Answer:
[tex]\delta = 0.385\,m[/tex] (Compression)
Explanation:
The aluminium bar is experimenting a compression due to an axial force, that is, a force exerted on the bar in its axial direction. (See attachment for further details) Under the assumption of small strain, the deformation experimented by the bar is equal to:
[tex]\delta = \frac{P\cdot L}{A \cdot E}[/tex]
Where:
[tex]P[/tex] - Load experimented by the bar, measured in newtons.
[tex]L[/tex] - Length of the bar, measured in meters.
[tex]A[/tex] - Cross section area of the bar, measured in square meters.
[tex]E[/tex] - Elasticity module, also known as Young's Module, measured in pascals, that is, newtons per square meter.
The cross section area of the bar is now computed: ([tex]D_{o} = 0.04\,m[/tex], [tex]D_{i} = 0.03\,m[/tex])
[tex]A = \frac{\pi}{4}\cdot (D_{o}^{2}-D_{i}^{2})[/tex]
Where:
[tex]D_{o}[/tex] - Outer diameter, measured in meters.
[tex]D_{i}[/tex] - Inner diameter, measured in meters.
[tex]A = \frac{\pi}{4}\cdot [(0.04\,m)^{2}-(0.03\,m)^{2}][/tex]
[tex]A = 5.498 \times 10^{-4}\,m^{2}[/tex]
The total contraction of the bar due to compresive load is: ([tex]P = -180\times 10^{3}\,N[/tex], [tex]L = 0.1\,m[/tex], [tex]E = 85\times 10^{9}\,Pa[/tex], [tex]A = 5.498 \times 10^{-4}\,m^{2}[/tex]) (Note: The negative sign in the load input means the existence of compressive load)
[tex]\delta = \frac{(-180\times 10^{3}\,N)\cdot (0.1\,m)}{(5.498\times 10^{-4}\,m^{2})\cdot (85\times 10^{9}\,Pa)}[/tex]
[tex]\delta = -3.852\times 10^{-4}\,m[/tex]
[tex]\delta = -0.385\,mm[/tex]
[tex]\delta = 0.385\,m[/tex] (Compression)
A body moves due north with velocity 40 m/s. A force is applied
on it and the body continues to move due north with velocity 35 m/s. W. .What is the direction of rate of change of momentum,if it takes
some time for that change and what is the direction of applied
external force?
Answer:
the direction of rate of change of the momentum is against the motion of the body, that is, downward.
The applied force is also against the direction of motion of the body, downward.
Explanation:
The change in the momentum of a body, if the mass of the body is constant, is given by the following formula:
[tex]\Delta p=\Delta (mv)\\\\\Delta p=m\Delta v[/tex]
p: momentum
m: mass
[tex]\Delta v[/tex]: change in the velocity
The sign of the change in the velocity determines the direction of rate of change. Then you have:
[tex]\Delta v=v_2-v_1[/tex]
v2: final velocity = 35m/s
v1: initial velocity = 40m/s
[tex]\Delta v =35m/s-40m/s=-5m/s[/tex]
Hence, the direction of rate of change of the momentum is against the motion of the body, that is, downward.
The applied force is also against the direction of motion of the body, downward.
How far does a roller coaster travel if it accelerates at 2.83 m/s2 from an initial
velocity of 3.19 m/s for 12.0 s?
Answer:
b
Explanation: