50% of observations are less than BLANK
.

The largest 25% of observations are greater than BLANK

Answers

The middle 50% of observations are between 20 and 34. 50% of observations are less than 30. The largest 25% of observations are greater than 34.

The given five number summary for a particular quantitative variable is:

Min = 9

Q1 = 20

Median = 30

Q3 = 34

Max = 40

The middle 50% of observations are between the first quartile, Q1, and the third quartile, Q3. Hence, the middle 50% of observations lie between 20 and 34. The median (which is also the second quartile) is equal to 30, so 50% of the observations are less than 30.Finally, Q3 is the 75th percentile. Hence, 25% of the observations are greater than Q3. Since Q3 is equal to 34, the largest 25% of observations are greater than 34.

The middle 50% of observations are between 20 and 34. 50% of observations are less than 30. The largest 25% of observations are greater than 34.

To know more about quartile visit:

brainly.com/question/30360092

#SPJ11

The average number of misprints per page in a magazine is whixch follows a Poisson's Probability distribution. What is the probability that the number of misprints on a particular page of that magazine is 2?

Answers

The probability that a particular book is free from misprints is 0.2231. option D is correct.

The average number of misprints per page (λ) is given as 1.5.

The probability of having no misprints (k = 0) can be calculated using the Poisson probability mass function:

[tex]P(X = 0) = (e^{-\lambda}\times \lambda^k) / k![/tex]

Substituting the values:

P(X = 0) = [tex](e^{-1.5} \times 1.5^0) / 0![/tex]

Since 0! (zero factorial) is equal to 1, we have:

P(X = 0) = [tex]e^{-1.5}[/tex]

Calculating this value, we find:

P(X = 0) = 0.2231

Therefore, the probability that a particular book is free from misprints is approximately 0.2231.

To learn more on probability click:

https://brainly.com/question/11234923

#SPJ4

Question 13: The average number of misprints per page of a book is 1.5.Assuming the distribution of number of misprints to be Poisson. The probability that a particular book is free from misprints,is B. 0.435 D. 0.2231 A. 0.329 C. 0.549​

simplify the following expression 3 2/5 mulitply 3(-7/5)

Answers

Answer:

1/3

Step-by-step explanation:

I assume that 2/5 and -7/5 are exponents.

3^(2/5) × 3^(-7/5) = 3^(2/5 + (-7/5)) = 3^(-5/5) = 3^(-1) = 1/3

Answer: 136/5

Step-by-step explanation: First simplify the fraction

1) 3 2/5 = 17/5

3 multiply by 5 and add 5 into it.

2) 3(-7/5) = 8/5

3 multiply by 5 and add _7 in it.

By multiplication of 2 fractions,

17/5 multiply 8/5 = 136/5

=136/5

To know more about the Fraction visit:

https://brainly.com/question/33620873

Given f(x)=−6+x2, calculate the average rate of change on each of the given intervals. (a) The average rate of change of f(x) over the interval [−4,−3.9] is (b) The average rate of change of f(x) over the interval [−4,−3.99] is (c) The average rate of change of f(x) over the interval [−4,−3.999] is (d) Using (a) through (c) to estimate the instantaneous rate of change of f(x) at x=−4, we have

Answers

The average rate of change on each of the given intervals and the estimate of the instantaneous rate of change of f(x) at x = -4 is calculated and the answer is found to be -∞.

Given f(x)=−6+x², we have to calculate the average rate of change on each of the given intervals.

Using the formula, The average rate of change of f(x) over the interval [a,b] is given by:  f(b) - f(a) / b - a

(a) The average rate of change of f(x) over the interval [-4, -3.9] is given by: f(-3.9) - f(-4) / -3.9 - (-4)f(-3.9) = -6 + (-3.9)² = -6 + 15.21 = 9.21f(-4) = -6 + (-4)² = -6 + 16 = 10

The average rate of change = 9.21 - 10 / -3.9 + 4 = -0.79 / 0.1 = -7.9

(b) The average rate of change of f(x) over the interval [-4, -3.99] is given by: f(-3.99) - f(-4) / -3.99 - (-4)f(-3.99) = -6 + (-3.99)² = -6 + 15.9601 = 9.9601

The average rate of change = 9.9601 - 10 / -3.99 + 4 = -0.0399 / 0.01 = -3.99

(c) The average rate of change of f(x) over the interval [-4, -3.999] is given by:f(-3.999) - f(-4) / -3.999 - (-4)f(-3.999) = -6 + (-3.999)² = -6 + 15.996001 = 9.996001

The average rate of change = 9.996001 - 10 / -3.999 + 4 = -0.003999 / 0.001 = -3.999

(d) Using (a) through (c) to estimate the instantaneous rate of change of f(x) at x = -4, we have

f'(-4) = lim h → 0 [f(-4 + h) - f(-4)] / h= lim h → 0 [(-6 + (-4 + h)²) - (-6 + 16)] / h= lim h → 0 [-6 + 16 - 8h - 6] / h= lim h → 0 [4 - 8h] / h= lim h → 0 4 / h - 8= -∞.

