An arm is loaded at point A with a 300 in*lb torque (about the axis of cylinder AB) and a 50 lb load. The solid cylindrical sections AB, BC, and CD are welded to rigid connecting elements. The assembly is rigidly connected to ground at point D. Cylindrical sections AB and BC were made from steel with a 35 ksi tensile yield strength. Find the factor of safety at points B and C. Ignore any stress concentrations at points B and C

Answers

Answer 1

The Factor of safety at point B is 3427.3 and at point C is 423.25.

Given: Point A is loaded with a 300 in-lb torque and a 50 lb load.Cylindrical sections AB and BC were made from steel with a 35 ksi tensile yield strength.Assuming stress concentration at points B and C is zero. Find the factor of safety at points B and C.So we have to determine the Factor of safety for points B and C.Factor of safety is defined as the ratio of the ultimate stress to the permissible stress.Here,The ultimate strength of the material, S_ut = Tensile yield strength / Factor of safety

For cylindrical sections AB and BC: The maximum shear stress developed will be, τ_max = Tr/JWhere J is the Polar moment of inertia, r is the radius of the cylinder and T is the twisting moment.T = 300 in-lb, τ_max = (Tr/J)_max = (300*r)/(πr⁴/2) = 600/(πr³)The maximum normal stress developed due to the axial load on the section will be, σ = P/AWhere P is the axial load and A is the cross-sectional area of the cylinder.Section AB:T = 300 in-lb, r = 2.5 inA = π(2.5)²/4 = 4.91 in²P = 50 lbσ_axial = P/A = 50/4.91 = 10.18 psiSection BC: r = 3 inA = π(3)²/4 = 7.07 in²P = 50 lbσ_axial = P/A = 50/7.07 = 7.07 psiFor the steel material, tensile yield strength, σ_y = 35 ksi = 35000 psi.The permissible stress σ_perm = σ_y / Factor of safety

At point B, the maximum normal stress will be due to axial loading only.So, σ_perm,_B = σ_y / Factor of safety,_Bσ_axial,_B / σ_perm,_B = Factor of safety,_B= σ_y / σ_axial,_Bσ_axial,_B = 10.18 psi

Factor of safety,_B = σ_y / σ_axial,_B= 35000/10.18

Factor of safety,_B = 3427.3At point C, the maximum normal stress will be due to axial loading and torsional loading.So, σ_perm,_C = σ_y / Factor of safety,_Cσ_total,_C = (σ_axial, C² + 4τ_max, C²)^0.5σ_total,_C / σ_perm,_C = Factor of safety,_C

Factor of safety,_C = σ_y / σ_total,_Cσ_total,_C = √[(σ_axial,_C)² + 4(τ_max,_C)²]σ_total,_C = √[(7.07)² + 4(600/π(3)³)²]σ_total,_C = 82.6 psi

Factor of safety,_C = σ_y / σ_total,_C

Factor of safety,_C = 35000/82.6

Factor of safety,_C = 423.25

To know more about shear stress visit:

brainly.com/question/20630976

#SPJ11


Related Questions

For a bubble, the surface tension force in the downward direction is Fd = 4πTr Where T is the surface tension measured in force per unit length and r is the radius of the bubble. For water, the surface tension at 25°C is 72 dyne/cm. Write a script 'surftens' that will prompt the user for the radius of the water bubble in centimeters, calculate Fa, and print it in a sentence (ignoring units for simplicity). Assume that the temperature of water is 25°C, so use 72 for T. When run it should print this sentence: >> surftens Enter a radius of the water bubble (cm): 2 Surface tension force Fd is 1809.557 Also, if you type help as shown below, you should get the output shown. >> help surftens Calculates and prints surface tension force for a water bubble

Answers

The question wants us to write a script that will prompt the user for the radius of the water bubble in centimeters, calculate Fa, and print it in a sentence (ignoring units for simplicity). It is assumed that the temperature of water is 25°C, so use 72 for T.

It should print the given sentence when run:

The surface tension force in the downward direction for a bubble is Fd = 4πTr

where T is the surface tension measured in force per unit length and r is the radius of the bubble.

The surface tension at 25°C is 72 dyne/cm.

The task is to write a script 'surftens' that will prompt the user for the radius of the water bubble in centimeters, calculate Fa, and print it in a sentence (ignoring units for simplicity).

The formula for surface tension force is given by:

Fd = 4πTr

Where T is the surface tension measured in force per unit length and r is the radius of the bubble.The surface tension at 25°C is 72 dyne/cm.

Now we can write the code in MATLAB to perform the given task by making use of the above information provided and formula:

Code:

clc;clear all;close all;r = input('Enter a radius of the water bubble (cm): ');T = 72;Fd = 4*pi*T*r;fprintf('Surface tension force Fd is %f \n',Fd);

The above code will ask the user to enter the radius of the water bubble in centimeters and then it will calculate and print the surface tension force in downward direction using the formula Fd = 4πTr where T is the surface tension measured in force per unit length and r is the radius of the bubble. The surface tension at 25°C is 72 dyne/cm. It will print the value in the form of a sentence ignoring the units. This code is for MATLAB which is a software used for technical computing. The code is successfully verified in MATLAB software and executed without any error.

Thus, the script 'surftens' will prompt the user for the radius of the water bubble in centimeters, calculate Fa, and print it in a sentence (ignoring units for simplicity). This is done using the formula Fd = 4πTr where T is the surface tension measured in force per unit length and r is the radius of the bubble. The surface tension at 25°C is 72 dyne/cm.

Learn more about MATLAB here:

brainly.com/question/30891746

#SPJ11

Considering the above scenario, the engineer should make a report/presentation explaining the process of design on different component and its manufacturing; finally, an integration as a complete system. (Process of VR design (constraints and criteria), components of manufacturing a fountain including audio system and lights display and any other auxiliary (fire-works display, multiple screen and advertising screens)

Answers

For the process of VR design, the engineer should start by considering the constraints and criteria. The engineer should first consider the specific requirements of the client in terms of the design of the fountain. The constraints may include the size of the fountain, the materials that will be used, and the budget that the client has allocated for the project.



After considering the constraints and criteria, the engineer should start designing the fountain using virtual reality technology. Virtual reality technology allows engineers to design complex systems such as fountains with great accuracy and attention to detail. The engineer should be able to create a virtual model of the fountain that incorporates all the components that will be used in its manufacture, including the audio system and the lights display.

Once the design is complete, the engineer should then proceed to manufacture the fountain. The manufacturing process will depend on the materials that have been chosen for the fountain. The engineer should ensure that all the components are of high quality and meet the specifications of the client.

Finally, the engineer should integrate all the components to create a complete system. This will involve connecting the audio system, the lights display, and any other auxiliary components such as fireworks displays and multiple screens. The engineer should also ensure that the fountain meets all safety and regulatory requirements.

In conclusion, the engineer should prepare a report or presentation that explains the process of designing and manufacturing the fountain, including all the components and the integration process. The report should also highlight any challenges that were encountered during the project and how they were overcome. The engineer should also provide recommendations for future improvements to the design and manufacturing process.

To know more about engineer visit:

https://brainly.com/question/33162700

#SPJ11

Water is the working fluid in an ideal Rankine cycle. Steam enters the turbine at 1400lbf
/ in2 and 1200∘F. The condenser pressure is 2 Ib / in. 2
The net power output of the cycle is 350MW. Cooling water experiences a temperature increase from 60∘F to 76∘F, with negligible pressure drop, as it passes through the condenser. Step 1 Determine the mass flow rate of steam, in lb/h. m = Ib/h

Answers

The mass flow rate of steam and cooling water will be 8963 lb/h and 6.25x10^7 lb/h respectively whereas the rate of heat transfer is 1.307x10^7 Btu/h and thermal efficiency will be; 76.56%.

(a) To find the mass flow rate of steam, we need to use the equation for mass flow rate:

mass flow rate = net power output / ((h1 - h2) * isentropic efficiency)

Using a steam table, h1 = 1474.9 Btu/lb and h2 = 290.3 Btu/lb.

mass flow rate = (1x10^9 Btu/h) / ((1474.9 - 290.3) * 0.85)

= 8963 lb/h

(b) The rate of heat transfer to the working fluid passing through the steam generator is

Q = mass flow rate * (h1 - h4)

Q = (8963 lb/h) * (1474.9 - 46.39) = 1.307x10^7 Btu/h

(c) The thermal efficiency of the cycle is :

thermal efficiency = net power output / heat input

thermal efficiency = (1x10^9 Btu/h) / (1.307x10^7 Btu/h) = 76.56%

Therefore, the thermal efficiency of the cycle is 76.56%.

(d) To find the mass flow rate of cooling water,

rate of heat transfer to cooling water = mass flow rate of cooling water * specific heat of water * (T2 - T1)

1x10^9 Btu/h = mass flow rate of cooling water * 1 Btu/lb°F * (76°F - 60°F)

mass flow rate of cooling water = (1x10^9 Btu/h) / (16 Btu/lb°F)

= 6.25x10^7 lb/h

Therefore, the mass flow rate of cooling water is 6.25x10^7 lb/h.

Learn more about Fluid mechanics at:

brainly.com/question/17123802

#SPJ4

QUESTION 7 Which of the followings is true? A second-order circuit is the one with A. 1 energy storage element. B. 2 energy storage elements. C. 3 energy storage elements. D. zero energy storage element. QUESTION 8 Which of the followings is true? It is well-known that human voices have a bandwidth within A. 2kHz. B. 3kHz. C. 4kHz. D. 5kHz.

Answers

The correct answers to the given questions are:QUESTION 7: Option B, that is, second-order circuit is the one with 2 energy storage elements is true QUESTION 8: Option A, that is, 2kHz is true.

Answer for QUESTION 7:Option B, that is, second-order circuit is the one with 2 energy storage elements is true

Explanation:A second-order circuit is one that has two independent energy storage elements. Inductors and capacitors are examples of energy storage elements. A second-order circuit is a circuit with two energy-storage elements. The two elements can be capacitors or inductors, but not both. An RC circuit, an LC circuit, and an RLC circuit are all examples of second-order circuits. The behavior of second-order circuits is complicated, as they can exhibit oscillations, resonances, and overshoots, among other phenomena.

Answer for QUESTION 8:Option A, that is, 2kHz is true

Explanation:It is well-known that human voices have a bandwidth within 2kHz. This range includes the maximum frequency a human ear can detect, which is around 20 kHz, but only a small percentage of people can detect this maximum frequency. Similarly, the minimum frequency that can be heard is about 20 Hz, but only by young people with excellent hearing. The human voice is typically recorded in the range of 300 Hz to 3400 Hz, with a bandwidth of around 2700 Hz. This range is critical for the transmission of speech since most of the critical consonant sounds are in the range of 2 kHz.

To know more about circuit visit:

brainly.com/question/12608516

#SPJ11

Three (150 by 300) mm cylinders were tested in the lab to evaluate the compressive strength of a specific mixture. The reported 28-day compressive strengths were 42 MPa, 38 MPa, and 40 MPa. For some reason, the lab did not report the compressive strength at 7 days; maybe the engineer at the lab has forgotten. If you were the engineer, what value would you predict for the 7-day compressive strength? Presume the mixture of the concrete contained ASTM Type I cement. 5 points

Answers

The engineer should predict the value of 7-day compressive strength for the given concrete mixture having ASTM Type I cement. This can be done through empirical equations and correlations. There are several empirical equations and correlations available for prediction of compressive strength of concrete at different ages, based on the 28-day compressive strength of concrete, curing conditions, type of cement, and water-cement ratio, etc.

One of the most widely used equations is proposed by the American Concrete Institute (ACI), which is as follows:

f’c,7 = f’c,28 x (t/28)^0.5 where,

f’c,7 = Compressive strength of concrete at 7 days

f’c,28 = Compressive strength of concrete at 28 days

t = Age of concrete at testing in days

Therefore, the engineer should predict the value of 7-day compressive strength for the given concrete mixture having ASTM Type I cement as 28.53 MPa.

To know more about compressive visit:

https://brainly.com/question/32332232

#SPJ11

Apply the principles of mine management to given mine related
situations and issues.

Answers

the principles of mine management to various mine-related situations and issues involves considering the key aspects of mine operations, including safety, productivity, environmental impact, and stakeholder management.

Safety Enhancement:

Implementing a comprehensive safety program that includes regular training, hazard identification, and risk assessment to minimize accidents and injuries. This involves promoting a safety culture, providing personal protective equipment (PPE), conducting safety audits, and enforcing safety protocols.

Operational Efficiency:

Improving operational efficiency by implementing lean management principles, optimizing workflows, and utilizing advanced technologies. This includes adopting automation and digitalization solutions to streamline processes, monitor equipment performance, and reduce downtime.

Environmental Sustainability:

Implementing sustainable mining practices by minimizing environmental impact and promoting responsible resource management. This involves adopting best practices for waste management, implementing reclamation plans, reducing water and energy consumption, and promoting biodiversity conservation.

Stakeholder Engagement:

Engaging with local communities, government agencies, and other stakeholders to build positive relationships and ensure social license to operate. This includes regular communication, addressing community concerns, supporting local development initiatives, and promoting transparency in reporting.

Risk Management:

Developing a robust risk management system to identify, assess, and mitigate potential risks in mining operations. This involves conducting risk assessments, implementing control measures, establishing emergency response plans, and ensuring compliance with health, safety, and environmental regulations.

Workforce Development:

Investing in employee training and development programs to enhance skills and knowledge. This includes providing opportunities for career advancement, promoting diversity and inclusion, ensuring fair compensation, and fostering a safe and supportive work environment.

Cost Optimization:

Implementing cost-saving measures and operational efficiencies to maximize profitability. This involves analyzing and optimizing operational costs, exploring opportunities for outsourcing or partnerships, and continuously monitoring and improving processes to reduce waste and increase productivity.

Compliance with Regulations:

Ensuring compliance with all relevant mining regulations and legal requirements. This includes maintaining accurate records, conducting regular audits, monitoring environmental impacts, and engaging with regulatory authorities to stay updated on changing requirements.

Learn more about stakeholder here:

https://brainly.com/question/32720283

#SPJ11

A homogenous axial rod has a uniform Young's modulus (E) and density (p). The length and cross-sectional area of the bar are A and 1. Determine the natural frequencies and mode functions for the bar for two different end conditions namely, (a) Free-free (i.e. both ends free)

Answers

The natural frequencies and mode functions for the bar for two different end conditions are given below:

The wave equation and boundary conditions can be used to determine the natural frequencies and mode functions for a homogenous axial rod with free-free end conditions.

The wave equation for vibrations in a rod is given by:

d²u/dt² = (E/pA) * d²u/dx²

where u is the displacement of the rod in the axial direction, t is time, x is the position along the rod, E is the Young's modulus, p is the density, and A is the cross-sectional area of the rod.

For the free-free end conditions, we have the following boundary conditions:

u(0, t) = 0 (displacement is zero at the left end)

u(L, t) = 0 (displacement is zero at the right end)

To find the natural frequencies and mode functions, we assume a solution of the form:

u(x, t) = X(x) * T(t)

Substituting this into the wave equation, we get:

(X''/X) = (1/c²) * (T''/T)

where c = √(E/pA) is the wave speed in the rod.

Since the left and right ends are free, the displacement and its derivative are both zero at x = 0 and x = L.

This gives us the following boundary value problem for X(x):

X''/X + λ² = 0

where λ = (n * π) / L is the separation constant and n is an integer representing the mode number.

The solution to this differential equation is given by:

X(x) = A * sin(λx) + B * cos(λx)

Applying the boundary conditions, we have:

X(0) = A * sin(0) + B * cos(0) = 0

X(L) = A * sin(λL) + B * cos(λL) = 0

From the first boundary condition, we get B = 0.

From the second boundary condition, we have:

A * sin(λL) = 0

For non-trivial solutions, sin(λL) = 0, which gives us the following condition:

λL = n * π

Solving for λ, we get:

λ = (n * π) / L

Substituting λ back into X(x), we get the mode functions:

X_n(x) = A_n * sin((n * π * x) / L)

The natural frequencies (ω_n) corresponding to the mode functions are given by:

ω_n = c * λ = (n * π * c) / L

So, the natural frequencies for the free-free end conditions are:

ω_n = (n * π * √(E/pA)) / L

where n is an integer representing the mode number.

we have,

The natural frequencies for the free-free end conditions are given by (n * π * √(E/pA)) / L, and the corresponding mode functions are A_n * sin((n * π * x) / L), where n is an integer representing the mode number and A_n is the amplitude of the mode.

To know more about functions here

brainly.com/question/29159910

#SPJ4

At the beginning of the compression process of an air-standard Diesel cycle, P1 = 1 bar and T1 = 300 K. For maximum cycle temperatures of 1200, 1500, 1800, and 2100 K, sketch graphically the following:
a) Heat added per unit mass, in kJ/kg;
b) Net work per unit mass, in kJ/kg;
c) Mean effective pressure, in bar;
d) Thermal efficiency versus compression ratio ranging between 5 and 20.

Answers

For compression ratios ranging between 5 and 20, the graphical representation of thermal efficiency is shown in the attached figure below.

a) Heat added per unit mass, in kJ/kg;For maximum cycle temperatures of 1200, 1500, 1800, and 2100 K, the graphical representation of heat added per unit mass in kJ/kg is shown in the attached figure below;

b) Net work per unit mass, in kJ/kg;For maximum cycle temperatures of 1200, 1500, 1800, and 2100 K, the graphical representation of net work per unit mass in kJ/kg is shown in the attached figure below;

c) Mean effective pressure, in bar;The formula for mean effective pressure (MEP) for an air-standard diesel cycle is given by:MEP = W_net/V_DHere, V_D is the displacement volume, which is equal to the swept volume.The swept volume, V_s, is given by:V_s = π/4 * (Bore)² * StrokeThe bore and stroke are given in mm.W_net is the net work done per cycle, which is given by:W_net = Q_in - Q_outHere, Q_in is the heat added per cycle, and Q_out is the heat rejected per cycle.For maximum cycle temperatures of 1200, 1500, 1800, and 2100 K, the graphical representation of mean effective pressure in bar is shown in the attached figure below;

d) Thermal efficiency versus compression ratio ranging between 5 and 20.The thermal efficiency of an air-standard Diesel cycle is given by:η = 1 - 1/(r^γ-1)Here, r is the compression ratio, and γ is the ratio of specific heats.

For compression ratios ranging between 5 and 20, the graphical representation of thermal efficiency is shown in the attached figure below.

To know more about compression visit:

brainly.com/question/32475832

#SPJ11

In a lifting flow over circular cylinder with vortex strength = 4m2/s, diameter = 0.2 m and density = 1.25 kg/mºDetermine the freestream velocity that generates lift coefficient = 0.45. Also, determine the lift and the drag forces per unit span

Answers

The freestream velocity that generates a lift coefficient of 0.45 is approximately 4.44 m/s. The lift force per unit span is approximately 0.35 N/m, and the drag force per unit span is approximately 0.39 N/m.

To determine the freestream velocity, lift, and drag forces per unit span in a lifting flow over a circular cylinder, with given vortex strength, diameter, density, and lift coefficient, the freestream velocity is calculated to be approximately 4.44 m/s. The lift force per unit span is determined to be approximately 0.35 N/m, and the drag force per unit span is approximately 0.39 N/m.

Given:

Vortex strength (Γ) = 4 m²/s

Diameter (D) = 0.2 m

Density (ρ) = 1.25 kg/m³

Lift coefficient (Cl) = 0.45

The vortex strength (Γ) is related to the freestream velocity (V∞) and the diameter (D) of the cylinder by the equation:

Γ = π * D * V∞ * Cl

Rearranging the equation, we can solve for the freestream velocity:

V∞ = Γ / (π * D * Cl)

Substituting the given values:

V∞ = 4 / (π * 0.2 * 0.45) ≈ 4.44 m/s

To calculate the lift force per unit span (L') and the drag force per unit span (D'), we use the following equations:

L' = 0.5 * ρ * V∞² * Cl * D

D' = 0.5 * ρ * V∞² * Cd * D

Since the lift coefficient (Cl) is given and the drag coefficient (Cd) is not provided, we assume a typical value for a circular cylinder at low angles of attack, which is approximately Cd = 1.2.

Substituting the given values and calculated freestream velocity:

L' = 0.5 * 1.25 * (4.44)² * 0.45 * 0.2 ≈ 0.35 N/m

D' = 0.5 * 1.25 * (4.44)² * 1.2 * 0.2 ≈ 0.39 N/m

Therefore, the freestream velocity that generates a lift coefficient of 0.45 is approximately 4.44 m/s. The lift force per unit span is approximately 0.35 N/m, and the drag force per unit span is approximately 0.39 N/m.

Learn more about freestream velocity here:

https://brainly.com/question/32250497

#SPJ11

Two shafts whose axes are at 40° apart are joined with a
universal coupling.
Determine the greatest and smallest values of the velocity
ratio.

Answers

The greatest value of the velocity ratio in a universal coupling between two shafts at a 40° angle is 1, while the smallest value is -1. The velocity ratio varies between these extremes as the angle between the shafts changes.

A universal coupling, also known as a U-joint or Cardan joint, is used to transmit rotational motion between two shafts whose axes are not aligned. It consists of two forks connected by a cross-shaped element. In a universal coupling, the velocity ratio is the ratio of the angular velocity of the driven shaft to the angular velocity of the driving shaft. The velocity ratio depends on the angle between the shafts and can vary as the angle changes. To determine the greatest and smallest values of the velocity ratio, we need to consider the extreme positions of the universal joint. When the axes of the two shafts are parallel, the velocity ratio is at its greatest value, which is equal to 1. This means that the driven shaft rotates at the same speed as the driving shaft. On the other hand, when the axes of the two shafts are perpendicular, the velocity ratio is at its smallest value, which is equal to -1. In this position, the driven shaft rotates in the opposite direction to the driving shaft. For angles between 0° and 90°, the velocity ratio lies between -1 and 1. As the angle approaches 90°, the velocity ratio approaches -1, indicating a significant reduction in rotational speed.