Learn more about instantaneous rate of change

https://brainly.com/question/30760748

#SPJ11

Classification using Nearest Neighbour and Bayes theorem As output from an imaging system we get a measurement that depends on what we are seeing. For three different classes of objects we get the following measurements. Class 1 : 0.4003,0.3985,0.3998,0.3997,0.4015,0.3995,0.3991 Class 2: 0.2554,0.3139,0.2627,0.3802,0.3247,0.3360,0.2974 Class 3: 0.5632,0.7687,0.0524,0.7586,0.4443,0.5505,0.6469 3.1 Nearest Neighbours Use nearest neighbour classification. Assume that the first four measurements in each class are used for training and the last three for testing. How many measurements will be correctly classified?

Answers

Nearest Neighbor (NN) technique is a straightforward and robust classification algorithm that requires no training data and is useful for determining which class a new sample belongs to.

The classification rule of this algorithm is to assign the class label of the nearest training instance to a new observation, which is determined by the Euclidean distance between the new point and the training samples.To determine how many measurements will be correctly classified, let's go step by step:Let's use the first four measurements in each class for training, and the last three measurements for testing.```


Class 1: train = (0.4003,0.3985,0.3998,0.3997) test = (0.4015,0.3995,0.3991)
Class 2: train = (0.2554,0.3139,0.2627,0.3802) test = (0.3247,0.3360,0.2974)
Class 3: train = (0.5632,0.7687,0.0524,0.7586) test = (0.4443,0.5505,0.6469)```

We need to determine the class label of each test instance using the nearest neighbor rule by calculating its Euclidean distance to each training instance, then assigning it to the class of the closest instance.To do so, we need to calculate the distances between the test instances and each training instance:```
Class 1:
0.4015: 0.0028, 0.0020, 0.0017, 0.0018
0.3995: 0.0008, 0.0010, 0.0004, 0.0003
0.3991: 0.0004, 0.0006, 0.0007, 0.0006

Class 2:
0.3247: 0.0694, 0.0110, 0.0620, 0.0555
0.3360: 0.0477, 0.0238, 0.0733, 0.0442
0.2974: 0.0680, 0.0485, 0.0353, 0.0776

Class 3:
0.4443: 0.1191, 0.3246, 0.3919, 0.3137
0.5505: 0.2189, 0.3122, 0.4981, 0.2021
0.6469: 0.0837, 0.1222, 0.5945, 0.1083```We can see that the nearest training instance for each test instance belongs to the same class:```
Class 1: 3 correct
Class 2: 3 correct
Class 3: 3 correct```Therefore, we have correctly classified all test instances, and the accuracy is 100%.

To know more about Euclidean visit:

https://brainly.com/question/31120908

#SPJ11

Solve and graph -3 x-10>5

Answers

Answer:  x < -5

The graph has an open hole at -5 and shading to the left

The graph is below.

=====================================================

Work Shown:

-3x - 10 > 5

-3x > 5+10

-3x > 15

x < 15/(-3) ... inequality sign flips

x < -5

The inequality sign flips whenever we divide both sides by a negative number.

The graph has an open hole at -5 with shading to the left.

The open hole means "exclude this endpoint from the solution set".

Which set of values could be the side lengths of a 30-60-90 triangle?
OA. (5, 5√2, 10}
B. (5, 10, 10 √√3)
C. (5, 10, 102)
OD. (5, 53, 10)

Answers

A 30-60-90 triangle is a special type of right triangle where the angles are 30 degrees, 60 degrees, and 90 degrees. The sides of a 30-60-90 triangle always have the same ratio, which is 1 : √3 : 2.

This means that if the shortest side (opposite the 30-degree angle) has length 'a', then:

- The side opposite the 60-degree angle (the longer leg) will be 'a√3'.

- The side opposite the 90-degree angle (the hypotenuse) will be '2a'.

Let's check each of the options:

A. (5, 5√2, 10): This does not follow the 1 : √3 : 2 ratio.

B. (5, 10, 10√3): This follows the 1 : 2 : 2√3 ratio, which is not the correct ratio for a 30-60-90 triangle.

C. (5, 10, 10^2): This does not follow the 1 : √3 : 2 ratio.

D. (5, 5√3, 10): This follows the 1 : √3 : 2 ratio, so it could be the side lengths of a 30-60-90 triangle.

So, the correct answer is option D. (5, 5√3, 10).

Suppose that we will take a random sample of size n from a population having mean µ and standard deviation σ. For each of the following situations, find the mean, variance, and standard deviation of the sampling distribution of the sample mean :
:
(a) µ = 12, σ = 5, n = 28 (Round your answers of "σ " and "σ 2" to 4 decimal places.)
(b) µ = 539, σ = .4, n = 96 (Round your answers of "σ " and "σ 2" to 4 decimal places.)
(c) µ = 7, σ = 1.0, n = 7 (Round your answers of "σ " and "σ 2" to 4 decimal places.)
(d) µ = 118, σ = 4, n = 1,530 (Round your answers of "σ " and "σ 2" to 4 decimal places.)

Answers

Mean, µx = µ = 118, Variance, σ2x = σ2/n = 4^2/1530 = 0.0001044 and Standard Deviation, σx = σ/√n = 4/√1530 = 0.1038

Sampling Distribution of the Sample Mean:

Suppose that we will take a random sample of size n from a population having mean µ and standard deviation σ.

The sampling distribution of the sample mean is a probability distribution of all possible sample means.

Statistics for each question:

(a) µ = 12, σ = 5, n = 28

(b) µ = 539, σ = .4, n = 96

(c) µ = 7, σ = 1.0, n = 7

(d) µ = 118, σ = 4, n = 1,530

(a) Mean, µx = µ = 12, Variance, σ2x = σ2/n = 5^2/28 = 0.8929 and Standard Deviation, σx = σ/√n = 5/√28 = 0.9439

(b) Mean, µx = µ = 539, Variance, σ2x = σ2/n = 0.4^2/96 = 0.0001667 and Standard Deviation, σx = σ/√n = 0.4/√96 = 0.0408

(c) Mean, µx = µ = 7, Variance, σ2x = σ2/n = 1^2/7 = 0.1429 and Standard Deviation, σx = σ/√n = 1/√7 = 0.3770

(d) Mean, µx = µ = 118, Variance, σ2x = σ2/n = 4^2/1530 = 0.0001044 and Standard Deviation, σx = σ/√n = 4/√1530 = 0.1038

Learn more about Sampling Distribution visit:

brainly.com/question/31465269

#SPJ11

2. (14 points) Find a function F(n) with the property that the graph of y- F(x) is the
result of applying the following transformations to the graph of
v=1²+2r. First, stretch the graph horizontally by a factor of 4, then shift the resulting graph 7 units down and 3 units to the left. Leave your answer unsimplified. You don't have to sketch the graph,

Answers

Given that, the graph of y - F(x) is the result of applying the following transformations to the graph of v = 1² + 2r.Therefore, the function F(n) can be determined by applying the inverse of these transformations.

The correct option is (C)

The graph of v = 1² + 2r is a parabola.

To stretch it horizontally by a factor of 4, replace r with r/4: v = 1² + 2r/4²

or v = 1 + r/8.

Now, shifting the graph down by 7 units means replacing v with (v - 7): v - 7 = 1 + r/8

or v = r/8 + 8.

Finally, shifting the graph 3 units to the left means replacing r with (r + 3): v = (r + 3)/8 + 8

or v = (r + 24)/8.

The function F(n) is given by F(n) = (n + 24)/8.

We know that the graph of v = 1² + 2r is a parabola. Then the transformations of the graph are as follows: To stretch the graph horizontally by a factor of 4, we replace r with r/4: v = 1² + 2r/4²

or v = 1 + r/8.

Now, shift the resulting graph 7 units down by replacing v with (v - 7): v - 7 = 1 + r/8

or v = r/8 + 8.

Finally, shift the resulting graph 3 units to the left by replacing r with (r + 3): v = (r + 3)/8 + 8

or v = (r + 24)/8.

Thus, the function F(n) is given by F(n) = (n + 24)/8. To determine the function F(n) with the given graph, we need to apply the inverse transformations of the graph. First, we stretch the graph horizontally by a factor of 4. This can be done by replacing r with r/4, which gives v = 1² + 2r/4²

or v = 1 + r/8.