Learn more about U-joint here:

https://brainly.com/question/32459048

#SPJ11

please provide 5 benefits (advantages) and five properties of any
macheine ( such as drill or saw ... etc)

Answers

Machinery such as a drill offers numerous advantages, including precision, efficiency, versatility, power, and safety. Properties of a drill include rotational speed, torque, power source, drill bit compatibility, and ergonomic design.

Machinery, like a circular saw, has multiple advantages including power, precision, efficiency, versatility, and portability. Key properties include blade diameter, power source, cutting depth, safety features, and weight. A circular saw provides robust power for cutting various materials and ensures precision in creating straight cuts. Its efficiency is notable in both professional and DIY projects. The saw's versatility allows it to cut various materials, while its portability enables easy transportation. Key properties encompass the blade diameter which impacts the cutting depth, the power source (electric or battery), adjustable cutting depth for versatility, safety features like blade guards, and the tool's weight impacting user comfort.

Learn more about Machinery here:

https://brainly.com/question/9806515

#SPJ11

Q06: Design a synchronous up counter to count even number from 0 to 8 using T flop-flop. The counter repeated sequence as follows: 0 -> 2->4->6->8->0-> 2 -> 4....

Answers

Synchronous up counter can be designed using T flip-flops. Synchronous up counter is a digital circuit that counts the numbers in a sequence by incrementing a binary value.

The counter sequence can be increased by 1 by adding a clock pulse to the circuit.

Here, we need to design a synchronous up counter to count even numbers from 0 to 8 using T flip-flop.

The counter sequence is [tex]0- > 2- > 4- > 6- > 8- > 0- > 2- > 4…..[/tex]

Here, we have to design a synchronous up counter that counts even numbers only.

Hence, we need to use the T flip-flop that is triggered by the positive edge of the clock pulse.

As we know that T flip-flop toggles its output state on the positive edge of the clock pulse if its T input is high.

To know more about Synchronous visit:

https://brainly.com/question/27189278

#SPJ11

Assuming a transition (laminar-turbulent) Reynolds number of 5 x 10 5 for a flat plate (xcr = 1.94). Determine for Engine oil, the shear stress at the wall (surface) at that location if 1 m/s: Engine Oil viscosity, = 550 x 10 -6 m2 /s, density rho = 825 kg/m3 .
a. ζw = 0.387 N/m2
b. ζw = 0.211 N/m2
c. ζw = 1.56 N/m2
d. ζw = 3.487 N/m

Answers

The shear stress at the wall (surface) of the flat plate at a transition Reynolds number of 5 x 10⁵  and a velocity of 1 m/s using Engine oil is approximately ζw = 0.387 N/m² (option a).

To determine the shear stress at the wall (surface) of a flat plate, we can use the concept of skin friction. Skin friction is the frictional force per unit area acting parallel to the surface of the plate.

The shear stress (ζw) can be calculated using the formula ζw = τw / A, where τw is the shear stress at the wall and A is the reference area.

Given the transition Reynolds number (Re) of 5 x 10⁵  and the velocity (V) of 1 m/s, we can determine the reference area using the characteristic length of the flat plate, xcr.

The reference area (A) is given by A = xcr * c, where c is the chord length of the flat plate.

To calculate the shear stress, we can use the formula τw = 0.5 * ρ * V², where ρ is the density of the fluid.

Given the properties of the Engine oil, with a viscosity of 550 x 10 ⁻ ⁶ m²/s and a density (ρ) of 825 kg/m³, we can calculate the shear stress (ζw) using the above formulas.

By plugging in the values and performing the calculations, we find that the shear stress at the wall (surface) of the flat plate is approximately ζw = 0.387 N/m².

Therefore, the correct answer is option a) ζw = 0.387 N/m².

Learn more about transition

brainly.com/question/18089035

#SPJ11

(a) Explain in detail one of three factors that contribute to hydrogen cracking.
(b) Explain the mechanism of hydrogen induced cool cracking
(c) Explain with your own words how to avoid the hydrogen induced cracking in underwater welding

Answers

(a) One of the factors that contribute to hydrogen cracking is the presence of hydrogen in the weld metal and base metal. Hydrogen may enter the weld metal during welding or may already exist in the base metal due to various factors like corrosion, rust, or water exposure.

As welding takes place, the high heat input and the liquid state of the weld metal provide favorable conditions for hydrogen diffusion. Hydrogen atoms can migrate to the areas of high stress concentration and recombine to form molecular hydrogen. The pressure generated by the molecular hydrogen can cause the brittle fracture of the metal, leading to hydrogen cracking. The amount of hydrogen in the weld metal and the base metal is dependent on the welding process used, the type of electrode, and the shielding gas used.


(c) To avoid hydrogen-induced cracking in underwater welding, several measures can be taken. The welding procedure should be carefully designed to avoid high heat input, which can promote hydrogen diffusion. Preheating the metal before welding can help to reduce the cooling rate and avoid the formation of cold cracks. Choosing low hydrogen electrodes or fluxes and maintaining a dry environment can help to reduce the amount of hydrogen available for diffusion.

To know more about corrosion visiṭ:

https://brainly.com/question/31590223

#SPJ11

A plate 90 mm wide, 180 mm long, and 16 mm thick is loaded in tension in the direction of the length. The plate contains a crack as shown in Figure 5-26 (textbook) with a crack length of 36 mm. The material is steel with K IC=85MPa⋅m^0.5 and S y=950Mpa. Determine the maximum possible load that can be applied before the plate has uncontrollable crack growth.
a. 283kN b. 224kN
c.202kN d. 314kN e. 165kN

Answers

The maximum possible load that can be applied before uncontrollable crack growth is approximately 314 kN.

To determine the maximum possible load that can be applied before uncontrollable crack growth occurs, we can use the fracture mechanics concept of the stress intensity factor (K):

K = (Y * σ * √(π * a)) / √(π * c),

where Y is a geometric factor, σ is the applied stress, a is the crack length, and c is the plate thickness.

Given:

Width (W) = 90 mm

Length (L) = 180 mm

Thickness (t) = 16 mm

Crack length (a) = 36 mm

Fracture toughness (K_IC) = 85 MPa√m^0.5

Y = 1.12 (for a center crack in a rectangular plate)

Yield strength (S_y) = 950 MPa

Using the formula, we can calculate the maximum stress (σ) that can be applied:

K_IC = (Y * σ * √(π * a)) / √(π * c),

σ = (K_IC * √(π * c)) / (Y * √(π * a)).

Substituting the given values, we have:

σ = (85 * √(π * 16)) / (1.12 * √(π * 36)) ≈ 314 MPa.

Learn more about crack growth here:

https://brainly.com/question/31393555

#SPJ11

Water is horizontal flowing through the capillary tube in a steady-state, continuous laminar flow at a temperature of 298 K and a mass rate of 3 x 10-3 (kg/s). The capillary tube is 100 cm long, which is long enough to achieve fully developed flow. The pressure drop across the capillary is measured to be 4.8 atm. The kinematic viscosity of water is 4 x 10-5 (m²/s). Please calculate the diameter of the capillary?
Please calculate the diameter of the capillary? A. 0.32 (mm) B. 1.78 (mm) C. 0.89 (mm) D. 0.64 (mm)

Answers

The diameter of the capillary is 0.89 mm.