Next, we shift the resulting graph down 7 units by replacing v with (v - 7), which gives v - 7 = 1 + r/8

or v = r/8 + 8.

Finally, we shift the resulting graph 3 units to the left by replacing r with (r + 3), which gives v = (r + 3)/8 + 8

or v = (r + 24)/8.

Therefore, the function F(n) is given by F(n) = (n + 24)/8.

To know more about graph visit:

https://brainly.com/question/17267403

#SPJ11

(ii) At any party, the number of people who have shaken the hand of an odd number of people is even. [30Que 5. Give examples of the following: (i) a connected simple graph with 6 vertices such that each vertex has degree 3 (ii) a graph with 3 components and 4 loops. 6. Prove the following: if a graph has a closed walk of odd length, then it has a cycle of odd length. How many edges does the complete bipartite graph K m,n
​ have? Justify your answer.

Answers

Let G be a graph with a closed walk of odd length, say v_0, v_1, ..., v_{2k+1}, v_0. We want to show that G has a cycle of odd length.

Let W = {v_i : 0 ≤ i ≤ 2k+1} be the set of vertices in the closed walk. Since the walk is closed, the first and last vertices are the same, so we can write:

w_0 = w_{2k+1}

Let C be the subgraph of G induced by the vertices in W. That is, the vertices of C are the vertices in W and the edges of C are the edges of G that have both endpoints in W.

Since W is a closed walk, every vertex in W has even degree in C (because it has two incident edges). Therefore, the sum of degrees of vertices in C is even.

However, since C is a subgraph of G, the sum of degrees of vertices in C is also equal to twice the number of edges in C. Therefore, the number of edges in C is even.

Now consider the subgraph H of G obtained by removing all edges in C. This graph has no edges between vertices in W, because those edges were removed. Therefore, each connected component of H either contains a single vertex from W, or is a path whose endpoints are in W.

Since G has a closed walk of odd length, there must be some vertex in W that appears an odd number of times in the walk (because the number of vertices in the walk is odd). Let v be such a vertex.

If v appears only once in the walk, then it is a connected component of H and we are done, because a single vertex is a cycle of odd length.

Otherwise, let v = w_i for some even i. Then w_{i+1}, w_{i+2}, ..., w_{i-1} also appear in the walk, and they form a path in H. Since this path has odd length (because i is even), it is a cycle of odd length in G.

Therefore, we have shown that if G has a closed walk of odd length, then it has a cycle of odd length.

The complete bipartite graph K_m,n has m+n vertices, with m vertices on one side and n on the other side. Each vertex on one side is connected to every vertex on the other side, so the degree of each vertex on the first side is n and the degree of each vertex on the second side is m. Therefore, the total number of edges in K_m,n is mn, since there are mn possible pairs of vertices from the two sides that can be connected by an edge.

learn more about odd length here

https://brainly.com/question/4232467

#SPJ11

Un coche tarda 1 minuto y 10 segundos en dar una vuelta completa al circuito,otro tarda 80 segundos ¿Cuándo volverán a encontrarse?

Answers

We may use the concept of many commons to predict when two cars making a circuit will next be found.

The first car takes one minute and ten seconds to do a full turn, which is equal to 70 seconds. The second car takes 80 seconds to make a full turn. We're looking for the first instance when both cars are at the starting line at the same time.To determine when they will be discovered again, we can locate the smallest common mixture of the 1970s and 1980s. The smaller common multiple of these two numbers is 560.

Then, after 560 seconds, or 9 minutes and 20 seconds, the two cars will reappear. This will be the first time both cars finish at the same time.

learn  more about concept here :

https://brainly.com/question/29756759

#SPJ11

(a) Find the closed area determined by the graphs of \( x=2-y^{2} \) and \( y=x \) by following the \( y \) axis when integrating. (b) Express the same area in terms of integral(s) on the \( x \)-axis

Answers

(a) To find the area determined by the graphs of ( x=2-y^{2} ) and ( y=x ), we first need to determine the limits of integration. Since the two curves intersect at ( (1,1) ) and ( (-3,-3) ), we can integrate with respect to ( y ) from ( y=-3 ) to ( y=1 ).

The equation of the line ( y=x ) can be written as ( x-y=0 ). The equation of the parabola ( x=2-y^2 ) can be rewritten as ( y^2+x-2=0 ). At the points of intersection, these two equations must hold simultaneously, so we have:

[y^2+x-2=0]

[x-y=0]

Substituting ( x=y ) into the first equation, we get:

[y^2+y-2=0]

This equation factors as:

[(y-1)(y+2)=0]

So the two points of intersection are ( (1,1) ) and ( (-2,-2) ). Therefore, the area of the region enclosed by the two curves is given by:

[\int_{-3}^{1} [(2-y^2)-y] dy]

Simplifying this expression, we get:

[\int_{-3}^{1} (2-y^2-y) dy = \int_{-3}^{1} (1-y^2-y) dy = [y-\frac{1}{3}y^3 - \frac{1}{2}y^2]_{-3}^{1}]

Evaluating this expression, we get:

[(1-\frac{1}{3}-\frac{1}{2}) - (-3+9-\frac{27}{2}) = \frac{23}{6}]

Therefore, the area enclosed by the two curves is ( \frac{23}{6} ).

(b) To express the same area in terms of an integral on the ( x )-axis, we need to solve for ( y ) in terms of ( x ) for each equation. For ( y=x ), we have ( y=x ). For ( x=2-y^2 ), we have:

[y^2+(-x+2)=0]

Solving for ( y ), we get:

[y=\pm\sqrt{x-2}]

Note that we only want the positive square root since we are looking at the region above the ( x )-axis. Therefore, the area enclosed by the two curves is given by:

[\int_{-2}^{2} [x-\sqrt{x-2}] dx]

We integrate from ( x=-2 ) to ( x=2 ) since these are the values where the two curves intersect. Simplifying this expression, we get:

[\int_{-2}^{2} (x-\sqrt{x-2}) dx = [\frac{1}{2}x^2-\frac{2}{3}(x-2)^{\frac{3}{2}}]_{-2}^{2}]

Evaluating this expression, we get:

[(2-\frac{8}{3}) - (-2-\frac{8}{3}) = \frac{16}{3}]

Therefore, the area enclosed by the two curves is ( \frac{16}{3} ) when integrating with respect to the ( x )-axis.

learn more about integration here

https://brainly.com/question/31744185

#SPJ11


70% of all Americans are home owners. if 47 Americans are
randomly selected,
find the probability that exactly 32 of them are home owners

Answers

Given that 70% of all Americans are homeowners. If 47 Americans are randomly selected, we need to find the probability that exactly 32 of them are homeowners.

The probability distribution is binomial distribution, and the formula to find the probability of an event happening is:

P (x) = nCx * px * q(n - x)Where, n is the number of trialsx is the number of successesp is the probability of successq is the probability of failure, and

q = 1 - pHere, n = 47 (47 Americans are randomly selected)

Probability of success (p) = 70/100

= 0.7Probability of failure

(q) = 1 - p

= 1 - 0.7

= 0.3To find P(32), the probability that exactly 32 of them are homeowners,

we plug in the values:nCx = 47C32

= 47!/(32!(47-32)!)

= 47!/(32! × 15!)

= 1,087,119,700

px = (0.7)32q(n - x)

= (0.3)15Using the formula

,P (x) = nCx * px * q(n - x)P (32)

= 47C32 * (0.7)32 * (0.3)15

= 0.1874

Hence, the probability that exactly 32 of them are homowner are 0.1874

to know more about binomial distribution

https://brainly.com/question/33625582

#SPJ11

Fill in the blank: When finding the difference between 74 and 112, a student might say, and then I added 2 more tens onto "First, I added 6 onto 74 to get a ______80 to get to 100 because that's another______

Answers

When finding the difference between 74 and 112, a student might say, "First, I added 6 onto 74 to get a number that ends in 0, specifically 80, to get to 100 because that's another ten."

To find the difference between 74 and 112, the student is using a strategy of breaking down the numbers into smaller parts and manipulating them to simplify the subtraction process. In this case, the student starts by adding 6 onto 74, resulting in 80. By doing so, the student is aiming to create a number that ends in 0, which is closer to 100 and represents another ten. This approach allows for an easier mental calculation when subtracting 80 from 112 since it involves subtracting whole tens instead of dealing with more complex digit-by-digit subtraction.

Learn more about subtracting here : brainly.com/question/13619104

#SPJ11

A race car driver must average 270k(m)/(h)r for 5 laps to qualify for a race. Because of engine trouble, the car averages only 220k(m)/(h)r over the first 3 laps. What minimum average speed must be ma

Answers

The race car driver must maintain a minimum average speed of 330 km/h for the remaining 2 laps to qualify for the race.