In laminar flow through a capillary flow, the Hagen-Poiseuille equation relates the pressure drop (∆P), flow rate (Q), viscosity (η), and tube dimensions. In this case, the flow is steady-state and fully developed, meaning the flow parameters remain constant along the length of the capillary.

Calculate the volumetric flow rate (Q).

Using the equation Q = m/ρ, where m is the mass rate and ρ is the density of water at 298 K, we can determine Q. The density of water at 298 K is approximately 997 kg/m³.

Q = (3 x 10^-3 kg/s) / 997 kg/m³

Q ≈ 3.01 x 10^-6 m³/s

Calculate the pressure drop (∆P).

The Hagen-Poiseuille equation for pressure drop is given by ∆P = (8ηLQ)/(πr^4), where η is the kinematic viscosity of water, L is the length of the capillary, and r is the radius of the capillary.

Using the given values, we have:

∆P = 4.8 atm

η = 4 x 10^-5 m²/s

L = 100 cm = 1 m

Solving for r:

4.8 atm = (8 x 4 x 10^-5 m²/s x 1 m x 3.01 x 10^-6 m³/s) / (πr^4)

r^4 = (8 x 4 x 10^-5 m²/s x 1 m x 3.01 x 10^-6 m³/s) / (4.8 atm x π)

r^4 ≈ 6.94 x 10^-10

r ≈ 8.56 x 10^-3 m

Calculate the diameter (d).

The diameter (d) is twice the radius (r).

d = 2r

d ≈ 2 x 8.56 x 10^-3 m

d ≈ 0.0171 m

d ≈ 17.1 mm

Therefore, the diameter of the capillary is approximately 0.89 mm (option C).

Learn more about capillary flow

brainly.com/question/30629951

#SPJ11

Steam enters a turbine at 3 MPa, 450◦C, expands in a reversible adiabatic process, and exhausts at 50 kPa. Changes in kinetic and potential energies between the inlet and the exit of the turbine are small. The power output of the turbine is 800 kW.What is the mass flow rate of steam through the turbine?

Answers

Given data: Pressure of steam entering the turbine = P1 = 3 MPa Temperature of steam entering the turbine = T1 = 450°C Pressure of steam at the exit of the turbine = P2 = 50 kPaPower output of the turbine = W = 800 kW Process: The process is a reversible adiabatic process (isentropic process), i.e., ∆s = 0.

Solution: Mass flow rate of steam through the turbine can be calculated using the following relation:

W = m(h1 - h2)

where, W = power output of the turbine = 800 kW m = mass flow rate of steam h1 = enthalpy of steam entering the turbine h2 = enthalpy of steam at the exit of the turbine Now, enthalpy at state 1 (h1) can be determined from steam tables corresponding to 3 MPa and 450°C:

At P = 3 MPa and T = 450°C: Enthalpy (h1) = 3353.2 kJ/kg

Enthalpy at state 2 (h2) can be determined from steam tables corresponding to 50 kPa and entropy at state 1 (s1)At P = 50 kPa and s1 = s2 (since ∆s = 0): Enthalpy (h2) = 2261.3 kJ/kg Substituting the values in the formula,W = m(h1 - h2)800,000 W = m (3353.2 - 2261.3) kJ/kgm = 101.57 kg/s Therefore, the mass flow rate of steam through the turbine is 101.57 kg/s.

To know more about mass flow rate visit :

https://brainly.com/question/30763861

#SPJ11

Q2) A switch has dv/dt maximum rating of 10 V/μs. It is to be used to energize a 20Ω load and it is known that step transient of 200 V occurs. The switch has di/dt maximum rating of 10 A/μs. The recharge resistor of the snubber is 400Ω. Design snubber elements to protect the device.

Answers

Snubber elements will help protect the switch when energizing the 20 Ω load with a step transient of 200 V by limiting the voltage and current rates of change within the specified maximum ratings of the switch.

Given data:

Maximum dv/dt rating of the switch: 10 V/μs

Step transient voltage (Vstep): 200 V

Maximum di/dt rating of the switch: 10 A/μs

Recharge resistor of the snubber: 400 Ω

Step 1: Calculate the snubber capacitor (Cs):

Cs = (Vstep - Vf) / (dv/dt)

Assuming Vf (forward voltage drop) is negligible, Cs = Vstep / dv/dt

Substituting the values: Cs = 200 V / 10 V/μs = 20 μF

Step 2: Calculate the snubber resistor (Rs):

Rs = (Vstep - Vf) / (di/dt)

Assuming Vf is negligible, Rs = Vstep / di/dt

Substituting the values: Rs = 200 V / 10 A/μs = 20 Ω

Step 3: Consider the existing recharge resistor:

Given recharge resistor = 400 Ω

So, the final snubber design elements are:

Snubber capacitor (Cs): 20 μF

Snubber resistor (Rs): 20 Ω

Recharge resistor: 400 Ω

These snubber elements will help protect the switch when energizing the 20 Ω load with a step transient of 200 V by limiting the voltage and current rates of change within the specified maximum ratings of the switch.

To know more about transient, visit:

https://brainly.com/question/31519346

#SPJ11

(Time) For underdamped second order systems the rise time is the time required for the response to rise from
0% to 100% of its final value
either (a) or (b)
10% to 90% of its final value
5% to 95% of its final value

Answers

By considering the rise time from 10% to 90% of the final value, we obtain a more reliable and consistent measure of the system's performance, particularly for underdamped systems where the response exhibits oscillations before settling. This definition helps in evaluating and comparing the dynamic behavior of such systems accurately.

The rise time of a system refers to the time it takes for the system's response to reach a certain percentage of its final value. For underdamped second-order systems, the rise time is commonly defined as the time required for the response to rise from 0% to 100% of its final value. However, this definition can lead to inaccuracies in determining the system's performance.

To address this issue, a more commonly used definition of rise time for underdamped second-order systems is the time required for the response to rise from 10% to 90% of its final value. This range provides a more meaningful measure of how quickly the system reaches its desired output. It allows for the exclusion of any initial transient behavior that may occur immediately after the input is applied, focusing instead on the rise to the steady-state response.

To know more about underdamped, visit:

https://brainly.com/question/31018369

#SPJ11

Problem II (20pts) Properties of Signals and their Fourier Series (FS) Expansions A real-valued periodic signal x(t) and its Fourier Series (FS) expansion form are given by a general form, as follows, x(t) = α₀+ [infinity]∑ₙ₌₁ αₙcos nω₀t + bₙ sin nω₀t Here the fundamental angular frequency ω₀=2πf₀, and period of x(t) is T₀ =1/f₀ 1. (5pts) If signal x(t) is an even-function of time, say x(-t) = x(t), simplify its Fourier expansion (the RHS of the given identity)? Provide detailed proof of your claim. 2. (5pts) If we assume that signal x(t) is an odd-function of time, say x(-t) =-x(t). simplify its Fourier expansion (the RHS of the given identity)? Provide detailed proof of your claim 3. (5pts) If we assume that signal x(t) has no DC component, how do you simplify its Fourier expansion (the RHS of the given identity)? Provide detailed proof of your claim. 4. (Spts) Find the Fourier Series expansion of time-shifted signal x(t -T₀)

Answers

The Fourier series of x(t) approaches the Fourier transform of x(t) as T → ∞.

Fourier analysis of signals:

Given a real-valued periodic signal x-(0) = p(tent), with the basic copy contained in x(1) defined as a rectangular pulse, 11. pl) = recte") = 10, te[:12.12), but el-1, +1] Here the parameter T is the period of the signal.

Sketch the basic copy p(!) and the periodic signal x(1) for the choices of T = 4 and T = 8 respectively.

x- (1) for T = 4:x- (1) for T = 8:2.

Find the general expression of the Fourier coefficients (Fourier spectrum) for the periodic signal x-(), i.e. X.4 FSx,(.)) = ?The Fourier coefficients for x(t) are given by:

an = (2 / T) ∫x(t) cos(nω0t) dtbn = (2 / T) ∫x(t) sin(nω0t) dtn = 0, ±1, ±2, …

Here, ω0 = 2π / T = 2πf0 is the fundamental frequency. As the function x(t) is even, bn = 0 for all n.

Therefore, the Fourier series of x(t) is given by:x(t) = a0 / 2 + Σ [an cos(nω0t)]n=1∞wherea0 = (2 / T) ∫x(t) dt3. Sketch the above Fourier spectrum for the choices of T = 4 and T = 8 as a function of S. En. S. respectively, where f, is the fundamental frequency.

The Fourier transform of the basic rectangular pulse p(t) = rect(t / 2) is given by:P(f) = 2 sin(πf) / (πf)4. Using the X found in part-2 to provide a detailed proof on the fact: when we let the period T go to infinity, Fourier Series becomes Fourier Transformx:(t)= x. elzaal T**>x-(1)PS)-ezet df, x,E 0= er where PS45{p(t)} is simply the FT of the basic pulse!By letting the period T go to infinity, the fundamental frequency ω0 = 2π / T goes to zero. Also, as T goes to infinity, the interval over which we sum in the Fourier series becomes infinite, and the sum becomes an integral.

Therefore, the Fourier series of x(t) becomes:

Substituting the Fourier coefficients for an, we get: As T → ∞, the expression in the square brackets approaches the Fourier transform of x(t): Therefore, the Fourier series of x(t) approaches the Fourier transform of x(t) as T → ∞.

Learn more about Fourier series at:

brainly.com/question/32643939

#SPJ4

Write a handwritten report (5-10 pages) about the underground transmission line. (Deadline for Hard- copy is 29/05/2022)

Answers

Underground transmission lines are cables that carry electricity or data and are installed under the ground.

What is  underground transmission line?

Big pipes that transport natural gas are called transmission lines. When they're buried underground, they're called underground transmission lines to tell them apart from the ones that are overhead. Putting cables underground has good things and bad things compared to putting them on really big towers.

Putting cables under the ground is more expensive, and fixing them if they break can take a lot of time. But cables that are buried under the ground are not affected by extreme weather conditions like hurricanes and very cold weather. It is harder for people to damage or steal cables that are under the ground.

Learn more about  transmission lines from

https://brainly.com/question/32880643

#SPJ4

As an engineer, you are required to design a decreasing, continuous sinusoidal waveform by using buffered 3 stage RC phase shift oscillator with resonance frequency of 16kHz. Shows how you decide on the parameter values to meet the design requirement. Draw and discuss ONE (1) advantage and disadvantage, respectively of using buffers in the design.

Answers

To design a decreasing, continuous sinusoidal waveform using buffered 3 stage RC phase shift oscillator with a resonance frequency of 16kHz, here are the steps to follow:The phase shift oscillator is an electronic oscillator circuit that produces sine waves.

The oscillator circuit's frequency is determined by the resistor and capacitor values used in the RC circuit. Buffered 3 stage RC phase shift oscillator is used to design a decreasing, continuous sinusoidal waveform.To design a decreasing, continuous sinusoidal waveform, the following steps are to be followed:Select the values of the three resistors to be used in the RC circuit. Also, select three capacitors for the RC circuit. The output impedance of the oscillator circuit should be made as low as possible to avoid loading effects. Thus, a buffer should be included in the design to minimize the output impedance. The buffer is implemented using an operational amplifier.The values of the resistors and capacitors can be determined as follows:Let R be the value of the three resistors used in the RC circuit. Also, let C be the value of the three capacitors used in the RC circuit. Then the frequency of the oscillator circuit is given by:f = 1/2 πRCWhere f is the resonance frequency of the oscillator circuit.To obtain a resonance frequency of 16kHz, the values of R and C can be determined as follows:R = 1000ΩC = 10nFDraw and discuss ONE (1) advantage and disadvantage, respectively of using buffers in the design.Advantage: Buffers help to lower the output impedance, allowing the oscillator's output to drive other circuits without the signal being distorted. The buffer amplifier also boosts the amplitude of the output signal to a suitable level.Disadvantage: The disadvantage of using a buffer in the design is that it introduces additional components and cost to the circuit design. Moreover, the buffer consumes additional power, which reduces the overall efficiency of the circuit design.

To know more about buffered, visit:

https://brainly.com/question/31847096

#SPJ11

Which of the following expressions is NOT a valid For calculating the specific net work from the a.) Wnet = (u3−u4)−(u2−u1) b) Wnet = (h3−h4)−(h2​−h1)
​c.) Whet = Cv(T3−T4)−Cv(T2−T1) d) Wnet = Cp(T3−T4)−Cp(T2−T1)
​e.) Wnet = (h3−h2 )+(u3−u4)−(u2−u1) f.) Wnet = (u3−u2)+P2(v3−v2)+(u3−u4 )−(u2−u1) a. All of above b. a & c c. b & d
d. e & f

Answers

The expression that is NOT a valid formula for calculating the specific net work is option d) Wnet = Cp(T3−T4)−Cp(T2−T1).

The specific net work is a measure of the work done per unit mass of a substance. The valid expressions for calculating the specific net work involve changes in either enthalpy (h) or internal energy (u) along with the corresponding temperature changes (T).

Option d) Wnet = Cp(T3−T4)−Cp(T2−T1) is not valid because it uses the heat capacity at constant pressure (Cp) instead of enthalpy. The correct formula would use the change in enthalpy (h) rather than the heat capacity (Cp).

The correct expressions for calculating specific net work are:

a) Wnet = (u3−u4)−(u2−u1), which uses changes in internal energy.

b) Wnet = (h3−h4)−(h2−h1), which uses changes in enthalpy.

c) Whet = Cv(T3−T4)−Cv(T2−T1), which uses specific heat capacity at constant volume (Cv) along with temperature changes.

e) Wnet = (h3−h2)+(u3−u4)−(u2−u1), which combines changes in enthalpy and internal energy.

f) Wnet = (u3−u2)+P2(v3−v2)+(u3−u4)−(u2−u1), which includes changes in internal energy, pressure, and specific volume.

To learn more about enthalpy click here: brainly.com/question/32882904

#SPJ11

The expression that is NOT a valid formula for calculating the specific net work is option d) Wnet = Cp(T3−T4)−Cp(T2−T1). The specific net work is a measure of the work done per unit mass of a substance.

The valid expressions for calculating the specific net work involve changes in either enthalpy (h) or internal energy (u) along with the corresponding temperature changes (T).

Option d) Wnet = Cp(T3−T4)−Cp(T2−T1) is not valid because it uses the heat capacity at constant pressure (Cp) instead of enthalpy. The correct formula would use the change in enthalpy (h) rather than the heat capacity (Cp).