To find the minimum average speed needed for the remaining 2 laps, we need to determine the total distance covered in the first 3 laps and the remaining distance to be covered in the next 2 laps.

Given:

Average speed for the first 3 laps = 220 km/h

Total number of laps = 5

Target average speed for 5 laps = 270 km/h

Let's calculate the distance covered in the first 3 laps:

Distance = Average speed × Time

Distance = 220 km/h × 3 h = 660 km

Now, we can calculate the remaining distance to be covered:

Total distance for 5 laps = Target average speed × Time

Total distance for 5 laps = 270 km/h × 5 h = 1350 km

Remaining distance = Total distance for 5 laps - Distance covered in the first 3 laps

Remaining distance = 1350 km - 660 km = 690 km

To find the minimum average speed for the remaining 2 laps, we divide the remaining distance by the time:

Minimum average speed = Remaining distance / Time

Minimum average speed = 690 km / 2 h = 345 km/h

The race car driver must maintain a minimum average speed of 330 km/h for the remaining 2 laps to qualify for the race.

To know more about   speed follow the link:

https://brainly.com/question/11260631

#SPJ11

Question 13 of 25
The graph of a certain quadratic function has no x-intercepts. Which of the
following are possible values for the discriminant? Check all that apply.
A. -18
B. 0
C. 3
D. -1
SUBMIT

Answers

Answer:

Since the graph of a certain quadratic function has no x-intercepts, the discriminant has to be negative, so A and D are possible values for the discriminant.

What is the equation of the following line? Be sure to scroll down first to see all answer options. (-2,-8) ( 0,0)

Answers

Answer:

y = -4x

Step-by-step explanation:

We can find the equation of the line in slope-intercept form, whose general equation is given by:

y = mx + b, where

m is the slope,and b is the y-intercept.

Finding the slope (m):

We can find the slope (m) using the slope formula, which is given by:

m = (y2 - y1) / (x2 - x1), where

(x1, y1) is one point on the line,and (x2, y2) is another point on the line.

Thus, we can plug in (0, 0) for (x1, y1) and (2, -8) for (x2, y2) to find m, the slope of the line:

m = (-8 - 0) / (2 - 0)

m = -8/2

m = -4

Thus, the slope of the line is-4.

Finding the y-intercept (b):

We see that the point (0, 0) lies on the line so the y-intercept is 0 since the line intersects the y-axis at (0, 0).When the y-intercept is 0, we don't write it in the equation.

Thus, the equation of the line is y = -4x.

Find all the values of the following. (1) (−16) ^1/4Place all answers in the following blank, separated by commas: (2) 1 ^1/5 Place all answers in the followina blank. sebarated bv commas: (3) i ^1/4 Place all answers in the followina blank. sebarated bv commas:

Answers

The required roots of the given expressions are:

(1) (1/√2 + i/√2), (-1/√2 + i/√2), (-1/√2 - i/√2), (1/√2 - i/√2).

(2)1

(3) [cos(π/8) + isin(π/8)], [cos(5π/8) + isin(5π/8)], [cos(9π/8) + isin(9π/8)], [cos(13π/8) + isin(13π/8)].

Formula used:For finding roots of a complex number `a+bi`,where `a` and `b` are real numbers and `i` is an imaginary unit with property `i^2=-1`.

If `r(cosθ + isinθ)` is the polar form of the complex number `a+bi`, then its roots are given by:r^(1/n) [cos(θ+2kπ)/n + isin(θ+2kπ)/n],where `n` is a positive integer and `k = 0,1,2,...,n-1.

Calculations:

(1) (-16)^(1/4)

This expression (-16)^(1/4) can be written as [16 × (-1)]^(1/4).

Therefore (-16)^(1/4) = [16 × (-1)]^(1/4) = 2^(1/4) × [(−1)^(1/4)] = 2^(1/4) × [cos((π + 2kπ)/4) + isin((π + 2kπ)/4)],where k = 0,1,2,3.

Therefore (-16)^(1/4) = 2^(1/4) × [(1/√2) + i(1/√2)], 2^(1/4) × [(−1/√2) + i(1/√2)],2^(1/4) × [(−1/√2) − i(1/√2)], 2^(1/4) × [(1/√2) − i(1/√2)].

Hence, the roots of (-16)^(1/4) are (1/√2 + i/√2), (-1/√2 + i/√2), (-1/√2 - i/√2), (1/√2 - i/√2).

(2) 1^(1/5)

This expression 1^(1/5) can be written as 1^[1/(2×5)] = 1^(1/10).

Now, 1^(1/10) = 1 because any number raised to power 0 equals 1.

Hence, the only root of 1^(1/5) is 1.

(3) i^(1/4).

Now, i^(1/4) can be written as (cos(π/2) + isin(π/2))^(1/4).Now, the modulus of i is 1 and its argument is π/2.
Therefore, its polar form is: 1(cosπ/2 + isinπ/2).

Therefore i^(1/4) = 1^(1/4)[cos(π/2 + 2kπ)/4 + isin(π/2 + 2kπ)/4], where k = 0, 1,2,3.

Therefore i^(1/4) = [cos(π/8) + isin(π/8)], [cos(5π/8) + isin(5π/8)], [cos(9π/8) + isin(9π/8)], [cos(13π/8) + isin(13π/8)].

Therefore, the roots of i^(1/4) are [cos(π/8) + isin(π/8)], [cos(5π/8) + isin(5π/8)], [cos(9π/8) + isin(9π/8)], [cos(13π/8) + isin(13π/8)].


To know more about roots click here:

https://brainly.com/question/32597645

#SPJ11

Averie rows a boat downstream for 135 miles. The return trip upstream took 12 hours longer. If the current flows at 2 mph, how fast does Averie row in still water?

Answers

Averie's speed in still water = (speed downstream + speed upstream) / 2, and by substituting the known values, we can calculate Averie's speed in still wat

To solve this problem, let's denote Averie's speed in still water as "r" (in mph).

We know that the current flows at a rate of 2 mph.

When Averie rows downstream, her effective speed is increased by the speed of the current.

Therefore, her speed downstream is (r + 2) mph.

The distance traveled downstream is 135 miles.

We can use the formula:

Time = Distance / Speed.

So, the time taken downstream is 135 / (r + 2) hours.

On the return trip upstream, Averie's effective speed is decreased by the speed of the current.

Therefore, her speed upstream is (r - 2) mph.

The distance traveled upstream is also 135 miles.

The time taken upstream is given as 12 hours longer than the downstream time, so we can express it as:

Time upstream = Time downstream + 12

135 / (r - 2) = 135 / (r + 2) + 12

Now, we can solve this equation to find the value of "r," which represents Averie's speed in still water.

Multiplying both sides of the equation by (r - 2)(r + 2), we get:

135(r - 2) = 135(r + 2) + 12(r - 2)(r + 2)

Simplifying and solving the equation will give us the value of "r," which represents Averie's speed in still water.

For similar question on speed.

https://brainly.com/question/29483294  

#SPJ8

vertex at (4,3), axis of symmetry with equation y=3, length of latus rectums 4, and 4p>0

Answers

The given information describes a parabola with vertex at (4,3), axis of symmetry with equation y=3, and a latus rectum length of 4. The value of 4p is positive.

1. The axis of symmetry is a horizontal line passing through the vertex, so the equation y=3 represents the axis of symmetry.

2. Since the latus rectum length is 4, we know that the distance between the focus and the directrix is also 4.

3. The focus is located on the axis of symmetry and is equidistant from the vertex and directrix, so it has coordinates (4+2, 3) = (6,3).