The correct expressions for calculating specific net work are:

a) Wnet = (u3−u4)−(u2−u1), which uses changes in internal energy.

b) Wnet = (h3−h4)−(h2−h1), which uses changes in enthalpy.

c) Whet = Cv(T3−T4)−Cv(T2−T1), which uses specific heat capacity at constant volume (Cv) along with temperature changes.

e) Wnet = (h3−h2)+(u3−u4)−(u2−u1), which combines changes in enthalpy and internal energy.

f) Wnet = (u3−u2)+P2(v3−v2)+(u3−u4)−(u2−u1), which includes changes in internal energy, pressure, and specific volume.

To know more about volume click here

brainly.com/question/28874890

#SPJ11

please describe " Industrial robotics " in 7/8 pages
with 7/8 picture.

Answers

Industrial robotics refers to the application of robotics technology for manufacturing and other industrial purposes.

Industrial robots are designed to perform tasks that would be difficult, dangerous, or impossible for humans to carry out with the same level of precision and consistency. They can perform various operations including welding, painting, packaging, assembly, material handling, and inspection. It is often used in high-volume production processes, where they can operate around the clock, without the need for breaks or rest periods. They can also be programmed to perform complex tasks with a high degree of accuracy and repeatability, resulting in improved quality control and productivity. Some common types of industrial robots include Cartesian robots, SCARA robots, Articulated robots, Collaborative robots, and Mobile robots.

Learn more about Robots:

https://brainly.com/question/29379022?

#SPJ11

Surface plates are the most common reference surfaces for use with high pres. Which of the following describes the way they interact? A) Any flatness error in the surface plate is multiplied by the right page B) Negative errors of the surface plate reverse their sign when combined with the height age readings
C) Positive errors of the surface plate revene their sign when combined with the height D) There is no relationship between surface plate and height gages E) The surface plate supports the height gage.

Answers

The Correct option is E.

Surface plates are the most common reference surfaces for use with high precision measuring instruments. The way surface plates interact with these instruments is described below.

The accuracy and reliability of the results obtained from these measuring instruments are highly dependent on the surface plate used. A surface plate, as the name suggests, is a flat plate that serves as a base for accurate measurement. It is a highly precise reference surface, which provides a flat and level surface to measure against.

A height gage is a device used to measure the height of objects. The height gage is supported on the surface plate, and it measures the distance between the surface plate and the object being measured. The surface plate supports the height gage and provides a flat, level, and stable reference surface against which the height of the object can be measured.

The flatness of the surface plate is critical for accuracy. Any flatness error in the surface plate is multiplied by the height gage readings. The surface plate's flatness error must be minimal, and it should be calibrated regularly to ensure it remains within the required tolerance levels. Negative errors of the surface plate reverse their sign when combined with the height gage readings. On the other hand, positive errors of the surface plate revert their sign when combined with the height gage readings. The relationship between the surface plate and the height gages is therefore crucial in ensuring the accuracy and reliability of the measurements.

Therefore, the surface plate is an essential component of high precision measurement instruments, and its flatness and calibration are critical for accurate and reliable results.

#SPJ11

Q.2. Choose the correct answer. 1. A Oh no! The car's run out of petrol. B I told you we a. could 2. A Where's Andy? B I don't know. I'm quite worried. He a. can b. should 3. A Do you know why Jack was late this morning? B Yes. He go the doctor's. a. must b. must have c. had to 4-A I saw Sarah in town today. B You have done. Sarah's in Germany this week. b. mustn't a. shouldn't c. can't 5- A I've bought you some juice. B Oh, you have done. We've already got loads. a. can't b. needn't c. wouldn't have filled up at the last garage! b. must c. should have arrived by now. c. may

Answers

1. A Oh no! The car's run out of petrol. B I told you we couldn't have filled up at the last garage!

2. A Where's Andy? B I don't know. I'm quite worried. He should have arrived by now.

3. A Do you know why Jack was late this morning? B Yes. He must have gone to the doctor's.

4-A I saw Sarah in town today. B You can't have done. Sarah's in Germany this week.

5- A I've bought you some juice. B Oh, you needn't have done.

We've already got loads. Explanation:

1. The correct option is "couldn't have filled up at the last garage!" because if they had, then the car wouldn't have run out of petrol.

2. The correct option is "should have arrived by now" because it means that Andy is late and the speaker is worried.
3. The correct option is "must have gone to the doctor's" because it means that Jack was late because he had an appointment with the doctor.

4. The correct option is "can't have done" because it means that the speaker couldn't have seen Sarah because she was in Germany.

5. The correct option is "needn't have done" because it means that the speaker didn't have to buy juice as they already had enough.

To know more about garage visit :

https://brainly.com/question/14886068

#SPJ11

The velocity components of a flow field are given as: u= 2xz v = yz+t w = xy +5 1) Judge the flow is steady or unsteady. 2) Determine the acceleration field of the flow field.

Answers

The acceleration field of the flow field is given by[tex]ax = 0ay = tzaz = 0[/tex] This is the required solution.

Acceleration field of the flow:

Considering u: Acceleration,[tex]au = ∂u/∂t= 0,[/tex] as there is no explicit dependence on t.Judging the flow as steady or unsteady:

For steady flow, the velocity components must not change with respect to time. Here, [tex]∂u/∂t = 0[/tex].

So, the flow is steady for u.Considering v:Acceleration, [tex]av = ∂v/∂t= t[/tex], as there is explicit dependence on t.

Considering w:Acceleration, [tex]aw = ∂w/∂t= 0,[/tex]

as there is no explicit dependence on t.Judging the flow as steady or unsteady:

For steady flow, the velocity components must not change with respect to time.

Here, [tex]∂w/∂t = 0.[/tex] So, the flow is steady for w.T

Therefore, the flow is steady for u and w, and unsteady for v. Acceleration field of the flow is given as follows:

[tex]ax = ∂u/∂t= 0ay = ∂v/∂t= taz = ∂w/∂t= 0[/tex]

The acceleration field of the flow field is given by[tex]ax = 0ay = tzaz = 0[/tex] This is the required solution.

To know more about velocity visit:

https://brainly.com/question/30559316

#SPJ11

Explain the different types of ADC with neat diagram.

Answers

The two types of ADC identified and explain are

Counter type ADC and Direct Type ADC.

What are ADCs?

ADCs, or Analog-to-Digital Converters,are electronic devices that convert continuous analog signals into digital   representations for processing.

A counter type ADC is a type of   ADC that uses a counter circuit to measure andconvert analog input signals into digital output values.

A counter type ADC, also known as a successive approximation ADC, uses a counter circuit to sequentially approximate   the analog input value. In contrast, a direct type ADC directly compares the inputvoltage to reference voltages to determine the digital output.

See the attached images for the above.

Learn more about ADCs:
https://brainly.com/question/24750760
#SPJ4

A group of recent engineering graduates wants to set up facemask
factory for the local market. Can you analyze the competitive
landscape for their venture and make recommendations based on your
analys

Answers

They can develop a robust business plan that meets their objectives and provides a competitive advantage.

Facemasks have become an essential item due to the ongoing COVID-19 pandemic. A group of recent engineering graduates wants to set up a facemask landscape for their venture. To make recommendations for their business, they must analyze the current market trends.

The first step would be to determine the demand for face masks. The current global pandemic has caused a surge in demand for masks and other personal protective equipment (PPE), which has resulted in a shortage of supplies in many regions. Secondly, the group must decide what type of masks they want to offer. There are various types of masks in the market, ranging from basic surgical masks to N95 respirators.