4. The directrix is also a horizontal line and is located 4 units below the vertex, so it has the equation y = 3-4 = -1.

5. The distance between the vertex and focus is p, so we can use the distance formula to find that p = 2.

6. Since 4p>0, we know that p is positive and thus the parabola opens to the right.

7. Finally, the equation of the parabola in standard form is (y-3)^2 = 8(x-4).

Learn more about parabola  : brainly.com/question/11911877

#SPJ11

Other Questions
At least one of the answers above is NOT correct. (1 point ) Find the quotient and remainder using synthetic division for (x^(3)-12x^(2)+34x-12)/(x-4) The quotient is The remainder is Note: You can ea 73 degrees , x degrees , angles A manufacturing company produces two models of an HDTV per week, x units of model A and y units of model B with a cost (in dollars) given by the following function.C(x,y)=3x^2+6y^2If it is necessary (because of shipping considerations) that x+y=90, how many of each type of set should be manufactured per week to minimize cost? What is the minimum cost? To minimize cost, the company should produce units of model A. To minimize cost, the company should produce units of model B. The minimum cost is $ A habitual rebuy is characterized by perceived brand differences and high customer involvement.2) Buyer behavior is often influenced by perception.3) Very few purchases are guided by emotional buying motives.4) The three prescriptions for developing a customer strategy focus on (1) the customer's buying process, (2) why customers buy, and (3) negotiating the transaction.5) The need to belong is really just an urge, not a basic human social need.6) One difference between organizational and consumer buyers is that organizational buyers' purchases are made for some purpose other than personal consumption.7) The person who withdraws money from a savings account and uses this money to buy government bonds at a higher return on investment is very likely guided by rational buying motives.8) Subcultures typically share value systems based on similar life experiences and situation a network address and a host address make up the two parts of an ip address. true or false? What is the solution to the system of equations in the graph below? Given are three simple linear equations in the format of y=mx+b. Equation 1: y=25,105+0.69x Equation 2:y=7,378+1.41x Equation 3:y=12.509+0.92x Instructions 1. Plot and label all equations 1. 2 and 3 on the same graph paper. 2. The graph must show how these equations intersect with each other if they do. Label each equation (8 pts.). 3. Compute each Interception point (coordinate). On the graph label each interception point with its coordinate (8 pts.) 4. Upload your graph in a pdf format (zero point for uploading a non-pdf file) by clicking in the text box below and selecting the paper dip symbol. Garfield, Inc. began operations in 2019, and reported the following for its first three years of operations. 2022's books have not been closed. The draft income statement for 2022 shows net income of gretchen goes to buy a dozen donuts from a donut store that sells five varieties of donuts. one of the varieties of donuts sold is chocolate. how many ways are there to select the donuts if she must have exactly one chocolate donut in her selection? 1. Describe how you would clean broken glass? 2. What is a Fume Hood? And what does it do? 3.. List 8 items that can be found in the lab. 4. What should you do if you do not understand an instruction in the lab? 5. Describe how you would heat up a substance using a test-tube and a bunsen burner. and notices that the security scan report shows several patches missing, as well as misconfigurations. Which statement summarizes the new employee's findings? Identified an increase in risk based on the vulnerablities identified in the scans Identified an increased risk based on the threats identified in the scans Identified an increase in vulnerabilities based on the scans, but no increase in risk Identified an increased threat landscape based on the scans, but risk level did not change In 2021, the price of laptops fell and some manufacturers will switch from producing laptops in 2022 to making smart phones a. Does this fact illustrate the law of demand or the law of supply? Explain your answer. Given that the current in a circuit is represented by the following equation, find the first time at which the current is a maximum. i=sin ^2(4t)+2sin(4t) The language Balanced over ={(,), } is defined recursively as follows 1. Balanced. 2. x,y Balanced, both xy and (x) are elements of Balanced. A prefix of a string x is a substring of x that occurs at the beginning of x. Prove by induction that a string x belongs to this language if and only if (iff) the statement B(x) is true. B(x) : x contains equal numbers of left and right parentheses, and no prefix of x contains more right than left. Reminder for this and all following assignments: if you need to prove the "iff" statement, i.e., X Y, you need to prove both directions, namely, "given X, prove that Y follows from X(XY) ", and "given Y, prove that X follows from Y(XY) ". Evaluate yyye y 2 dv, where e is the solid hemisphere x 2 1 y 2 1 z2 < 9, y > 0. Which of the following vesting schedules may a top-heavy qualified cash balance plan use?Remember, any vesting schedule that would not provide vesting as fast as the maximum vesting schedule allowed is not a permitted vesting schedule. Vesting schedules that would provide vesting faster than the maximum are permitted3 to 7 year graduated.2 to 6 year graduated.3-year cliff.5 year cliff. the molar conductance of 0-1m aqueous solution of nh4oh is 9-54 olm-lcm2mol-l and at infinite dilution molar conductance is 238 ohn-cn2nmol calculate the degree of ionization of ammonium hydroxide at the same concentration and temperature. in 1607, the first permanent english colony was established in: providence jamestown plymouth roanoke island You earn 6% on your corporate bond portfolio this year, and you are in a 24% federal tax bracket and an 9% state tax bracket. Your after-tax return is (Assume that federal taxes are not deductible against state taxes and vice versa). Mutiple Choice 4.50% 3.84%4.02% 3.12% The price-demand equation for gasoline is 0.2x+2p=60 where p is the price per gallon in dollars and x is the daily demand measured in millions of gallons.a. What price should be charged if the demand is 40 million gallons?.b. If the price increases by $0.5, by how much does the demand decrease?