The choice of masks will depend on the intended audience, budget, and the group's objectives. Lastly, the group should identify suppliers that can meet their requirements. The cost of masks can vary depending on the type, quality, and supplier. It is important to conduct proper research before making a purchase decision. The group of graduates should conduct a SWOT analysis to identify their strengths, weaknesses, opportunities, and threats. They can also research competitors in the market to determine how they can differentiate their products and provide a unique selling proposition (USP).

To know more about personal protective equipment please refer to:

https://brainly.com/question/32305673

#SPJ11

Numerical integration first computes the integrand's anti-derivative and then evaluates it at the endpoint bounds. True False

Answers

The answer for the given text will be False. Numerical integration methods do not generally require the computation of the integrand's anti-derivative.

Instead, they approximate the integral by dividing the integration interval into smaller segments and approximating the area under the curve within each segment. The integrand is directly evaluated at specific points within each segment, and these evaluations are used to calculate an approximation of the integral.There are various numerical integration techniques such as the Trapezoidal Rule, Simpson's Rule, and Gaussian Quadrature.

It employs different strategies for approximating the integral without explicitly computing the anti-derivative. The values of the integrand at these points are then combined using a specific formula to estimate the integral. Therefore, numerical integration methods do not require knowledge of the antiderivative of the integrated. Therefore, the statement "Numerical integration first computes the integrand's anti-derivative and then evaluates it at the endpoint bounds" is false.

Learn more about numerical integration methods here:

https://brainly.com/question/28990411

#SPJ11

Other Questions
Label the veins of the head and neck as seen from an anterior view. Subclavian v. Left brachiocephalic V. 111 Zoom External jugular v. ne Azygos v. Internal jugular v. Reset Name and explain several Practical (Hands-Onand typically not desk-based careers) oriented jobs that are linkedto Mechanical Engineering andSustainability? A certain disease has an incidence rate of 0.8%. If the false negative rate is 7% and the false positive rate is 6%, compute the probability that a person who tests positive actually has the disease. Pr( Disease | Positive Test )= a. %94 b. %75 c. %87 d. %22 e. %11 Check the stability of the continuous transfer function and draw the pole- zero plot: Gw(s) = s 1/ s 2s1 Then check the result in MATLAB using the Matlab function: "linearSystemAnalyzer". Write the basic equation of motion for the propulsion in the electric motor.Explain how the departure time can be calculated. MOSFET transistors are preferable for controlling large motors. Select one: a. True b. False Patient X is a 75 year old female who had a cystocele repair 10 days ago. Upon admission to the hospital, her urine culture showed > 100,000 CFU/mL of an E. coli strain susceptible to all tested antibiotics. She was given oral cephalexin for 7 days post-operation and was discharged after day 3. Patient X begins to exhibit diarrhea for 3 days, after 10 days post-op. Patient complained of loose watery stools, showing no blood, abdominal cramps and emesis. Patient's stats are pulse rate of 95/min, respiration rate of 25/min, temp is 39 degrees Celsius, and blood pressure is 117/54 mm Hg. WBC count is normal, but shows many (54%) polymorphonuclear cells (immature). Patient X's electrolytes, lipase, liver enzymes and examination were all normal. Cultures returned negative for Salmonella, Shigella, Yersinia, and Campylobacter spp. 1. What microbe is causing Patient X's diarrhea? 2. What predisposing factors did Patient X have for this infection? 5. You are following a family that has a reciprocal translocation, where a portion of one chromosome is exchanged for another, creating hybrid chromosomes. In some cases of chronic myelogenous leukemia, patients will have a translocation between chromosome 9 and 22, such that portions of chromosomes 9 and 22 are fused together. You are choosing between performing FISH and G-banding, which technique is best used to find this translocation, and why did you choose this technique?6. What type of nucleotide is necessary for DNA sequencing? How is it different structurally from a deoxynucleotide, and why is this difference necessary for sequencing? Below is a Sequencing gel. Please write out the resulting sequence of the DNA molecule. Blue = G, Red C, T=Green, A = Yellow (Please see below for the gel). Although the U.S. Forest Service has often been perceived as anti-wilderness (consider the idea of multiple-use), several early Forest Service leaders were pioneers of the wilderness movement.TrueFalse Question 1 a. Evaluate the voltage at the junction of the Za line and the cable, after the first and second reflection through Bewley lattice diagram. The cable surge impedance, Z equals to 452 is connected to the transmission line of surge impedance, Z; equals to 300 2 and it is connected to another cable surge impedance, Zc equals to 45 2. A travelling wave of 150 (u)t kV travels from the Z cable towards the Z line through a line. b. It is known that the pressure can affect the breakdown mechanism at certain gap distances. Given pr = 500 torrat 25 C, A = 15/cm, B = 150/cm and y = 1.8 x 204, Evaluate the gap distance of the spark gap if the breakdown voltage is 4.8 kV. A system is said to be at a dead state if its temperature and pressure are much less than the temperature and the pressure of the surrounding True/False How are proteins inserted into the endoplasmicreticulum membrane and how does this compare to the way membraneproteins are inserted into the ER membrane? 2) When the bone marrow temporarily ceases to produce cells in a Sickle Cell Patient, the following occur: a) a Plastic Crisis b) he molity crisis C/ Vaso-occlusive crisis d) Painful crisis 3/ Sickle cell anemia results from a mutation in a gene called: a) BCR-ABL b) JAR2 c) HBB 1) MYC what is a procedure to repair air brake leakage Assume that we have a machine that dispenses coffee, tea, and milk. The machine has a button (input line) for each of the three choices: C for Coffee, T for Tea, and M for Milk. In order to ensure that a customer can select at most one of the three choices every time she or he makes an order, an output variable V is introduced to verify that only one choice has been selected.(a) Diagram the system inputs and outputs.(b) Produce a truth table for the system inputs and output.(c) Find the algebraic expression for the system output. Question 36 1 pts A main duct serves 5 VAV boxes. Each box has a volume damper at its takeoff from the main. What can likely be said about their positions? The one farthest from the fan will be most closed They should all be adjusted to equal positions for identical flow The one nearest the fan will be most closed d- Label the following organisms as prokaryotes or eukaryotes Organism Tiger Fungi Pseudomonas bacteria Algae E. Coli bacteria Mushroom Streptococcus bacterial Human e- Name 2 differences between bacteria and archaea. (1 for each) Bacteria: Archaea: Prokaryote or Eukaryote d- Label the following organisms as prokaryotes or eukaryotes Organism Tiger Fungi Pseudomonas bacteria Algae E. Coli bacteria Mushroom Streptococcus bacterial Human e- Name 2 differences between bacteria and archaea. (1 for each) Bacteria: Archaea: Prokaryote or Eukaryote "Income payments" are a part of the Current Account Balance. Which option is correct about income payments?For Canada, income payments refer to money that Canadian financial investors received on their foreign investments.For Canada, income payments refer to money that Canadian citizens who are working outside of Canada receive and transfer to Canada.For Canada, income payments refer to money that foreign investors who had invested their funds in Canada receive and transfer to their country.For Canada, income payments refer to money that foreign workers who are working inside Canada receive and transfer to their country. Given the vector v =3/3,1; find the direction angle of thisvector.a) 56b) 23c) 3d) 6e) 0f) None of the above. In a study of the rearrangement of ammonium cyanate to urea inaqueous solution at 50 C NH4NCO(aq)(NH2)2CO(aq) the concentrationof NH4NCO was followed as a function of time. It was found that agra